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Abstract

The modified electron gas (MEG) theory has been used to calculate non-empirical short-
range repulsive parameters, which were then employed to calculate minimum-energy struc-
tural configurations for quartz, forsterite, diopside and the TiO, polymorphs using the ionic
model. The structure parameters of the TiO, polymorph models match the observed ones
to within a few percent, but do not model the slight distortions of TiO, octahedra precisely.
Calculated structure energies show rutile more stable than anatase by less than 4 kJ/mole
and more stable than brookite by about 20 kJ/mole.

The model forsterite structure matches the observed one rather well; the sense of SiO,
tetrahedral distortions are correct in the model, although the absolute values are not precise.
Distortions of model M1 and M2 polyhedra are qualitatively correct but exaggerated in
magnitude. Modeling of quartz is less successful; the model structure resembles high quartz
closer than low quartz, but the Si-O-Si angle is 163° rather than the observed 145°. Diopside
is modeled extremely poorly; some M1-O and M2-O distances are long by up to 130%.
Resulting changes in M1 and M2 coordination lead to charge balanced oxygen atoms in
the model structure, in contrast to local electrostatic charge imbalances that exist on all

oxygens in the observed structure.

Introduction

Structure energy calculations in recent years have pro-
vided some important insights into the properties and
structural details of a variety of minerals. For example,
energy calculations have been used to predict hydroxyl
positions in muscovite (Giese, 1971), to determine cation
site preferences in pyroxenes (Ohashi and Burnham, 1972)
and olivines (Bish and Burnham, 1984), to compare rel-
ative stabilities of polymorphs (Catlow et al., 1982), and
to interpret positional disorder of alkali cations in am-
phiboles (Docka et al., 1980) and feldspars (Post and
Burnham, 1984). In most of the above studies, a simple
ionic model was assumed, and it is perhaps surprising that
good results are obtained even for many silicates in which
the Si-O bond includes a significant covalent contribution.
The successes of these relatively simple calculations pro-
vide the incentive to develop more sophisticated and,
hopefully, more accurate methods of modeling the bond-
ing forces in structurally complex minerals. This strategy
of using the ionic approximation to model entire trans-
lationally periodic structures stands in marked contrast
with the ab initio molecular orbital calculations carried
out by Gibbs and others (see, for example, Gibbs, 1982)
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on finite molecular clusters. Although the results of cluster
calculations are appropriately applied to the behavior of
similar fragments in crystals, that applicability is limited
by the fact that all aspects of the crystalline environment
can not be simulated in the cluster calculations, and cluster
size is constrained by computing capacity. In efforts to
understand mineral behavior best progress is made when
results of both approaches interact and complement each
other.

In the ionic approximation the structure energy of a
crystal, which is the work required to separate the con-
stituent atoms to infinity, consists of two major compo-
nents: (1) The long-range or Coulomb interaction energy,
and (2) the short-range primarily repulsive energy that
results from overlap of electron clouds of neighboring
atoms. The Coulomb portion of the structure energy is
easily calculated using the Ewald (1921) or Bertaut (1952)
summation methods that achieve rapid convergence with
Fourier techniques in reciprocal space. In contrast, cal-
culation of the short-range energy is not straightforward,
and in fact many previous studies have neglected this
contribution aitogether. Several functions have been used
to represent the short-range interactions; one that has been
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widely applied is the Born exponential form (Kittel, 1971,
p. 93) given by

W, =\ (1)

where W, is the short-range energy for atom pair i at
separation distance r. The coefficients A and p are atom-
pair dependent and have generally been derived from
compressibility data or spectroscopic measurements (see,
for example, Bish and Burnham, 1984). One of the draw-
backs of this approach is that parameters determined for
an atom pair from a single experiment might not be gen-
erally applicable to a wide variety of different structures.
Also, these methods are severely limited by the shortage
of experimental data for many atom pairs. The necessary
compressibility data are generally available only for ha-
lides and a few simple oxides (e.g., MgO and CaOQ); they
do not exist for mineralogically important pairs such as
Na-0, K-0, Al-O, Ti-O, and Si-O. Consequently, several
previous studies have approximated the short-range po-
tentials for these metal-oxygen pairs using functions de-
rived for the respective metal halides. Appropriate Born
coeflicients, A and p, for cation-anion interactions can be
obtained from infrared or Raman spectra only if the force
constant for the appropriate polyhedral stretching normal
mode can be ascertained.

An alternative, semi-empirical approach for calculating
short-range energy terms has been used by Catlow and
his coworkers (Catlow, 1977; Catlow et al., 1977; Catlow
et al.,, 1982). The Born coefficients, A and p, for anion-
anion interactions are derived from free-ion Hartree-Fock
potentials, while the cation-anion potentials are deter-
mined by least-squares fitting to observed interatomic
distances in structures similar to those being studied using
energy-minimization procedures. Using potentials de-
rived in this manner they have, for example, successfully
modeled a number of features of defects in ionic materials
(Catlow et al., 1976; Catlow, 1977; Catlow and James,
1982) and have studied structure-composition relation-
ships among pyroxenoids (Catlow et al., 1982).Typically
atomic positions and cell parameters are used as obser-
vations in the least-squares fitting procedure; because these
data are available for most important minerals, it is pos-
sible to derive Born coefficients for almost any atom pair.
The coefficients are most reliable if derived by fitting to
structures that closely resemble the structures being mod-
eled. The general applicability of derived coefficients to a
variety of structures must become marginal, or even in-
appropriate, as the structures increasingly differ from those
used for the fittings. Additionally, because O*- is not a
stable species the O2~-O2- pair potential must be ap-
proximated using coefficients calculated for O'~-O'- in-
teractions.

