
American Mineralogist, Volume 72, pages 612416, 1987

Matrix calculation of optical indicatrix parameters from
central cross sections through the index ellipsoid
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Ansrnacr

A minimum of three arbitrarily oriented, but independent, central sections through a
crystal's optic ellipsoid are used for a calculation of the principal indices and the orien-
tation of the index ellipsoid. The crystal is rotated about the x axis of the spindle, limiting
the choice of cuts to those containing the x axis. The matrix for this ellipsoid is calculated.
Finally the matrix is diagonalized to find the eigenvectors and eigenvalues that in turn
give the principal indices and orientation. To illustrate the method, data were generated

from a known albite crystal in an arbitrary orientation of the ellipsoid with respect to the
spindle axes. In the example, four cuts are used; thus individual matrix elements can be
calculated using different algebraic expressions.

INrnolucrroN

In a biaxial crystal, the angle (2 Z) between the two
optic axes is constant at a given temperature and for a
given wavelength (Bloss, l96l; Julian and Bloss, 1982).
The technique of measurement of the angle involves ro-
tation of the crystal about an axis parallel to the micro-
scope stage and analysis by the Bloss-Riess-Rohrer pro-
gram EXCALTnn (Bloss and Riess, 1973). If a crystal
happens to be mounted about a principal axis, then the
program EXcALTBR cannot be used because the crystal re-
mains extinguished for all settings. In addition, for cases
where a crystal exhibits strong absorption for X, Y, or Z,
this crystal's refractive index for light vibrating parallel
to that particular direction may not be measurable even
though solution by excar-rnn gives coordinates for this
strongly absorbing vibration direction. This paper rep-
resents a general method for the location of the index
ellipsoid of an arbitrarily mounted crystal on a spindle-
stage mrcroscope.

ExpsnrN{BNTAL DATA

A crystal mounted on a spindle stage (Bloss, 1981, p.
I l) rotates about the x axis of the standard orthogonal
set x, y, z. Following Leitz (1972), the z axis is perpen-
dicular to the microscope stage and is along the direction
the light travels, the x axis is due east, and the y axis is
due north (see Fig. l). The angle S represents a rotation
of the crystal about the x axis with S : 0'lying along the
y axis. When the refractive index of the crystal matches
the refractive index of the oil surrounding the crystal for
monochromatic light, the refracted wave normal travels
in the crystal alotg z. The wave front for this wave nor-
mal is parallel to the x-y plane and passes through the
center ofthe optical indicatrix. This wave front intersects
the indicatrix in an ellipse with a major semiaxis mt and
a minor semiaxis rz". These two semiaxes define two mu-
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tually perpendicular vectors, m" and n"; the directions of
these vectors indicate the direction the light vibrates, and
the corresponding lengths are the refractive indices ru"
and nr. Note that if ru, equals n", then the ellipse be-
comes a circle, and there are three possible cases: first, if
the crystal is biaxial, then the light is traveling parallel to
the optic axis; second, if the crystal is uniaxial, then the
light is traveling along the unique axis; and finally, ifthe
crystal is isotropic, the orientation is irrelevant.

Let ,S : 0" represent the initial reading of the spindle.
Similarly let mo and n0 represent the two vectors defined
by the ellipse of intersection between an anisotropic crys-
tal's optical indicatrix and the wave front (:x-y plane).
Let Eo represent the angle between the spindle axis x and
vector m0. If the spindle is now rotated 50'(,S : 50'), the
cryslal's optical indicatrix has rotated correspondingly so
that the wave front (:x-l plane) now intersects it in
another ellipse that defines two new vectors, mro and nro,
with mro being at an angle Ero to spindle axis x (see Fig.
l). Similarly, the spindle can be rotated to S : 90'and
thus obtain mso, [so, and .Eno, etc.

In general, ifthe spindle is rotated by angle S, angle E
represents the angle between the spindle axis and the ma-
jor semiaxis of the intersected optical index ellipse. The
index ofrefraction at angles E and S is p (see Fig. 2). The
transformation between x, y, z and p, S, .E is

x: p cos(E)
y: p sin(E)cos(S)
z: p sin(2")sin(,f).

