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AssrRAcr

Two of the most significant sources of uncertainty in geologic thermobarometry are
analytical imprecision and the systematic error associated with experimental calibration
techniques. Analytical uncertainties are sample-specific and dictate the precision of a P-T
estimate. Calibration uncertainties are reaction-specific and effectively limit the accuracy
of an estimate. We describe a systematic method of propagating both types of uncertainty
through thermobarometric calculations in order to place realistic confidence limits on P-Z
estimates. As an example, we evaluate the accuracy and precision of garnet-biotite, garnet-
plagioclase-kyanite-quartz, and garnet-rutile-kyanite-ilmenite-quartz thermobarometry for
a pelitic sample from the Funeral Mountains of southeastern California. Calibration and
analytical uncertainties together propagate into absolute pressure and temperature un@r-
tainties (950/o confidence level) of several hundred megapascals and more than 100 K.
Analytical imprecision accounts for only l0-20o/o of the pressure uncertainty and less than
300/o of the temperature uncertainty. Our capacity to confidently calculate equilibration
pressures and temperatures for geologic samples seems rather limited, but it can be im-
proved significantly through additional careful experimental work. Comparative thermo-
barometry, which involves applying a single set of thermobarometers to different samples
in order to calculate dffirences in P-T conditions, eliminates the systematic error asso-
ciated with experimental calibrations. Through careful analytical work, it is possible to
confidently resolve P-7 differences ofas little as a few tens ofdegrees and a few tens of
megapascals.

INrnonuc:rIoN

In recent years, quantitative thermobarometry and
thermodynamic modeling of mineral zoning have led to
a dramatic increase in the contributions made by meta-
morphic petrology to a better understanding of tectonic
processes (e.g., Hollister,1979; Tracy and Robinson, 1980;
Hodges and Royden, 1984; Selverstone, 1985). Unfor-
tunately, many of us are negligent (or at least optimistic)
about the assigrrment of uncertainties to P-Z estimales,
despite the significant effect these uncertainties may have
on the believability of a tectonic interpretation. The
sources of uncertainty in thermobarometry have been re-
viewed by Essene (1982) and Powell (1985), but few at-
tempts have been made to propagate these uncertainties
into realistic confidence limits for actual P-T estimates.
In this paper, we describe a systematic approach to ex-
pressing uncertainties in P-T estimates derived through
the simultaneous solution of two experimentally cali-
brated thermobarometers.

Souncrs oF uNCERTAINTy

There are four basic sources of uncertainty in ther-
mobarometry.

1. Disequilibrium effects. It is impossible to "prove"

that a given metamorphic assemblage ever achieved
equilibrium, although textural and chemical evidence may
be cited to support the assumption. In most applications
of thermobarometry, only the outermost rims of adjacent
phases are assumed to reflect equilibrium conditions. This
assumption reduces some of the uncertainty involved,
but an increasing body of kinetic data for metamorphic
phases argues that disequilibrium is a problem to be reck-
oned with (e.g., Loomis, 1983; Carpenter and Putnis,
1986). Many thermobarometric assemblages from re-
gionally metamorphosed terranes "re-equilibrate" during
uplift and slow cooling such that the calculated pressures
and temperatures underestimate "peak" metamorphic
conditions (e.g., Tracy et al., 1976 Hodges and Spear,
198 1). In these instances, the thermobarometric results
may help define the P-T trajectory of a terrane during
uplift and cooling (e.g., Hodges and Royden, 1984), but
often differences between the kinetics of retrograde ex-
change and net-transfer reactions result in partial equilib-
rium (e.g., Loomis, 1976) or outright disequilibrium. P-I
uncertainties associated with deviations from equilibri-
um may be extremely significant, but they are impossible
to quantify at present.

2. Calibration uncertainties. All of the commonly used
methods of calibration introduce significant uncertainties
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Fig. 1. Line drawing of a hypothetical domain within a pelit-
ic schist. Numbered points indicate spot analyses referred to in
text.

that propagate as systematic errors in P-Z estimates. For-
tunately, these uncertainties can be quantified: Anderson
(197 7 a, 197 7b) has discussed the uncertainties associated
with calculating the position of an equilibrium curve in
P-I space using thermochemical data, and Hodges and
Crowley (1985) have examined the uncertainties inherent
in empirical calibration. Relatively little attention has been
paid to the uncertainties associated with direct experi-
mental calibration, even though experimentally calibrat-
ed equilibria are inherently the most reliable thermoba-
rometers.

3. Analytical uncertainties. Analytical uncertainties as-
sociated with electron-microprobe analysis fall into two
categories: (a) standardizatio\, X-ray counting, and cor-
rection uncertainties inherent to the technique and (b)
variations in composition associated with variable scales
of equilibrium. Uncertainties of the first kind have been
treated routinely for some time (e.g., Smith, 1976), but
actual compositional variability within samples is seldom
dealt with in systematic fashion.