Obviously, it would be advantageous to be able to cal-
culate all the short-range energy terms by some ab initio
method, in order to circumvent the limitations posed by
a shortage of experimental data and questions that arise
as parameters derived by fitting to one set of structures
are used to model others. Exact ab initio methods, even
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at the Hartree-Fock level, however, are ruled out because
calculations are complicated even for simple molecules,
much less for complex crystals. Thus, some form of ap-
proximate nonempirical method is the only alternative at
present. The electron gas approach introduced by Gordon
and Kim (1972) and subsequently modified by Waldman
and Gordon (1979) and Muhlhausen and Gordon (1981a)
appears to offer strong promise. The modified electron gas
(MEG) theory divides the short-range pair potentials into
kinetic, exchange, correlation and nonpoint Coulomb
contributions, and each of these terms is written as a
functional of the electron densities, using a simple free
electron gas approximation. The net electron density of
an interacting ion pair is assumed to be a superposition
of the individual ionic densities, which are calculated from
Hartree-Fock atomic wave functions. For a detailed de-
scription of the computational methods used in the MEG
procedure, the reader is urged to consult the references to
work by Gordon and his coworkers cited above.

The principal advantages of the MEG theory are that
no empirical parameters are used in the calculations and
that short-range potentials can be easily calculated for a
large number of atom pairs important in minerals, in-
cluding those involving O*-. Because the MEG approach
is based on purely ionic theory, it can provide information
about the relative importance of ionic versus covalent
interactions in a crystal. Empirically derived short-range
potentials on the other hand, describe a mixture of un-
known proportions of ionic and covalent contributions,
and it is therefore not possible to assess the relative im-
portance of the two effects. Thus, even though empirical
methods yield short range parameters that may model a
mineral structure reasonably well, such models can pro-
vide no real insight into the nature of the bonding in the
crystal.

One limitation of the present MEG theory is that short-
range energies can be calculated only for pairs involving
closed-shell ions (e.g., groups IA-VIIIA), therefore min-
erals containing Fe, Mn and many of the other transition
elements cannot be considered. For minerals involving
non closed-shell ions, one approach could be to calculate
short-range energies using a combination of MEG poten-
tials and parameters for transition c¢lement interactions
derived by least-squares fitting to observed structures.

Most energy calculation procedures that assume a crys-
tal’s structure energy can be written as the sum of pair
interactions between ions ignore many-body contribu-
tions to the energy. Such contributions will lead to de-
viations of the total interaction energy from that calcu-
lated by the pair-wise additive approximation. In the
context of the MEG theory, many-body contributions cause
the charge distributions between atoms to deviate from
those of the assumed ideal electron gas. These changes of
the electron density are of two forms: (1) isotropic ex-
pansion or contraction of the spherical atomic charge den-
sities; and (2) anisotropic distortion or polarization of the
electron clouds. A recent modification of the MEG theory
(Muhlhausen and Gordon, 1981a) incorporates the first
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of these effects, namely isotropic polarization, using anion
wave functions that are stabilized by inclusion of a Ma-
delung potential term in the Hamiltonian. Most attempts
to model anisotropic polarization in crystals have used
some type of shell model (Dick and Overhauser, 1958) in
which the anions are divided into a core and moveable
shell of electrons. Calculations using simple one-shell
models generally yield only slight improvements over the
purely ionic case; recent MEG calculations using multiple
shells, however, are yielding promising results (Jackson
et al., 1985). In the present study we have ignored the
effects of anisotropic polarization.

Several workers have demonstrated that structures and
cohesive energies of alkali halides and certain simple ox-
ides are modeled well by the MEG procedure despite its
limitations (Cohen and Gordon, 1976; Tossell, 1980a,b;
Muhlhausen and Gordon, 1981a,b). Tossell (1980a) used
the MEG theory to model the structures of low quartz
and rutile, and to compare the M1 and M2 site energies
in a pyroxene. Currently Jackson and Gordon (pers. com-
mun.) are using the MEG method to model the olivine
and spinel forms of Mg,SiO,.

We report here models of the structures of quartz, for-
sterite, diopside, and the TiO, polymorphs—rutile, ana-
tase, and brookite—using MEG-derived short-range en-
ergy terms. The primary purpose of this study is to
investigate how well the purely ionic MEG theory models
a variety of mineral structures. In addition we use our
calculated structure energies to compare the relative sta-
bilities of the three TiO, polymorphs. Finally we present
atable of MEG-derived Born-type short-range energy coef-
ficients for several atom pairs commonly found in min-
erals.

