EPR study of Fe$^{3+}$ centers in cristobalite and tridymite

H. Rager

Fachbereich Geowissenschaften der Universität Marburg
Lahnberge, 3550 Marburg, Germany (FRG)

AND H. Schneider

Forschungsinstitut der Feuerfest-Industrie
An der Elisabethkirche 27, 5300 Bonn, Germany (FRG)

Abstract

Electron paramagnetic resonance spectra were taken from powder specimens of cristobalite and tridymite at 9.16 GHz and temperatures between -120°C and 300°C. The spectra exhibit significant signals around $g_{\text{eff}} = 4$ which arise from Fe$^{3+}$ ions in strong orthorhombic crystal fields. Fe$^{3+}$ is assumed to substitute for Si$^{4+}$ in both cristobalite and tridymite. The charge deficiency produced thereby is compensated by a nearest interstitially incorporated Na$^{+}$ ion. In cristobalite two crystallographically different Fe$^{3+}$ centers occur which indicate a possible symmetry lowering of the space group symmetry of low cristobalite from $P4_{2}2_{1}2$ to its subgroup $C22_{2}1$. The broadening of the electron paramagnetic resonance signals in tridymite is associated with a certain number of Fe$^{3+}$ centers differing so slightly that their particular signals cannot be resolved.

Introduction

Many data on the microchemistry of lunar (e.g., Frondel, 1975, p. 163–182; Mason, 1972), meteoritical (e.g., Wlotzka et al., 1983), and of terrestrial tridymites and cristobalites (e.g., Mason, 1953; Smith and Steele, 1984), and of tridymites and cristobalites from refractory-grade silica bricks (e.g., Patzak and Konopicky, 1962; Schneider et al., 1980; Seifert-Kraus and Schneider, 1984) have been published in recent years. Most modern microprobe analyses have yielded impurity contents below 1.5 wt.%, with the exception of some lunar and meteoritical cristobalites and tridymites which contain foreign oxides up to 4 wt.%. Most investigators have believed that Al$_2$O$_3$, TiO$_2$, Na$_2$O, and K$_2$O are the main impurity compounds. Measurable amounts of iron oxide2 have been described in tridymites and cristobalites of lunar rocks, especially in Apollo 12 samples (with FeO up to 1.96 wt.%, Busche et al., 1971). Studies on the microchemistry of tridymites and cristobalites from used silica bricks of open hearth furnaces (Schneider and Majdic, 1984) have yielded maximally 0.2 wt.% FeO, incorporated into silica.

An interstitial entry of the large alkali and alkaline-earth ions into the relatively wide channels and voids of the tridymite and cristobalite structure can be assumed. The charge excess produced that way is compensated by substitution of Si$^{4+}$ by Al$^{3+}$ at tetrahedral lattice sites (e.g., Seifert-Kraus and Schneider, 1984; Smith and Steele, 1984). Though Seifert-Kraus and Schneider (1984) provided evidence for tetrahedral incorporation of Ti$^{4+}$, recent investigations have shown that Ti may also enter the silica structures interstitially under special circumstances. Schneider and Majdic (1984) mentioned that Fe$^{3+}$ is incorporated into the tetrahedra at the place of Si$^{4+}$. They believe that charge compensation is achieved by alkali ions or by interstitially incorporated Fe$^{3+}$. The EPR study presented here was undertaken to provide more details on the iron-incorporation mode.

Sample material

The samples stem from a refractory silica brick which was used in the hanging roof (melting zone) of a flat glass tank for about ten years. The temperature at the hot front of the brick was about 1560°C and 400°C at the cold end (see Seifert-Kraus and Schneider, 1984). The brick shows a distinct zoning perpendicular to the temperature gradient. The cristobalite sample C1 was taken from the hot side of the brick where cristobalite was the only crystalline phase coexisting with a small amount of glass (\leq 5 wt.%). Behind the cristobalite zone a tridymite zone developed, the boundary between both zones being rather sharp. The tridymite sample T1 was taken from the brick zone adjacent to the cristobalite-tridymite boundary, where tridymite was the only crystalline phase coexisting with some

1 Dedicated to Prof. Dr. W. von Engelhardt on the occasion of his 75th birthday.

2 There is no information on the degree of oxidation of iron.

0003-004X/86/0102-010S$02.00
Table 1. Origin and composition of samples used for EPR-analysis

<table>
<thead>
<tr>
<th>Sample key</th>
<th>Phase content</th>
<th>Origin</th>
<th>Chemical composition (wt %)</th>
<th>Analysis technique used</th>
</tr>
</thead>
<tbody>
<tr>
<td>T 1</td>
<td>Tridymite †</td>
<td>Used silica bricks from the roof of a glass tank</td>
<td>Al₂O₃ 0.20 SiO₂ 99.5 FeO 0.14 TiO₂ 0.15 Na₂O 0.13</td>
<td>XRF/EMA</td>
</tr>
<tr>
<td>C 1</td>
<td>Cristobalite †</td>
<td>Heat-treatment 1550°C (5 h) see sample T 1</td>
<td>Al₂O₃ 0.35 SiO₂ 98.9 FeO 0.17 TiO₂ 0.14 Na₂O 0.14</td>
<td>XRF</td>
</tr>
<tr>
<td>C 2</td>
<td>Cristobalite †</td>
<td>Heat-treatment 1730°C (2 h) see sample T 1</td>
<td>Al₂O₃ 0.13 SiO₂ 99.5 FeO 0.16 TiO₂ 0.15 Na₂O 0.13</td>
<td>XRF/EMA</td>
</tr>
<tr>
<td>G</td>
<td>Glass ‡</td>
<td>Heat-treatment 1550°C (5 h) see sample T 1</td>
<td>Al₂O₃ 0.20 SiO₂ 99.5 FeO 0.14 TiO₂ 0.15 Na₂O 0.13</td>
<td>XRF/EMA</td>
</tr>
</tbody>
</table>

† The glass phase coexisting with crystalline phases was washed out by H₃PO₄ treatment of the sample.
‡ Homogeneous glass phase without inclusions (microscopic observation).
* Below detection limit.