4. Solution modeling. Many of the phases commonly
used for thermobarometric calculations exhibit nonideal
solution behavior, in some cases necessitating major cor-
rections of measured compositions to arrive at reasonable
activities. Phase-equilibrium experiments (e.g., Eugster et
al.,1972), calorimetric measurements (e.g., Newton et al.,
1977), and empirical observations (e.g., Ganguly and
Kennedy, 1974; Ghent et al., 1979; Hodges and Spear,
1982) have been used to formulate activity coefrcients.

Unfortunately, there is often disagreement among
workers about the magnitude of various AG"*""., terms
and even the mathematical form of solution models. This
has led to the widespread practice of reporting multiple
P-7 estimates reflecting the effects of different solution

models. For example, garnet-biotite temperatures have
been calculated using an ideal solution model for garnet
(Ferry and Spear, 1978) and nonideal models proposed
by Newton and Haselton (1981), Hodges and Spear (1982),
and Ganguly and Saxena (1984). In some cases, P-Z es-
timates calculated using different solution models can vary
widely, implying that uncertainties in solution behavior
constitute a major source of error in thermobarometry.
In general, this error cannot be quantified because the
assumptions inherent in different models are often mu-
tually exclusive.

For the remainder of this paper, we will treat only the
effects of analytical and calibration uncertainties on our
confidence in P-T estimates, because these are the only
uncertainties that, aI present, lend themselves to rigorous
error-propagation techniques. Because analytical uncer-
tainties pertain to individual samples, they propagate into
minimum estimates of the precision of a P- 7 calculation.
Calibration uncertainties reflect our confidence in the po-
sitions of end-member reactions in P-T space and thus
propagate into minimum estimates of the systematic error
associated with the use of specific thermobarometers. To-
gether, the two types of uncertainty provide a sense of
the accuracy of a P-T estimate.

PnoplclrroN oF ANALYTTcAL UNCERTAINTTES

Because it is impractical to analyze every segment of
every rim of every pertinent grain in a sample, we must
use some systematic (yet cost-efficient!) technique to es-
timate compositional variability. First, we select two to
three domains in each probe mount. A hypothetical "do-
main" in a quartz-muscovite-biotite-garnet-plagioclase-
kyanite schist is illustrated in Figure 1. Knowing a priori
that we want to simultaneously solve the equilibria

MgrAlrSirO,, + KFe.AlSirO,o(OH),
garnet biotite

: FerAlrSi:O,, + KMgrAlSi3O'o(OH), (Rl)
garnet biotite

and

CarAIrSirO,, + 2AlrSiO5 + SiO, : 3CaAlSiO' (R2)
garnet kyanite quartz plagioclase

for rim temperature and pressure, we have chosen this
domain such that the non-end-member phases partici-
pating in the equilibria (garnet, biotite, and plagioclase)
share sharp mutual boundaries. We would analyze min-
erals along each ofthe critical boundaries twice, as near
as possible to the "rim" (points l-6 for garnet, points 7-
l0 for biotite, and points I I and 12 for plagioclase). In
order to account for narrow concentration gradients in
these phases, we might define the "rim" by analyzing
points along short traverses across each boundary.

The same procedure is repeated for each domain, re-
sulting in a suite of rim analyses for each non-end-mem-
ber phase. Using the formula basis for each analysis, we
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where variables zr, zr, . . . zn have normally distributed
random uncertainties, and p,,", are covariance coefrcients
describing the interdependenie between the variances of
any two compositional variables.

At this point, we wish to calculate a pressure and a
temperature by simultaneously solving two equilibrium-
condition equations ofthe form

0 - AH - 7rA,S + (P - l}s)LV + R?" In K (5)

where R is the gas constant, P is pressure, Z is temper-
ature, and AH, AS, and AV are the enthalpy, entropy,
and volume change for the reaction. The equilibrium
constant (K) is a function of various mole fractions and
(if nonideal solutions are involved) T and P.If we assume
that all of the uncertainty in T and P is a consequence of
analytical uncertainty, then we could use equations such
as 4 to propagate uncertainties in mole fractions into s1
and s.. Although rigorous, this approach can be cumber-
some if complex solution models are involved.