Calculations

All structure energy calculations and minimizations in
this study were performed using the computer program
wMIN (Busing, 1981), that we modified to use a Born
exponential to calculate the short-range energy terms. The
coefficients A and p (equation 1) for each atom pair were
determined by fitting Born exponentials to MEG short-
range potential curves that were calculated using the com-
puter program LEMINPI (Muhlhausen and Gordon, 1981a).
The MEG calculations were carried out with Hartree-Fock
self-consistent field (SCF) atomic wave functions calcu-
lated by Mark Jackson (Chemistry Department, Harvard
University) using computer programs developed by Laws
and coworkers (1971), and modified to include potential
shells on the anions. The anions are effectively surrounded
by charged shells that simulate the potential distribution
surrounding an anion in a crystal, and in the case of oxygen
serve to stabilize the O?>~ wave function, which does not
exist as a stable species in the isolated state. The shell
radii are adjustable, allowing the anion electron cloud to
expand or contract isotropically (i.e., isotropic polariza-
tion).

According to Muhlhausen and Gordon (1981a), a sim-
ple but physically reasonable method of adjusting an an-

ion shell radius (1) is to select a value that yields a shell
potential, V; = N,/r; (where N; is the shell charge = +2
for O), that is equal to the site potential at the nucleus of
the anion in the crystal. An initial calculation is performed
using estimated values for anion shell radii, during which
the structure parameters are varied to minimize the struc-
ture energy. The site potentials are calculated (by LEMINPI)
for the anions in the minimum energy structure, and new
shell stabilized (SS) wave functions are selected that have
shell radii consistent with the site potentials (i.e., r, = N,/
site potential). Self consistency is achieved when the shell
potentials used in the calculation match the respective site
potentials in the minimized structure to within ~ 1%. In
practice, we selected our initial anion wave functions using
site potentials calculated for experimentally observed
structures of the mineral being modeled. In most cases,
we observed only slight (<1%) differences between the
anion site potentials in the observed and minimum energy
structures. Our calculations show that for structures which
the MEG theory models well (halides, TiO,, forsterite),
the unit-cell volume of the minimum energy configuration
best matches the observed value (usually to within a few
percent) when the anion shell potentials are equal to the
site potentials. The good agreement between calculated
and observed cell volumes suggests that the method de-
scribed above for selecting shell stabilized anion wave-
functions is probably a valid one.

Although the computer program LEMINPI can be used
for determining minimum energy structures, WMIN is a
more flexible and efficient program for that purpose. LEM-
NPl was used only to calculate site potentials and short-
range energy coefficients. For each ion pair in a structure,
LEMINPI calculates the short-range energy for a specified
range of separation distances, and for structure energy
calculations performed with LEmINPI, the short-range en-
ergy contribution for each ion pair is derived by cubic
spline interpolation. In our calculations, we fit a Born
exponential (equation 1) to the short-range potential curve
determined by LEMINPI for each ion pair. The natural log
of the short-range energy (In W,) calculated by LEMINPI
plotted against the ion separation distance, r, yields a line
whose slope is the negative inverse of p in the Born ex-
ponential and whose intercept is In\. Least-squares fitting
of the line for each ion pair was performed over a range
of separation distances that encompassed the nearest
neighbor bond lengths observed for the pair in the crystal
of interest, or, in the case of anion-anion interactions,
next-nearest-neighbor distances. In all cases the correla-
tion coefficients between the parameters of the calculated
line and the MEG potentials were greater than 0.9995. It
should be pointed out that InW, vs. r plots, though nearly
linear in the range of nearest-neighbor and next-nearest-
neighbor separation distances, may not be strictly linear
for larger separations, e.g., those corresponding to third-
nearest-neighbor and higher interactions. Thus a more
flexible fitting procedure or interpolation scheme might
yield slightly improved results. Yet when WMIN-based
calculated results for the TiO, polymorphs and forsterite
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Table 1. Born-type repulsive parameters from least-squares
fitting to MEG short-range potentials
Anion shell
Ton pair radius(A) Fitting range(A) A(kj/mole) p(A)
Na-0 1.01 2.33 - 2.75 563166 0.2387
Na-F 1.22 2.28 - 2.70 626763 0.2214
Na-C1 1.64 2.65 - 2.96 433462 0.2727
Mg-0 0.93 1.80 - 2.35 418986 0.2371
1.01 . 359196 0.2457
1.03 " 359155 0.2479
1.05 » 337440 0.2498
1.08 - 307189 0.2545
1.11 . 287985 0.2581
Mg-F 1.14 1.80 - 2.35 342335 0.2298
A1-0 1.01 1.48 - 1.91 332419 0.2461
Al-F 1.14 1.48 - 1.91 317775 0.2288
Al-C1 1.64 2.10 - 3.20 296311 0.2831
Si-0 0.93 1.48 - 1.80 406350 0.2342
1.01 . 358150 0.2428
1.03 ! 345264 0.2456
1.05 » 337063 0.2472
1.08 " 318026 0.2512
1.1 " 302378 0.2546
Si-F 1.14 1.50 - 1.80 325013 0.2265
$i-Cl 1.64 2.10 - 3.20 287441 0.2853
K-0 1.01 2.70 - 3.10 6297548 0.2134
K-F 1.14 2.60 - 3.01 4433115 0.2078
ca-0 0.93 2.17 - 2.60 832030 0.2411
1.01 " 671365 0.2516
1.11 " 464591 0.2664
Ca-F 1.14 2.10 - 2.60 839394 0.2316
ca-C1 1.64 2.65 - 2.95 793872 0.2729
Ti-0 1.08 1.85 - 2.12 440826 0.2607
1.10 " 430199 0.2620
1.11 " 416350 0.2639
Sr-0 1.01 2.43 - 2.85 1670546 0.2400
Ba-0 1.01 2.70 - 3.02 2853488 0.2401
0-0 0.93-0.93 2.38 - 2.91 393087 0.2746
0.93-1.11 " 256772 0.2924
1.01-1.01 " 290997 0.2876
1.03-1.03 " 216020 0.2959
1.03-1.05 . 235476 0.2969
1.03-1.08 " 221752 0.2995
1.05-1.05 " 229743 0.2980
1.05-1.08 " 216857 0.3005
1.08-1.08 » 205058 0.3029
1.10-1.10 . 193175 0.3055
1.10-1.11 . 186146 0.3072
1.11-1.11 " 180079 0.3086
0-F 1.01-1.14 . 350284 0.2715
0-C1 1.01-1.64 " 351874 0.2948
F-F 1.14-1.14 . 474968 0.2517
c1-cl 1.64-1.64 . 277106 0.3173