Three S settings provide three sections through a crys-
tal's optical index ellipsoid. In this paper we show that
if, for each of three independent setting S : a, b, c de-
grees, we determine experimentally the refractive indices
of the pairs of privileged directions ma, n;' mr, nu; and
m., n. and the angles E., Eu, and E,, we can determine
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Fig. l. S planes at 0o, 50o, 90', 140', and 180". For the S : 50" cut, the two privileged directions for which the crystal exhibits
the refractive indices are mro and [ro. Eso represents the angle between the spindle axis and the mro vibration axrs.
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the crystal's principal refractive indices (a, 0, and "y). If
the crystal is biaxial, we can also determine the directions
of a, B, and ,y relative to the original arbitrary axes along
which the crystal was mounted.

In the example below, the principal axes have been
overdetermined by measuring four sections. The general
method is to devise a way to calculate the matrix asso-
ciated with the index ellipsoid with respect to the spindle
axes. Then the eigenvectors and eigenvalues of this ma-
trix permit calculation of the orientation of the ellipsoid
and its principal axes. By measurements of four sections,
the individual matrix elements can be calculated by using
different algebraic expressions and compared.

CoNsrnucuoN oF THE ELLIpsorD

The general algebraic equation ofan ellipsoid with its
center at the origin can be written as

arrx2 * ctrrl2 I ayz2 * 2arrxy + 2a'xz * 2arryz: l,

Fig. 2. (A) Transformation between x, y, z and p, E E. (B)
Isolation of y-z plane with components of p sin E identifred.

This form, with the coefficient 2 included explicitly in the
cross term, can be readily taken over into the matrix form.
If the ellipsoid were oriented with its principal axes X, Y,
Z alongthe x, y, z axes, each cross-term coefrcient (arr,
an, ctzz) would equal zero, and the above equation would
take on the form

x2/a2 + yr/pt + z2/72: 1,

where 4, ,  :  q- t ,  qr r :  p  2,  and an:  'y-2.

In matrix notation, with au : e1i, the quadratic form
can immediately be taken into the matrix form, A : (ar).
Note that A is a symmetric matrix. If x is the column
vector with elements x, y, z and xr is the transpose of the
vector x, then an ellipsoid may be represented as:

xrAx :  l .

The eigenvectors of the matrix A are the principal direc-
tions ofthe refractive index ellipsoid. The eigenvalues of
this ellipsoid are the squares ofthe reciprocals ofthe prin-
cipal indices a, p, and 7. The problem is to write down
the matrix for the ellipsoid at an arbitrary orientation
determined by the experiment. The matrix is diagonal-
ized in order to find the eigenvectors and eigenvalues,
which in turn give the directions ofthe principal axes and
the values of the principal indices a, B, and 'y. One com-
plication is that, owing to the experimental design, the
cuts are all parallel to the x axis, and so the yz cross term
must be calculated indirectly.

First, the data for S: 0'give Ihe x-y cut and three out
of the six independent matrix elements of A, namely 4,,,
an, and arr. The data for S : 90' give the x-z ctt and
the matrix elements ctrt, an, and ay. Note that lhe a,
term is calculated twice because both cuts are parallel to
the x axis. These two values for q, are averaged before
being entered into the matrix. These two cuts have now
given us five of the six matrix elements needed. We are
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unable to calculate the an term because we do not have
information about the y-z clt.

In order to find the a, cross teffn, consider a rotation
about the x axis to obtain data for the orthogonal pair of
sections at S : 50" and ^t: 140'. Let us call this new
matrix A35o because it is rotated 50" from the original
matrix A and represents the experimental data. Here we
have rotated y into yro and z into zro. Note that the x axis
remains unchanged. Again five out of the six matrix ele-
ments can be calculated with the 4, being calculated twice.
Note that we now have calculated four values for e,,, and
so they can be averaged.

In order to find the a., cross term, we calculate the
elements of A after a rotation of 50' about the x axis.
Call this matrix AgS. Since Ayo'equals Ag5o, then the ele-
ments of these two matrices Ayo' and A;5o can be com-
pared term by term. Two independent algebraic expres-
sions for the a^ cross term are derived. That is, if only
three sections had been collected, there would still be
enough information to calculate the complete matrix A.

All 3 by 3 similar matrices have three dyadic invari-
ants: namely, the trace, the sum of the principal minors,
and the determinant (Hollingsworth, 1967, p. 122). Of
these the trace (or sum of the diagonal elements: c,, *
ar, * arr) is the most useful at this point because it is
independent of the off-diagonal elements. The trace pro-
vides a convenient parameter for evaluating the quality
of the data. The second dyadic invariant is defined as
atta22 + a22an + ct t ten -  (arr) t  -  (ar . ) ,  -  (arr)2.  The

third dyadic invariant is the determinant. These invari-
ants provide a means to check the consistency of the data
after the entire matrix has been calculated.