A computationally simpler approach was suggested by
Steltenpohl and Banley (1984) and involves Monte Carlo
propagation of the compositional uncertainties (Ander-
son, 1976, 1977b; Hodges and Crowley, 1985). The pro-
cedure is (l) create a 200-element array for each mole
fraction, consisting of a population of values normally
distributed about the accepted value; (2) choose a "seed"
pressure and temperature (e.9., 500 MPa and 500 K) for
the calculation; (3) calculate both equilibrium constants
using a randomly chosen element from each mole-frac-

TaeLe 1. Statistical and thermodynamic variables

Xi: the lth datum in a set X, X", . . . , X.
X: samole mean of X

Varr: sample variance of X
n: the number of data in a sample

sx: sample esd of X
F: any function of variables Zt, Zz,. . . , zn

px, = covariance coefficient of x' and Xt
@r, @p : uncertainty in calculated f and P

E: ellipticity of an uncertainty ellipse
M: slope of a line in two-dimensional space
B: ordinate intercept of a line in two-dimensional space

&: a Particular value of X
Y* = expected value of yfrom a regression at Xr
lV: confidence interval of a regression

t : Student's distribution coefficient
a : confidence interval for the Student's t distribution

S : entropy [J(mol. K)]
P: pressure (Pa)
K: eouilibrium constant
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calculate the mean (X) and sample variance (Var") for
each element (see Table I for notation of variables),

x:!f, ", (r)
n ._,

,  / ,  \ 2

Yar* : "2X - (>x)  ,  e)
r : I  \  i : l  /

where .{ is the composition measure d at i : I to n points.
Note that Var" is related to the commonly used estimated
standard deviation (esd) of X, s" by

Yar* : s2r.

Mole fractions of various components (e.g., almandine
in the garnet solution) are calculated using measured com-
positional data, and their uncertainties are obtained by
applying the basic error-propagation equation (Larsen and
Marx, l98l). For a function ,F of variables zr, zr, . . . , Zn,

R: gas constant [8.314 J/(mol K)]

tion array, as well as the "seed" P and I if necessary;
(4) calculate P and T as a function of the various ther-
modynamic variables and the equilibrium constants; (5)
iterate step 4 until P and 7 converge; and (6) iterate steps
2 through 5 100 times in order to produce a total of 100
P-?" pairs for the sample. The Monte Carlo method of
error propagation is strictly valid only when the variables
subject to uncertainty are independent. Because mole
fractions are constrained to sum to unity for a single phase,
this condition is not completely satisfied in our applica-
tion. Covariances between mole fraction variables will be
dominantly negative; consequently, Equation 4 indicates
that the Monte Carlo method will slightly overestimate
the P-T uncertainty.

In P-T space, the Monte Carlo array defines an ellip-
tical cloud that reflects the estimated uncertainty in P and
7 as well as the correlation between these uncertainties.
We extend the approach of Steltenpohl and Bartley (1984)
by calculating a best-fit, 2s (95o/o confidence) ellipse for
the data. We begin by defining the long axis of the ellipse
as parallel to a best-fit line passing through the P-T anay.
In practice, we use the mean of least-squares linear
regressions of P on T and T on P. The slope of this line
is used to define a rotation matrix that permits reorien-
tation ofthe elliptical cloud with principal axes parallel
to P and Z axes. The resultant cloud is translated to the
origin in P-7"space, and an ellipse is deflned such that its
radii span +2s variations in P and T from the origin.
This ellipse is then translated and rotated back to its
proper position in P-I space.

Figure 2 illustrates the results of this sort of analysis
for a pelitic schist sample from the Monarch Canyon area
of the Funeral Mountains, southeastern California (La-
botka, 1980; Hodges and Walker, in prep.). The sample
contains the subassemblage ilmenite-rutile-garnet-kya-
nite-plagioclase-muscovite-biotite-quartz, permitting the
application of thermobarometers Rl and R2, as well as
GRAIL,

(3)
H: enthalpy (J/mol)
f : temperature (K)
V: volume (m3/mol)

+...+(#) '"- ,  (4)

*' 2 2 o"''Y,Y,Yar'/"'Yag'
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Tnele 2. Compositional data for FM-12

Garnet

Biotite

Muscovite

Plagioclase

llmenite

3FeTiO, + AlrSiOs + 2SiO,
ilm kyanite quaftz

: Fe.AlrSirOr, + 3TiOr, (R3)
garnet rutile

which was experimentally calibrated by Bohlen et al.
(1983). Rim compositions for non-end-member phases
were obtained using the rcor Superprobe at MIT (Table
2) and manipulated using the techniques outlined above
to obtain precisions for mole fractions. The dashed ellipse
in Figure 2 corresponds to the precision of a P- I estimate
made by using the Ferry and Spear (1978) and Goldsmith
(1980) calibrations of Rl and R2, respectively, with so-
Iution models as described by Hodges and Spear (1982)
and modified by Hodges and Royden (1984). We can
calculate the approximate precisions associated with the
geothermometer (c,r.) and geobarometer (<.r") using half of
the spread in Z and P (respectively) enclosed by the el-
lipse. These uncertainties are +45 K for Rl and +105
MPa for R2 and are in good agreement with commonly
accepted uncertainties for the equilibria (e.g., Ferry, 1980;
Ghent et al.,1982). The ellipticity (E) of the uncerrainry
field (defined as the major radius divided by the minor
radius) provides a measure ofthe dependence ofthe over-
all precision on the individual precisions of the thermo-
barometers; ellipticities greater than l0 indicate that the
precision of one of the equilibria dominates the precision
of the P-I estimate. In this case, E : 12.8, implying that
most of the uncertainty represented by the ellipse is a
function of the uncertainty in the composition of phases
involved in equilibrium Rl.