obtained using our fitted parameters are compared with
results obtained using the interpolation procedures of
LEMINPI, no significant differences are apparent. The val-
ues of A and p and separation distances over which equa-
tion (1) was fit to the MEG potentials are listed in Table
1 for all of the ion pairs considered in this study, and for
several other pairs common in minerals.

The Coulomb energy terms are summed by wMIN using
the method of Ewald (1921) and Bertaut (1952). The sum-
mations were carried out within a sphere of radius 6.0 A
in direct space and 0.6 A in reciprocal space. Formal
charges corresponding to conventional valence were as-
signed to all ions. One of the attractive features of wMIN
is that it offers a choice of three different procedures for
calculating minimum energy structures. In mode 1, the
minimum energy configuration is obtained by Newton’s
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method, which calculates first and second derivatives.
Mode 2 minimizes energy by the method of steepest de-
scents, which requires that only first derivatives be cal-
culated. In mode 3 the program uses the Rosenbrock search
technique which requires no derivatives. Newton’s meth-
od works very well when the model is close to the min-
imum energy configuration. In other cases, however, it
might locate a saddlepoint or not converge at all, as oc-
curred during our initial energy minimization for the rutile
structure. The Rosenbrock search procedure, on the other
hand, takes longer to reach a final minimum, but it will
always move toward a lower energy, even from a saddle-
point (Busing, 1981). The minerals considered in this study
have relatively few variable parameters, and therefore we
were able to perform all energy minimizations using the
Rosenbrock search method and still obtain convergence
within a reasonable amount of computing time. During
the energy minimizations, we allowed all of the adjustable
structural parameters, including cell parameters, to vary
simultaneously.

Modified electron gas calculations indicate that for sep-
aration distances normally encountered in crystals, cat-
ion-cation short-range interactions are insignificant and
can be ignored. Consequently, these terms were not in-
cluded in any of our models.

The reference state for structure energies obtained di-
rectly from the wMiN-MEG procedure consists of cations
and shell-stabilized (SS) anions at infinite separation. Such
structure energies cannot be determined empirically be-
cause free SS anions do not exist; therefore they are not
comparable to any experimental energies, although un-
fortunately such comparisons have been made in some
previous studies. A thermodynamically meaningful quan-
tity is the dissociation energy (D.) of the crystal into free
cations and anions. To obtain D, from our theoretically
calculated structure energy, however, one must know the
self-energy difference between the SS and free anions. The
self-energy terms can be obtained during the Hartree-Fock
SCF calculations (Muhlhausen and Gordon, 1981a); D,
is then the sum of the structure energy from wmiN and
the self-energy. An additional consideration arises for
crystals containing O?-. The oxide anion is unstable in
the gas phase, and consequently its heat of formation is
not experimentally known. In the case of oxides, the ex-
perimentally obtainable quantity is the dissociation en-
ergy into free cations, O!~ ions, and electrons. Thus, to
obtain a value comparable with experimental energies, we
must add the difference between the self-energies of the
gas phase O'~ and SS O?- anions to the structure energies
calculated using SS O?~ wavefunctions. The self-energy
differences used in our calculations are listed in Table 2.

Finally, we note that our calculations are for a static
lattice at O pressure. We assume that temperature and
pressure effects on configurations and energies are suffi-
ciently small that—given the level of accuracy of the cal-
culations—our results can be compared directly to exper-
imental observations made under standard conditions.
Furthermore because the lattice dynamical behavior of
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Table 2. Self energies for Oi%~ - O'~ + e~

0gs2- Shell radius(A) Self energy (kj/mole)*

0.93 1225.95
1.01 1113.40
1.03 1078.22
1.05 1061.44
1.08 1026.29
1.10 1015.79
1

.1 1001.61

* calculated by Mark Jackson, Chemistry Dept.,
Harvard University.

the three rutile polymorphs must be very similar, the
calculated structure energy differences probably outweigh
any entropy differences, and hence they approximate free
energy differences at low temperature and pressure.

TiO, polymorphs

Three polymorphs of TiQ,—rutile, anatase and brook-
ite—occur in nature. Of these, rutile is the most abundant
and probably the most stable phase, with anatase and
brookite being metastable with respect to it (Lindsley,
1976). Although several studies of the relative stabilities
of these polymorphs have been made, there is some ques-
tion as to whether published phase diagrams represent
equilibrium conditions (Lindsley, 1976). In each of the
three polymorphs, Ti*+ is in octahedral coordination, but
the number of edges shared by the Ti-O octahedra vary
from two in rutile to three in brookite and four in anatase.
It has been suggested that the relative stabilities of the
three phases might be inversely related to the number of
shared edges, with rutile more stable than brookite, which
would be more stable than anatase (Evans, 1966). Nav-
rotsky and Kleppa (1967) measured a AH of —5.27 kj/
mole for the reaction anatase — rutile. No experimental
data are available for the conversion of brookite to either
rutile or anatase.