Once all the elements of the matrix are known, the
eigenvectors and eigenvalues can be calculated by stan-
dard procedures (see Irving and Mullineux, 1959, p. 280)
or by use ofstandard programs such as ses (1982, p.499)
or MrNrrAB (1985, p. 179).

The eigenvectors of the matrix give the principal di-
rections of the index ellipsoid. The eigenvalues are the
reciprocals ofthe square roots ofthe principal refractive
indices a, B, and y. In a later paper we will consider a
least-squares minimization of data for many sections, the
errors involved, and complications due to refraction of
the wave normal.

Dpr.c,rI,no EXAMpLE FoR AN ALBITE cRysrAL

First, for a constant value of t 2 by 2 matrices are
constructed. Let m, be the direction of the major axis of
the cut, n, be the direction of the minor axis, and y" be
the direction perpendicular to x in the cut determined by
S. Since the rotation is about x, x is common to all cuts
and needs no subscript. We wish to calculate the matrix
elements in terms of the x and y" axes as ms is rotated
by -.8, into x and n" into y" (see Goldstein, 1959, p. 99).
The eigenvalues of this matrix are L-: m.' and L,:
n.2. Thus the matrix is

TneLe 1. Generated optical data for albite crystal

s
f) c)

0
50
90

140

37.701
38.489
11.606

147 481

1 .53917
1 .53816
1.53541
1.53754

1.52893
1.53084
1.53291
1.52987

Nofe; See text for description of symbols and orientation ot ellipsoid.

After performing the matrix multiplication, we have

lL.cos'E, I L,sin2E, (L^ - L,)sinE"cos E"l

l(L* 
- I,)sin Epos E" L-sin2E' + L,cos2E' l'

For a rotation S and ellipsoid coordinates a,,, Ihe above
matrix can also be written as

For illustrative purposes, the data for Table I was gen-
erated assuming that a : 1.528 90, 0 : 1.53291, and 7 :

1.53929 from Su et al. (1986) and that X, Y, and Z, the
principal axes for the albite, have coordinates S" :

17 4.39", E, : 52.8 1", and E, : 99.02'. From these three
assumed values of the orientation of the ellipsoid, the
other parameters were calculated, namely, S, : 9l.3080',
S, :  l2 .760l" ,and E, :38.6427' .  The e l l ipsoid was pa-
rameterized in terms of E, E and p. The parameter p is
the optical index of refraction for a given, but arbitrary,
angle E and angle S.

A t  ,S  :  0 ,  Eo :  37 .7014 ' ,  mo :  1 .539  17  and ,  no :
1.52893. The calculated values of this 2 bv 2 matrix are

Repeating a similar calculation for S: 90',

I o.+z+zts -o.ooo 27a] _1a,, o,,l
l-0.000274 0.425 5t2l lo,' a"l

Note that two values have been calculated in different
ways for arr. The values are identical because the data
are generated data and therefore essentially without error.

Collect this information together in one matrix A:

I o.+z+zts -0.002746 -o.ooo 2
| 

-0.002746 0.425665 azt

L-0.000 274 azt 0.425 5

fcosr, -sin r,lfr- 0 l[ cosr, sinE l
lsin E, cos Esll0 L,lf-sin Es cos E l'

f  o, ,  a,rcos S + a,rsin S I
I c,rcos S + a,rsin S arrcos'S + arrsin')S l.
L + 2arrcos S sin SJ

I o.+z+zts -o.oo2 7a6] _1a,, o,,l
l-0.002746 0.4256651 Lo,, a,,)

'rorf

l:,: z;1 ,,11
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The same calculations are repeated for ,S : 50. (and
,S: 140). Two more values of a,, are obtained again in
different ways. Except for the at\ term, all the rest of the
elements from this rotated matrix Ag5o are diferent from
A. The matrix A35o becomes

Proceed with the calculation ofthe cross term ar.. First
rotate A through 50" about x. This new matrix is called
A3g because we have calculated what the matrix A would
be ifit were rotated by 50". The calculations necessary to
get AStl are