We can explore the sensitivity of the P-Z estimate to
the uncertainties associated with individual phases by
setting selected mole-fraction uncertainties to zero and
deriving new ellipses (Fig. 3a). For this sample, most of
the uncertainty in Rl stems from uncertainties in the
garnet composition, whereas most of the uncertainty in
R2 depends on the precision ofthe plagioclase analyses.

The dotted ellipse in Figure 2 represents the precision
of a P-T estimate calculated by using Rl and R2 and
alternative garnet (Ganguly and Saxena, 1984) and pla-

1 300

- - - -  ( R l ) , ( R 2 ) - H S

. . .  (R l ) , (R2) -NHGS

-  (R1) . (R3)

bl'iy'

500 700 900
TEMPERATURE (K)

1  100

Fig. 2. Analytical uncertainty ellipses (2s) for the Funeral
Mountains sample. Rl, R2, and R3 refer to equilibria used. HS
and NHGS indicate solution models of Hodges and Spear (1982)
or Newton and Haselton (l 98 1) and Ganguly and Saxena (l 984).
Aluminosilicate stability fields after Holdaway (1971).

gioclase (Newton and Haselton, 198 l) solution models.
The resultant shift in the absolute position of the ellipse
is relatively minor, but the size of the ellipse increases
markedly (orr: 53 K, r" : 135 MPa, E : l l .0). This is
a consequence of the increased mathematical complexity
and greater dependence on compositional terms associ-
ated wrth the alternative solution models, and it empha-
sizes the point that more complex solution models lead
to less precise (albeit possibly more accurate) P-T esti-
mates.

The solid-line ellipse in Figure 2 shows the results for
simultaneous solution of thermobarometers Rl and R3.
using the Bohlen et al. (1983) calibration of R3 and as-
suming the Hodges and Spear (1982) solution model for
garnet. For the ellipse, or: 35 K, @p : 37 MPa, and E :

3.6. The precision of the Rl-R3 estimate is not strongly
dependent on the precision of one thermobarometer or
the other, and the precision of the GRAIL geobarometer
is inherently greater than that of the garnet-plagioclase-
aluminosilicate-quartz geobarometer. Sensitivity analysis
(Fig. 3b) reveals that almost all of the uncertainty in the
Rl-R3 estimate is due to uncertainty in garnet compo-
sition. Our ultimate conclusion for the Funeral Moun-
tains sample is that the Rl-R2 and Rl-R3 P-Z estimates
(solid and dashed ellipses) are internally consistent within
2s analytical uncertainty.

PnoplclrroN oF cALIBRATIoN UNCERTAINTIES

Equation 5 can be rewritten as

P :
Z ( A ^ S - R l n K ) (6a)

A V

L H + ( P  -  l 0 ) A Z

Commonly a net-transfer reaction (e.g., R2) is experi-
mentally calibrated as a thermobarometer by bracketing

Mineral
Mole

Component fraction
Uncertainty

(1 s)

Almandine
Pyrope
Grossular
Spessartine

Annite
Phlogopite

Kzalkalis
NaDalkalis
vrAl

Albite
Anorthite

Fe2*

0.798
0  1 1 9
0 0464
0.0371

0.427
n qoq

0.842
0.1 57
0 .911

0.886
0 . 1  1 0

0.958

7.2 x
7 7  x
8 5  x
1 . 7  x

4.8 x
4.3 x

3.8 x
3.8 x
o,o x

8.4 x
8.2 x

3.0 x

1 0-3
1 0  3

1 0  o

1 0-4

1 0-3
1 0-3

1 0 ,
1 0 2
1 0-3

10-3
1 0-3

1 0-3

G
c:
U

U'
ah
U

d

'ro00

+-ff+ rc'

'"K: -+
R

. f; (6b)



the position of the end-member reaction in P-7 space,
performing a linear regression on the bracketing data, and
deriving values for reaction entropy and enthalpy from
the slope and P intercept ofthe regression line by using
Equation 6a. For an exchange reaction (e.g., Rl), mineral
pairs are allowed to equilibrate at a variety of tempera-
tures, their compositions are measured and used to cal-
culate equilibrium constants, and A11 and AS are calcu-
lated from l/T vs. ln K regression parameters by using
Equation 6b. Solving Equations 6a and 6b for AS and
Afl yields