We calculated structure energies and minimum energy
configurations for all three polymorphs. The energy min-
imizations were carried out in the space groups of the
observed structures— P4/mnm, 14,/amd, and Pcab for ru-
tile, anatase, and brookite, respectively. Observed atom
positions and cell parameters were used as initial coor-
dinates for the minimizations. The results of these cal-
culations are summarized in Tables 3 and 4.

Rutile and anatase structures each have three param-
eters (a, ¢, and an oxygen positional parameter) that can
be adjusted during the energy minimizations. The site
potential of the oxygen atom in rutile is 0.95 and in anatase
it is 0.97. Using the relationship V; = —2/r; the corre-
sponding shell radii for the SS O-2 wave functions become
1.11 A and 1.08 A, respectively. The cell parameters and
volumes for our minimum energy structures of rutile and
anatase (Table 3) compare fairly well with observed val-
ues, although the calculated ¢ cell dimension is 3.5% too
long in rutile and 6.1% too long in anatase. The observed
and calculated mean Ti-O distances for both anatase and
rutile compare extremely well, yet the precise distortions
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Table 3. MEG-wMIN minimum energy structures of rutile and
anatase compared with observed structures
Rutile (P4/mnm) Anatase (I4)/amd)
Min. energy Observed Calc- Min. energy Observed , Calc-
model structure™ obs(%) mode structure obs (%)
a(A) 4.491 4.504 -2.2 3.689 3.776 -2.3
c 3.063 2.959 +3.5 10.067 9.486 +6.1
V(A3) 61.78 62.43 -1.0 137.00 135.25 +1.3
Ti-0 (x4) 1.961 1.948 +0.7 1.909 1.930 -1.1
Ti-0 (x2) 1.935 1.980 -2.3 2.030 1.973 +2.9
<Ti-0> 1.952 1.959 0.4 1.949 1.944 +0.3
0-0 (sh) 2.462 2.536 -2.9 2.405 2.459 -2.2
De(kj/mole)*™* -9875.9 -9861.7 -9876.3 -9857.9
02- shell
radius (A) 1.11 1.08

*: Abrahams and Bernstein (1971).

owi Megaw (1973, p. 277).
The dissociation energy, Dg, determined for rutile by a Born-Haber cal-
culation using experimenta? data is -10385 kj/mole.

of the Ti-O octahedra are not modeled correctly. In the
observed rutile structure the axial Ti-O bonds are 0.032
A longer than the equatorial bonds, whereas in our model
structure the opposite is true by 0.026 A. The shared edge
O-0 distance predicted by our calculation for rutile is
0.074 A less than the observed value. In anatase, the sense
of the octahedral distortion is predicted correctly, but the
calculated difference between the axial and equatorial Ti-O
distance is 0.12 A compared with 0.043 A in the observed
structure. The O-O shared edge in our minimum energy
model of anatase is 0.05 A too short.

The brookite structure has two oxygen atoms per asym-
metric unit and 12 parameters that can vary during the
energy minimization. The site potentials for the two oxy-
gen atoms are 0.95 and 0.96, corresponding to SS O2
wave functions with shell radii of 1.11 A and 1.10 A,
respectively. The cell parameters of the model structure
compare to within 1.5% of the observed values and the
cell volume matches exactly (Table 4). The modeled av-
erage Ti-O distance is the same as for the observed struc-
ture, however, individual Ti-O distances deviate by as
much as 0.065 A (3.3%). Also, as in the cases of rutile
and anatase, the shared edge O-O distances are under-
estimated in our model structure by about 0.05 A (2%).

The discrepancies between the minimum energy and
observed configurations of rutile, anatase and brookite
indicate that although the ionic model describes fairly well
the gross aspects of the structures, the precise details of
octahedral distortions must result from covalency effects
in the bonding. This is consistent with the prediction using
Pauling electronegativity tables that the Ti-O bond is 63%
ionic, and therefore should contain a significant covalent
component. Based on differences between calculated and
experimental heats of formation, Tossell (1980a) con-
cluded that covalency contributions are important for sta-
bilizing the rutile structure. In contrast Baur (1961, 1970)
concluded that distortions in rutile can be modeled using
a simple ionic theory. Baur, however, approximated the
short-range energy terms with Leonard-Jones type func-
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Table 4. MEG-wMIN minimum energy and observed structures

Table 5. MEG-wMIN minimum energy structures of quartz

of brookite compared with observed structures
Min. energy ObservedH Minimum enﬁrg st;ug%ures
model struct Calc- % Low quart High quart as function o - shell radius
ure alcrobs (%) observed‘ observed‘ 0.93A 1.01A 1.06A
a(A) 9.171 9.184 -0.1 .
Unit cell
b 5.373 5.447 -1.4 ak 4.91 5.01 4.97 5.05 5.10
g 5.224 5.145 +1.5 ¢ 5.40 5.47 5.52 5.60 5.66
V(A3) 257.42 257.38 +0. VA3 112.74 118.90 118.00 123.68 127.33
Ti-01 1.904 1.865 +2.1 nteratomic distance
Ti-01’ 1.998 1.992 -0.3 5i-0, 1.594 1.609 1.564 1.588 1.603
Ti-01" 1.929 1.994 -3.3 §i-0° 1.613 1.609 1.564 1.588 1.604
Ti-02 1.956 1.919 +1.8
Ti-02° 1.931 1.946 -0.8 <0-0> 2.618 2.626 2.553 2.592 2.618
Ti-02" 2.017 2.039 a3 o5 G anaTes
- 5 -Si-0 ang