After performing the multiplication, we get the follow-
ing expression for the 3 by 3 matrix AgS:

ar a,rcos 50 -a,rsin 50
+ a,rsin 50 * a,.cos 50

a,rcos 50 a..cos250 arr(l - 2 sin'?50)
+ a,rsin 50 * ar.sin'z50 + (-ar, * a.r)

+ 2ancos 50 sin 50 'cos 50 sin 50
-a,rsin 50 a.,(1 - 2 sin'z50) arrsinz50

* a,rcos 50 + (-a22 + ar) + crrcos25O
'cos 50 sin 50 - 2a""cos 50 sin 50

The only unknown, 423, in the above expression for the
A3$ matrix appears in three distinct terms. To calculate
an) we must compare A3A' with A;5o term by term. Since
the of-diagonal term in Ag6o, i.e., at\p, is also unknown,
only two diagonal terms are useful for calculatitg ar..
Specifically we have

0.425 148: a22cos250 * arrsin25O * 2arrcos 50 sin 50.

(Note that the a, is measured at S : 0", the en term
comes from the ,S : 90'ellipse, and the 0.425 167 matrix
element comes from the 2,2 matrix element of the S :
50o section. Thus the entire A matrix can be calculated
from three cuts.) Substituting and solving for a' gives

ar .  :  -0 .000434.

Likewise, using the data from the S : 140" cut, we have

0.426029: 4rrsin250 * crrcos25O - 2arrcos 50 sin 50.

Again, solving for a, gives

an:  -0 '000434'

Note these two identical results far arr: -0.000434.

This value is substituted into matrix A.

The matrix A is now complete. In this case, the pro-
gram MrNrrAn (1985, p. 179) was used to find the eigen-
values and the eigenvectors ofA. The eigenvalues are

L, :  0 .427 801
L": 0'425 566
L" :  0 .422045 .

From the eigenvalues, the principal indices can be cal-
culated:

a :  L ; " ' :  l ' 5 2 8  9 0

A : L ; " ' : l ' 5 3 2 9 1

1  :  L ; ' h :  l ' 539  31 '

These values agree with the original values from Su et al.
( l 986).

The eigenvectors of A are the column vectors in the
following matrix:

-0 .15678
-0.022s8

0.987 38

Thus X:0.60446x - 0.79282y + 0.077 882. In terms
of .E and S coordinates, with p : 1,

0.60446:  cos E,
-0.79282 : sin E, cos S,

0.077 88 : sin E, sin S,.

Thus -8, : 52.81" and S" : 174.39', which agree with the
original assumed data. Similar agreement is found for I
and Z.

Another check ofthe consistency ofthe calculations is
to compare the matrix invariants. Note, however, that to
calculate the data for the A36o matrix, we equate the off-
diagonal terms in Aifl with Ag5o and find that a;5o :
-0.0000239. The trace is particularly valuable because
it does not contain any cross terms. Thus, it can be used
to compare the consistency of the S : 0' and S : 90'
data with the ^t : 50' and ,S : 140'data. Because cal-
culated data are used, these invariants are identical for
A, A!d, and the diagonalized matrix. Specifically, the trace
is 1.275 41, the second dyadic is 0542217, and the de-
terminant is 0.076 384. Note also that the programs for
these calculations carried more figures than is reported
for the intermediate steps, which is why the invariants
agreed to six places.

CoNcr.usroNs

Light incident along a general direction has refractive
indices given by the ellipse formed by the intersection of
the optical ellipsoid and the plane through the origin of
the ellipsoid and perpendicular to the general direction.
The major and minor axes of any three independent el-
lipses are used to reconstruct the original optical index
ellipsoid. The albite example is a severe test because its
optical ellipsoid is nearly a sphere. Even in this case, a,

f -0.+z+zts -o.ool e75 o.ool 927-l
|  

-0.001 975 0.425148 ai \p I
L 0.001 927 q.i\o 0.426029l

[; 3o, so 3," ,r'lf;:: i:: i,:]
L0 

-sin 50 cos 50ll_a,, ozt o,,l

f ro o - l

I 0 cos 50 -sin 50 l.
L0 sin 50 cos 501

f o.ao++o
| 

-0.7e282

L 0.077 88

0.78106- l
0.60e 04 l.
0. l  37 e3J
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B, and 7 and the orientations of the principal axes of
albite could be recovered with data measured to the hun-
dredths place. Note that although these data were col-
lected at S - 0", 50", 90". and 140". this method is not
limited to these values.
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