AS : M"AV AH : -(8" - 1gs1AV (7a)
As: RBo LH: -M8 - e - I} ')AV, (7b)

where M and B are the slope and I intercept of the
regression lines, respectively, and the a and b subscripts
refer to the (?", P) and (l/7, ln K; forms of Equations 6a
and 6b, respectively. Applying Equations 3 and 4 to
Equations 7a and 7b produces the formulae for the un-
certainties in AIl and AS. For (2, P) space

s2o, : Llz s2u^ + (8. - 105)'?sln s'z*: AQs')r", (8a)

and for (l/7,ln K) space

sio: R'?siro * a,I/2s2, + (P - 105)'sl, sl": R,slo, (8b)

where s, and s. are the uncertainties in the Y intercept
and slope of the regression line, so, is the uncertainty in
the volume change for the reaction, and s" is the uncer-
tainty of the pressure at which l/T vs. ln K experiments
were conducted. Because AZis generally well known (Ro-
bie et al., 1978), slnis rather small and can be dropped
from Equations 8a and 8b without introducing significant
error. The experimental uncertainties that contribute to
s"o and so" include (l) the temperature uncertainty in each
run; (2) the pressure uncertainty in each run; and (3) in
the case ofnet-transfer reactions, the pressure and tem-
perature differences between pairs of experiments that
bracket the position of a reaction over a range of condi-
trons.

Temperature uncertainties for calibration experiments
generally range from 5 to 15 K (Schmid et al., 1978; Boh-
len et a1., 1983), depending on the apparatus used. The
pressure uncertainties in calibration experiments vary
widely (Hays, 1966; Bohlen et a1., 1983). Johannes (1978)
and Johannes et al. (1971) have discussed accuracies of
piston presses over a range of run parameters. In general,
they have concluded that experimental runs in piston-
cylinder apparatus with alkali halide pressure media are
accurate to +0.5 x 108 Pa, whereas the same presses run
with talc or pyrophyllite cells may have inaccuracies as
great as 1.5 x lOs Pa. The experimental reproducibility
(i.e., the precision) oftalc cells is better, and the inaccu-
taay can be improved to near 10.5 x 108 Pa by cali-
brating the cell against alkali halide cells. If experimental
data are collected on the same press, the inaccuracy of
the press affects only the regression line's intercept un-
certainty. Because the slope ofthe regression line depends
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Fig. 3. (a) Sensitivity analysis for Rl-R2 uncertainties. Solid
ellipse assumes no uncertainty in garnet analysis. Dashed ellipse
assumes no uncertainty in biotite analysis. Dotted ellipse as-
sumes no uncertainty in plagioclase analysis. (b) Sensitivity anal-
ysis for R1-R3 uncertainties. Solid ellipse assumes no garnet
uncertainty, dashed ellipse assumes no biotite uncertainty, and
dotted ellipse assumes no ilmenite uncerlainty.

only on the relative position of the data in(7, P) or (l/
T, ln IQ space, a constant bias in the press cancels out of
the slope calculation, making the uncertainty in the slope
a function only of the imprecision of the press. Thus,
diferent calibrations of the same reaction often have bet-
ter slope agreement than intercept agreement. Unfortu-
nately, press inaccuracy becomes important when data
from different laboratories are regressed together, and then
the full inaccuracy must be considered.

Bracketing uncertainties for net-transfer reactions are
calculated from the differences in run conditions (2"^,
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P"*) between a pair of runs. For two runs at (i",, P,) and
(Tr, Pr),

T'*: (7, - T')
Pu": (P, - Pr). 

(9)

Using Equation 4, the bracketing variances are

Varrn" :Yarr ,  1  Yarr , (10)
Var^ * :Va r " , *Va r " ,

Assuming that the variances are equal at the two (2, P)
conditions, then

s."" : 1.4,,
.i"uo : I .4,"

( l  l )

where s, and .rp are the experimental uncertainties for
temperature and pressure, respectively. Thus, even when

HODGES AND MCKENNA: UNCERTAINTIES IN THERMOBAROMETRY

two runs nominally bracket an equilibrium perfectly (that
is 7, : Tr, P, : Pr), the bracket still has a 2s uncertainty
of 2.8s. and 2.8so due simply to the inaccuracy of the
apparatus.

Given a variety of experimental uncertainties, we re-
quire a linear regression routine that will permit us to
propagate these uncertainties into entropy and enthalpy
uncertainties. For a similar problem involving empirical
thermobarometric calibrations, Hodges and Crowley
(1985) used the York (1969) treatment, which yields sim-
ple uncertainties in the calculated slope and Y intercept.
The problem of experimental calibration involves an ad-
ditional factor: many experiments are conducted at P-T
conditions that greatly exceed the natural conditions per-
tinent to crustal thermobarometry. Intuitively, thermo-
barometers calibrated at more realistic P-I should be
better than those calibrated at less realistic P-2, and this
should be reflected in uncertainty calculations. Because

(7)

Y

T

1 0 1 2  1 4
1 / T E M P E R A T U R E  X 1 O - 4  ( 1  / K )