SLiR0x L.956 3959 8.4 Range, * 108.6-111.4 103.0-114.7 104.4-116.3 104.2-116.5 104.2-116.5
01-01(sh) 2.434 2.485 2.1 Variance, 1.4 28.6 29.3 30.8 31.5
02-02(sh) 2.462 2.514 -2.1 $i-0-§i,° 144.6 148.7 162.6 162.8 162.9
De(ki/mole) -9856.7 9837.0 De(kj/mole)™™ -11079 -11046 -11004

ox 02- shell radii: 1.11A for 01; 1.10A for 02.
Baur (1961).

*: Megaw (1973, pp. 263-265).
Experimental low quartz Dy from Born-Haber calculation: -11627 kj/mole.

tions, which incorporate experimentally derived param-
eters. As mentioned above, such empirical potential func-
tions inherently describe whatever mixture of covalent
and ionic bonding exists in the crystal making it impos-
sible to assess quantitatively the relative effects of these
two components on the structural configuration.

Calculated dissociation energies for the observed and
minimum energy structures of rutile, anatase, and brook-
ite are given in Tables 3 and 4. The experimental disso-
ciation energy for rutile, determined by a Born-Haber
calculation, is about 4.9% greater than our calculated val-
ue. This difference is less than that reported by Tossell
(1980a) for rutile, but still indicates a significant covalent
contribution to the structure energy. The necessary ther-
modynamic data are not available for determining ex-
perimental dissociation energies for anatase and brookite.

Our calculated dissociation energies for the observed
TiO, structures indicate that rutile is the most stable and
brookite the least stable of the polymorphs at 0 K and 0
pressure. The difference between the calculated dissocia-
tion energies for the observed structures of rutile and an-
atase is 3.8 kJ/mole, which perhaps coincidentally is close
to the AH of —5.3 kJ/mole measured by Navrotsky and
Kleppa (1967) for the reaction of anatase to rutile. We
calculate anatase to be more stable than brookite by about
21kJ/mole. The minimum energy configurations for rutile
and anatase have essentially equal dissociation energies
(anatase is more stable by ~0.4 kJ/mole), and are more
stable than the minimized brookite structure by about 20
kJ/mole. Our indication that anatase is more stable than
brookite is contrary to the prediction of Evans (1966)
based on the relative number of shared Ti-O octahedral
edges in the structures, but is consistent with the greater
natural frequency of occurrence of anatase.

All of the dissociation energies reported here include
the self-energy terms for O>~ - O'- + le~. Because the
SS O%* wavefunctions used in the three polymorphs are
different, it is essential that the appropriate self-energies
be included before comparing dissociation energies. It is

interesting to note that if the self-energy terms are omitted,
the structure energies show anatase more stable than rutile
by 46 kJ/mole.

Quartz, forsterite and diopside

Traditional Pauling electronegativity differences indi-
cate that the Si-O bond has 50% ionic and 50% covalent
character; thus, it ought to be questionable whether the
purely ionic MEG theory can be used to model silicate
structures effectively. In order to investigate the appli-
cability of our MEG-wMIN procedure to silicate minerals,
we have calculated minimum energy structures for quartz,
forsterite, and diopside.

Site potentials for the O anions in both high and low
quartz are 1.14, corresponding to SS O-2 wavefunctions
with shell radii of 0.93 A. The energy minimization cal-
culations were performed in space group P3,21 (right-
handed low quartz), which allows six variable parameters;
initial atom coordinates and cell parameters were those
for low quartz given by Megaw (1973, p. 265). Our cal-
culated minimum energy configuration is most similar to
that of high quartz (Table 5). The cell volume of the min-
imized structure is nearly the same as that of high quartz
(at ~600°C) but about 5% larger than for room temper-
ature low quartz. Our model yields equal values for the
two independent Si-O bond distances, as is the case for
high quartz, but they are about 0.05 A shorter than the
observed values. The model Si-O distances are dependent
on the O?~ shell radius used in the calculation; they range
from 1.564 to 1.603 A as the shell radius is increased from
0.93 to 1.06 A (Table 5). The larger shell radii, even
though giving improved Si-O bond distances, yield min-
imized structures with cell volumes significantly larger (5-
10%) than the observed values for high quartz.