Fig. 4. Experimental calibration of Rl, R2, and
R3 showing 2s uncertainty limits from the York
regression routine (dashed envelopes) and our treat-
ment (solid envelopes). Experimental data are shown
with appropriate errors which, in the case of R2
and R3, include bracketing uncertainties. For R2,
the solid boxes represent data of Goldsmith (1980),
the negative-slope ruled boxes represent data ofHays
( I 966), and the positive-slope ruled boxes represent
data of Hariya and Kennedy (1968). The unpat-
terned boxes in Figures 4b and 4c represent the P-7
space shown in Figure 2. Figure 4a lies entirely
within the temperature range of Figure 2.
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the York (1969) treatment does not account for this ef-
fect, we derive an explicit formula for the full uncertainty
field defined by the experimental data. The regression line
is defined by

Y r - - Y + M ( X k - n , (r2)
where X^ is any X value, I^ is the expected value of the
regression at Xk, M is the slope, and X and 7 are the
average X and Z (Draper and Smith, 1966). Applying
Equation 4 to 12 and noting that the variance of X, is
zero because X^ is an arbitrarily chosen variable, we find
that

Var.k: Vary * (Xo - X)2Yar, + M2Yary

1- 2per(Xr - X)YarogsYaror|
+ 2pyy(-tr4)Yar$5Var$5
+ 2px,GM)(Xr - X)Yarf;;sYarof , (13)

where Vari, is the variance ofthe expected Yo value from
the regression line, Var., is the variance of the slope, and
Var.1 and Var" are the variances of the mean X and Y.
Varl and Varr may be found by applying Equation 4 to
Equation 1. The variance of the slope may be taken from
the results of a standard York regression of an experi-
mental data set. In effect, the first and third terms in
Equation 13 account for the uncertainties in individual
experimental runs. The second term accounts for the ef-
fect of the slope uncertainty on a Y* estimate. It has a
minimum of zero at Xk:.Y and increases symmetrically
about X as a hyperbola in (X, Y) space. The next three
terms in the equation account for covariances between I,
X, and M.

Once the variance of a calibration has been deter-
mined, it must be converted into a confidence interval.
Through standard practice, the confidence interval is giv-
en at the 95o/o ("2s") level. The confidence interval has a
full width of 2W; lZ is given by the relation (after Larsen
and Marx. l98l)

W : Yafp5otr.,r,,_r.,, (r4)
where t,.,r.,-r, is the Student's / distribution with (n - 2)
degrees offreedom at the 100(l - a) percent confidence
level. For 950/o uncertainties, a : 0.05 ?td t612.,-21tdrrgas
from - 13 (n : 3) to 1.96 (n : <n\.

The morphology of the confidence curves is dominated
by the VarT and Var, terms in the neighborhood of (X,
Y), and the Var, and covariance terms dominate where
lXr - Nl is large. Because two of the covariance terms in
Equation 13 are odd functions of (Xr - X), they change
signs at Xx: X. This behavior leads to confidence curves
that are asymmetric with respect to X. The confidence
interval for Yo at Xr : 0 gives the l-intercept uncertainty
for the data array, or, in terms of Equations 8a and 8b,
the value of su. As Var,', is a function of X., so too is su;
the "resolved" uncertainty in Atl (in 8a) and AS (in 8b)
will vary as a function of Z and l/2, respectively. The
uncertainty is least at Tk : T or (l/7)r : Q/T) and in-
creases away from these values. As the thermodynamic
uncertainties derived in this fashion are propagated into

Ferry and
Spear
(1 978)
(ln K)/3

1673 3.1s(08)
1623 3.03(08)
1573 2.88(03)
1523 2.88(08)
1473 2.53(18)
1423 2.58(08)
1 373
1323
1273
1223 2.10(10)
1173
1123
1 073
1 023
1 0 1  1
971
924
871
823

Nominal bracketing uncertainties
2.8s7 17
2  gsp  0 .14
2st,,
2s"" *

7 7
0.07

5  x  1 0  6

0.01

uncertainties in thermobarometric estimates of P-7, the
effects are minimized when the calculated temperature of
the sample coincides with the mean ?"of the experimental
data, and the efects increase geometrically with increas-
ing difference between the sample temperature and the
experimental mean temperature.

Figure 4 illustrates the confidence limits for experi-
mental calibrations of Rl through R3 using the data of
(1) Ferry and Spear (1978) for Rl; (2) Hays (1966), Ha-
riya and Kennedy (1968), and Goldsmith (1980) for R2;
and (3) Bohlen et al. (1983) for R3. The pertinent data
from these papers are summarized in Table 3. To these
data, we assigned nominal 2J temperature and pressure
uncertainties of 5 K and 6.5 x I 08 Pa or the uncertainties
given in the source if they were larger. The computed
values for the input parameters of Equations 12 through
14 are given in Table 4. We derived covariance coeffi-
cients for Rl through R3 using a Monte Carlo approach.
In this technique, we use each datum in the experimental
calibration set and its corresponding uncertainty to de-
rive a 20O-element, normally distributed array. One val-
ue is chosen arbitrarily from each array, and a simple
linear-regression analysis is performed on the resulting
set of points. This procedure is repeated 1000 times in
order to produce a suite of values for I, X, and M. These
are then regressed against each other, and the resulting
correlation coemcients are used as the covariance coefr-
cients in Equation 13. The values for these coefficients
are listed in Table 4. For the three calibrations that we
considered, only one covariance terrn (pr, in R3) is large
enough to have a significant effect on Vario.

The most noticeable feature of Figure 4 is the (rather

TeeLe 3. Bracketing data

Hays
(1 966)

P
(GPa)

Hariya and Bohlen
Kennedy Goldsmith et al.
(1968) (1e80) (1e83)

P P P
(GPa) (GPa) (GPa)

T
(K)

3.05(05)
2 85(05)
2.80(1 0)
2.70(1 0)
2.60(1 0)
2.50(1 0)
2.30(10) 1.59(02)

1 .53(01)
1 .46(01)

1.32(02)
1 .2s(01)
1 20(01) -1.2' l
116(03)  -1 .33

-1 .35
_1.48
_1.68
_ 1 . 7 8

t ' l
0.07
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TABLE 4. Regression results

Term R1

n
lgs

M
B
Vart
s?

Vat M

s?
X

PxM

Px?

7
2.57

-2 .08  x  10gK  t
0.753
6.62 x 10 3
4.61 x 10- '?

-1 44
7 .1 t  x  16s  11  z
1 .50  x  10  "K - '
1 .05 x 10-8 K-,
1  05  x  10  a  K  I
0 1 6
0 . 1 1
0 .011

1 4
2.'t8
2.29 x 106 PalK

-7.47 x 108 Pa
1  . 12  x  1016  Paz
8.79 x 1016Pa2
271  x  10e  Pa
252 x 1010 (PalKl2
1  1 7  x  1 0 3 K ,
1.58 x 100 K'z
'1.51 x 103 K
0.05
0 . 1 2

-0.004

7
2.57
1 .28  x  106Pa /K

- 1 . 6 7  x  1 0 8 P a
5.30 x 1015Paz
2.85 x 10'6Pa2
1.36 x 10s Pa
1 .19  x . l e i o (pa lK ) ,
2.48 x 103 K2
1.74 x 100 K2
1 . 1 9  x  1 0 3  K

-0.61
0.02

-0.006

disappointing) size of the uncertainty fields. The dashed
lines indicate the much smaller uncertainty limits pre-
dicted by the standard York regression routine. The Var.
term in Equation 14 is within 50/o of the York limits for
all Z, for all three equilibria. At temperatures far re-
moved from the mean temperatures of the data, this term
accounts for between 300/o (R2) and l2o/o (Rl) of the un-
certainty field. Near the mean temperatures, the effect of
this term becomes negligible, and the other terms in
Equation 14 combine to produce uncertainty limits that
are somewhat greater than the 950/o confidence limits of
the data points themselves. The magnitude of the 2s un-
certainty fields for these equilibria is striking when com-
pared to the realm ofcrustal P-Z space. The unfilled box-
es in Figure 4 correspond to the P-T conditions
represented in Figure 2. Table 5 gives the derived ther-
modynamic values, and their associated uncertainties, for
Rl, R2, and R3.

Accun.l,cy oF THE FuNnn-q.r, MouNr.llNs
P-T Bsrriulrns

The thermodynamic uncertainties in Table 5 can be
propagated into P-Z uncertainties in much the same way
that we propagated analytical uncertainties previously:
AfI and AS Monte Carlo arrays are created for each ther-

1  3 0 0

1  0 0 0

7 0 0

400

1 0 0

mobarometer, and randomly selected elements are used
to calculate an uncertainty ellipse for the P-Z estimate.
By combining both analytical and calibration uncertain-
ties, we can produce an estimate of the minimum accu-
racy of a given thermobarometric calculation. Figure 5
shows the results for the Funeral Mountains sample; for
R1-R3, c.r. : 138 K and <,r" : 4.10 x 108 Pa, and for Rl-
R2,  or . :  156 K ?nd <or :  5.16 x 108 Pa.  Clear ly ,  the
accuracy limits in Figure 5 dominantly reflect calibration
uncertainties.