Angle variance of the calculated Si tetrahedron (undis-
torted = 0) is 29.3° compared to 1.4° observed for low
quartz and 28.6° observed for high quartz. Framework
configuration is modeled poorly: the calculated Si-O-Si
angle is 162.6° rather than 144.6° and 148.7° in low and
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Table 6. Comparison of observed and minimum energy forsterite
structures calculated with MEG repulsions and semi-empirical
Born-type repulsions
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Table7. Comparison of observed and minimum-energy diopside
structures calculated with MEG repulsions and semi-empirical
Born-type repulsions

Observed Semi-empirical _ MEG potential

structure repulsion model repulsion model
Unit cell
a,A 4.7535(4) 5.040 (+6.0) 4.874 (+2.5)
b, 10.1943(5) 10.187 (-0.1) 10.322 (+1.2)
(5 5.9807(4) 6.054 (+1.2) 5.977 (-0.1)
V,A3 289.80(5) 310.71 (+7.2) 300.55 (+3.7)
§i _Tetrahedron
Si-01,A 1.615(3) 1.622 (+0.4) 1.560 (-3.4)
$i-02 1.640(3) 1.683 (+2.6) 1.606 (-2.1)
Si-03(x2) 1.633(2) 1.641 (+0.5) 1.586 (-2.9)
<§i-0> 1.630 1.647 (+1.0) 1.585 (-2.8)
M1 _Octahedron
Mg1-01(x2),A 2.083(2) 2.100 (-0.8) 2.076 (-0.3)
Mgl-02(x2) 2.074(2) 2.186 (+4.9) 2.119 (+2.2)
Mgl-03(x2) 2.145(3) 2.230 (+4.0) 2.251 (+4.9)
<Mgl1-0> 2.101 2.172 (+3.4) 2.149 (+2.3)
M2 Octahedron
Mg2-01,A 2.166(3) 2.205 (+1.8) 2.332 (+7.7)
Mg2-02 2.045(5) 2.094 (+2.4) 2.085 (+2.0)
Mg2-03(x2) 2.064(4) 2.087 (+1.1) 2.035 (-1.4)
Mg2-03’ (x2) 2.208(4) 2.330 (+5.5) 2.353 (+6.6)
<Mg2-0> 2.126 2.189 (+3.0) 2.199 (+3.4)
02-03 (sh) 2.558(5) 2.445 (-4.4) 2.436 (-4.8)
03-03’(sh) 2.590 2.578 (-0.5) 2.533 (-2.2)
De{ki/mole) -16844.0 -16938.9

*: Hazen (1976)}; esd’s are in parentheses.

Calculated using WMIN with semi-empirical short-range energy
parameters reported by Catlow et al. (1982); % deviations from
ogserved values are in parentheses.

02- shell radii are: 01=1.03A, 02=1.05A, 03=1.08A; % deviations
from observed values are in parentheses.

dedek

Semi-empirical .

Observed* repulsions MEG repulsions™
Unit cell
a,A 9.75 10.91 (+12) 11.34 (+16)
b 8.90 8.67 (-2.6) 11.00 (+24)
[4 5.25 5.55 (45.7) 5.41 (+3.0)
B,° 105.6 112.6 (+6.6) 118.7 (+12)
v,A3 438.6 484.9 (+11) 592.3 (+35)
Si Tetrahedron
$i-01(C1),A 1.60 1.63 (+1.9) 1.60 (+0)
$i-02(c1) 1.59 1.64 (+3.1) 1.60 (+0.6)
$i-03(C1) 1.66 1.70 (+2.4) 1.58 (-4.8)
$i-03(C2) 1.69 1.76 (+4.1) 1.59 (-5.9)
<Si-0> 1.63 1.68 (+3.1) 1.59 (-2.5)
Chain angle:
03C1-03C2-03C1’ 166.4° 162.9" (-2.1) 179.5" (+7.9)
Mg (M1 1yhedron
Mg-01(Al1,B1),A 2.12 2.17 (+2.4) 4.87 (+130)
Mg-01(A2,B2) 2.06 2.06 (+0) 1.96 (-4.9)
Mg-02(C1,D1) 2.05 2.09 (+2.0) 1.96 (-4.4)
<Mg-0> 2.08 2.11 (+2.9) 2.93 (+41)
Mg-Mg 3.10 3.17 (+2.3) 4,98 (+60)
Ca (M ol yvhedron
Ca-01(A1,B1),A 2.36 2.31 (-2.1) 2.16 (-8.5)
Ca-02(C2,02) 2.35 2.83 (+2.0) 2.16 (-8.1)
Ca-03(C1,01) 2.56 2.53 (-1.2) 3.72 (+45)
Ca-03(C2,02) 2.72 3.45 (+27) 4.50 (+65)
<Ca-0> 2.50 2.78 (+11) 3.14 (+25)

*: Cameron et al. (1973); atom notation from Burnham et al. (1967).
Calculated using WMIN with semi-empirical short-range energy
parameters reported by Catlow et al. (1982); % deviations from

hax observed values are in parentheses.

02- shell radii: 01,2=1.11A; 03=0.93A; % deviations from obser-
ved values are in parentheses.

high quartz respectively; the calculated angle is further-
more nearly independent of the O2- shell radius used. Our
calculated Si-O-Si angle does, however, represent an im-
provement over the value of 180° reported by Tossell
(1980a) from MEG calculations on quartz.

The differences between the minimum energy and ob-
served quartz structures point out the mixed ionic and
covalent character of the Si-O bond. The fact that our
ionic model most closely resembles high quartz indicates
that the covalency effects are slightly more pronounced
in low quartz. In either case, however, it is obvious that
in order to model quartz accurately using structure energy
calculations, it is essential to consider both covalent and
ionic effects. Recently, Jackson et al. (1985) have devel-
oped a greatly improved model for quartz, using a mul-
tiple shell approach to represent the anisotropic polari-
zation of the O?- electron cloud.