DrscussroN

Thermobarometric studies are generally aimed at de-
termining the actual equilibration temperature and depth
of a sample (absolute thermobarometry), the relative
equilibration temperatures and depths among a suite of
samples (comparative thermobarometry), or both. For
absolute thermobarometry, we are concerned with the
accuracy of a P-T estimate, and Figure 5 is a sobering
reflection on the state of the art. Equilibria Rl, R2, and
R3 are among the most commonly used and best-cali-
brated crustal thermobarometers. Nonetheless, at the 950/o
confidence level, these equilibria only broadly constrain
the P-T conditions for the Funeral Mountains sample. If
we are asked to estimate the equilibration depth of this

Tnele 5. Derived thermodynamic constants

Eouilibrium R1
4y :  ! . gg  x  10 -6
AS :18 .8  +  64 .1 { (1 .31  x  10+ )  +  ( 7  13  x  103 )

[(1/7)  -  (1.054 x 10 3) ] '+ 3.70[(1/D -  (1.054 x 10-") ] ] "
AH:(5.02 x 104) + (0.54 x 10a)

Eouilibrium R2
6 Y : 6 . 6 2  x  1 0  5

as :  150  +  23
AH:(4.95 x 104) + (1.44 x 10 a){(1.74 x 1016)

+  (2 .52  x  1019 ( r -  1510F  (1 .30  x  1o1 '?X r -  1510 )1 r

Equilibrium R3
A y :  _ 1 . 2 9  x  1 0  s

a s :  - 1 2 3  +  5 2
AH: (3.66 x 103) + (4 79 x 10 5){(9.43 x 1015)

+  (1 .19  x  1019 (T  -  1190F  -  ( 9  98  x  101 '?X r -  1  190 ) )h

Note: V, S, and Hare in m3/mol [: J/(Pa.mol)], J/(mol K), and J/mol,
respectively Volume data from Lang and Rice (1985). All uncertainties
reoresent 95% confidence limits.

o
c

U
t

o
o
U
E

( R 1 ) , ( R 2 )

( R 1 ) , ( R 3 )

5 0 0  7 0 0  9 0 0  1  1 0 0
T E M P E R A T U R E  ( K )

Fig. 5. Accuracy limits (2s) for the Funeral Mountains sample
derived by combining analytical and calibration uncertainties.
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sample, we are forced to report the estimate with a min-
imum 2s uncertainty of l0 to 20 km. Despite this unfor-
tunate truth, it is noteworthy that these equilibria usually
yield P-Z estimates that are consistent with independent
indicators of metamorphic conditions (e.9., the alumi-
nosilicate stability fields), and it seems likely that these
thermobarometers are better than statistical rigor leads
us to believe.

In a sense, the uncertainty limits in Figure 4 make a
stronger statement about calibration techniques than about
the inherent quality of specific thermobarometers. Statis-
tically meaningful absolute thermobarometry requires
some modification of commonly accepted calibration
procedures. The form of Equation l{ srrggests three
changes that could significantly improve thermobaro-
metric accuracy: (l) increasing the number of runs in the
calibration data set; (2) increasing the P-T range of the
calibration data set, and (3) increasing the P and Z pre-
cision of the experimental presses.

Because the Var" and Vary terms in Equation 14 scale
as n t, the magnitude of these terms is reduced by in-
creasing the number of statistically independent brack-
eting experiments in the calibration data set. By "statis-
tically independent," we mean experiments run at separate
times or in separate presses, even if the experiments du-
plicate P-Z conditions of other experiments. Although
duplicating the P-T conditions of runs will not improve
the York regression statistics, increasing the number of
bracketing runs at a given temperature increases the like-
lihood that the pressure bracket lies on the modeled
regression line.

Extensions of the P- 7 range of calibration experiments
affects uncertainties in two ways. First, the Var- term in
Equation 14 changes in direct proportion to the ratio be-
tween the data uncertainty and the temperature range of
the experiments. Second, extending the calibration to in-
clude crustally accessible P-7 space ensures that the uni-
variant reaction has been fitted near the conditions at
which it will be used, reducing extrapolation errors. Al-
though low-temperature experiments can be extremely
time-consuming, their practical value is significant.

It is also apparent from Figure 4 that no P determi-
nation can be better than the bracketing uncertainty of
the calibration data. In the limit where both the number
and P-T range of the calibration experiments become
large, Equation 13 shows that

lim(Vareo) : (1.4s"), * M2(1.4s,\2

- 2pyyM(|.4s,)(1.4s,). (15)

For many experimental calibrations, bracketing uncer-
tainies are - 100 MPa and make a major contribution to
the overall uncertainty of the thermobarometer. Clearly,
a conscientious effort to reduce these uncertainties is one
of the surest and most cost-effective ways to improve the
accuracy of thermobarometry.

For comparative thermobarometry involving a single

pair of equilibria, the systematic errors associated with
the calibrations cancel, leaving only the effects ofanalyt-
ical uncertainties (Fig. 2). Carefully analyzed samples yield
2s precision limits for Rl-R3 equilibria sufficient to dis-
tinguish between equilibration conditions differing by as
little as 70 K or 70 MPa. Thus, comparative thermoba-
rometry is a statistically valid means of studying tectonic
processes on length scales exceeding 3 to 5 km.
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