Despite the deviations of our model structure from the
observed low quartz configuration, our calculated disso-
ciation energy of 10924 kJ/mole is only about 6% less
than the experimental quantity of 11627 kJ/mole. Thus,
although covalent interactions significantly affect the ge-
ometry of the quartz structure, they apparently contribute
only slightly to the total D,. This observation is consistent
with Gibbs’ (1982) molecular orbital results for the energy
of Si-O as a function of distance and angle that show an
extensive minimum energy trough extending over a rather
large range of Si-O-Si angles within a restricted range of
Si-O distances.

Minimum energy structures for forsterite and diopside
are summarized in Tables 6 and 7. Different SS O?~ wave-
functions were used for each of the three crystallograph-
ically distinct O atoms in forsterite, and two SS O?~ wave-
functions were used in our model for diopside. The O
anion shell radii are included in Tables 6 and 7.

The unit cell parameters for the forsterite minimum
energy configuration compare to the observed values with-
in 2.5%, and the cell volume is within 3.7%. The calcu-
lated Si-O bond distances are all 0.03 to 0.05 A too short,
as was the case for quartz. The relative distortions in the
tetrahedra are, however, modeled generally correctly, in-
dicating that the source of these distortions is at least
partly ionic in character and related to the topology of the
structure. The shared edge O-O bond distances are 0.06
and 0.11 A too short in our model structure. The average
Mg,-O and Mg,-O distances are 0.5 and 0.64 A (2.4 and
3.0%) longer, respectively, than the observed distances,
and individual Mg-O distances deviate by a maximum of
0.14 A (6.6%).

Although we are able to model the forsterite structure
reasonably well, we are far less successful with diopside
(Table 7). The unit cell parameters for our calculated diop-
side structure range from 3% (c) to 24% (b) larger than
experimental values, and the cell volume is 35% too large.
Again, the Si-O predicted bond lengths are too short. The
four Si-O distances in our model fall between 1.58 and
1.60 A, compared with a range of 1.59 to 1.69 A in the
actual structure. The largest deviations between the ob-
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served and minimized diopside structures occur in the M-
O distances. The average Mg-O and Ca-O distances ex-
ceed the observed values by 41% and 25%, respectively.
The Mg-O1(A1,B1) bond distances in our minimum en-
ergy configuration are 130% too long and the Ca-O3
(C1,D1) and Ca-03(C2,D2) distances are long by 45%
and 65% respectively.

The fact that we model forsterite successfully but fail
modeling diopside with the purely ionic MEG/WMIN pro-
cedure indicates that the forsterite structure is substan-
tially ionic while that of diopside involves departures from
ionicity that are fatal to the specific procedure employed
here. In forsterite each O atom has a Pauling bond-strength
sum of exactly 2.0, hence the structure fully obeys Paul-
ing’s local electrostatic valence rule for ionic materials.
The bond strength sums for the three crystallographically
distinct O atoms in diopside, however, are 1.91 on O1,
1.58 on 02, and 2.5 on O3 assuming Ca in 8 coordination.
In our minimum energy diopside structure the coordi-
nations of Ca and Mg have both been effectively reduced
to four (considering only M-O distances less than 3.0 A),
resulting in Pauling bond-strength sums for all three O
atoms of 2.0. Our minimum energy configuration thus
depicts a hypothetical diopside structure that would ob-
tain if the bonding were purely ionic. Also, this result
suggests that the existing local charge imbalances are re-
lated to substantial covalent contributions to the bonding.

Summary

We have calculated minimum energy structure config-
urations for quartz, forsterite, diopside and the three TiO,
polymorphs, using short-range potentials derived from
the nonempirical MEG theory. Our models for the TiO,
polymorphs, in general, match the observed structures to
within a few percent, although slight distortions in the
Ti-O octahedra are not modeled correctly in detail. Qur
calculated dissociation energies show rutile to be more
stable than anatase by 3.8 kJ/mole and more stable than
brookite by about 20 kJ/mole. In quartz, forsterite, and
diopside our predicted Si-O bond distance are consistently
too short by about 0.05 A. Overall, we model the forsterite
structure quite well, but quartz is modeled rather poorly
because the model Si-O-Si angle is 16° wider than ob-
served. Diopside is modeled badly, but the poor model
does exhibit local electrostatic charge balance on all oxy-
gen atoms, in contrast to the real structure in which no
oxygen atoms achieve Pauling charge balance.

The purely ionic MEG-wMIN procedure thus works best
for structures that are strongly ionic, such as the TiO,
polymorphs. In the cases of quartz and the silicate min-
erals, the deviations between the minimum energy and
observed structures can be substantial. We conclude, then,
that for the MEG procedure to be useful for modeling
many silicates or for predicting mineral structures, the
theory must include treatments of anisotropic polariza-
tion and other covalency effects. Recently Hemley and
Gordon (1985) and Hemley et al. (1985) have demon-
strated improved agreement of calculated lattice param-

eters with observation for alkali halides and alkaline-earth
oxides using a modified calculation procedure that incor-
porates the volume dependence of the ion self-energies
directly in the minimizations. The multiple shell approach
reported by Jackson et al. (1985) models successfully the
anisotropic polarization effects in quartz. These and other
improvements will continue to enhance the power of the
electron gas approximation.
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