XRF: X-ray fluorescence analysis.
EMA: Electron microprobe analysis.

Experimental procedure

Chemical analysis

Bulk chemical analyses of the H₃PO₄-treated samples were performed by standard X-ray fluorescence techniques using a computer-controlled X-ray spectrometer. Microanalyses were carried out on polished sections using a microprobe with three wave length dispersive spectrometers. Weight percentages were calculated from measured net intensities with a program correcting the influence of atomic number, absorption, and fluorescence (ZAF process). The resolution of adjacent points was about 2 μm. In order to avoid a possible sodium loss by evaporation a beam diameter of 10 μm was used. All samples were X-ray examined for phase identification with standard powder goniometer techniques. Microstructure and phase content of the starting materials were determined from thin sections using a polarizing microscope.

Electron paramagnetic resonance (EPR)

The EPR measurements were performed on about 60 mg of the powdered samples. The EPR spectra were taken at X-band frequency with a Varian spectrometer using 100 kHz modulation. The temperature dependence of the spectra was studied between -120°C and 300°C. The observed EPR signals were labeled by their effective g values. \(g_{\text{eff}} \) is defined by the relation

\[
\frac{h}{\nu} = g_{\text{eff}} \beta B.
\]

In cristobalite a group of EPR signals is observed around \(g_{\text{eff}} = 4 \) with intensity which decreases with increasing temperature (Fig. 1). At -120°C the signal around \(g_{\text{eff}} = 4.3 \) is split into two components with \(g_{\text{eff}} = 4.33 \) and 4.3. Both components have similar line widths. A further broader signal appears at \(g_{\text{eff}} = 4.22 \). With increasing temperature these signals merge together and their common center shifts to higher \(g_{\text{eff}} \) values (lower magnetic fields). The signal at \(g_{\text{eff}} = 3.92 \) shows a low fine structure at

Results

Chemical composition

The X-ray fluorescence (XRF) and electron microprobe analyses (EMA) of the cristobalite and tridymite samples, C1 and T1, exhibited a total impurity content below 1 wt.% with Al₂O₃, Na₂O, and TiO₂ as foreign oxides (Table 1). The EPR measurements revealed that the samples contained also some hundred ppm of iron oxide.

EPR spectra

EPR spectra taken at liquid helium temperature yielded no evidence for the occurrence of Ti³⁺ and/or Fe²⁺. Therefore, all EPR signals observed in the cristobalite and tridymite samples are associated with Fe³⁺.

In cristobalite a group of EPR signals is observed around \(g_{\text{eff}} = 4 \) with intensity which decreases with increasing temperature (Fig. 1). At -120°C the signal around \(g_{\text{eff}} = 4.3 \) is split into two components with \(g_{\text{eff}} = 4.33 \) and 4.3. Both components have similar line widths. A further broader signal appears at \(g_{\text{eff}} = 4.22 \). With increasing temperature these signals merge together and their common center shifts to higher \(g_{\text{eff}} \) values (lower magnetic fields). The signal at \(g_{\text{eff}} = 3.92 \) shows a low fine structure at
Fig. 1. EPR spectra of cristobalite at 9.16 GHz and various temperatures. The spectra were taken using a modulation amplitude of 5 G and a microwave power of 10 mW. The maximum error of g_{eff} is $\pm 2\%$.

-120°C which disappears at elevated temperature. Simultaneously the signal is shifted to lower g_{eff} values (higher magnetic fields).

Tridymite has a similar EPR spectrum to cristobalite with a group of EPR signals around $g_{\text{eff}} = 4$. The signal intensity decreases with increasing temperature. Contrary to the cristobalite patterns, the signal at $g_{\text{eff}} = 4.34$ shows an insignificant fine structure at -120°C which decreases with increasing temperature (Fig. 2). While the position of the signal at $g_{\text{eff}} = 4.34$ remains constant on the magnetic field scale, the signal at $g_{\text{eff}} = 3.91$ seems to shift towards lower g_{eff} values (higher magnetic fields) with increasing temperature. At 120°C all EPR signals are vanished.

The glass sample G shows one EPR signal at $g_{\text{eff}} = 4.2$ and another one at $g_{\text{eff}} = 2$. The signal intensity decreases with increasing temperature (Fig. 3). No significant shift of the EPR signals to lower or higher magnetic fields is observed with increasing temperature. A third EPR signal appears around $g_{\text{eff}} = 8$ with a line width of 1600 G or more. The intensity of this signal increases with temperature.

EPR spectra of cristobalite, tridymite and of the glass sample have also been recorded at room temperature sub-

Fig. 2. EPR spectra of tridymite at 9.16 GHz and various temperatures. The spectra were taken using a modulation amplitude of 5 G and a microwave power of 10 mW. The maximum error of g_{eff} is $\pm 2\%$.

Fig. 3. EPR spectra of a glass phase at 9.16 GHz and various temperatures. The spectra were taken using a modulation amplitude of 5 G and a microwave power of 2 mW. In the lower part the range of the magnetic field is expanded to show the broad EPR signal at $g_{\text{eff}} = 8$. The maximum error of g_{eff} is $\pm 2\%$.
sequent to the measurements of the temperature dependence of the spectra. No significant variation in width, position, and intensity of the EPR signals could be observed, indicating reversibility of the temperature-induced change of the spectra.

Discussion

In the high spin ground state, \(S = 5/2 \), \(\text{Fe}^{3+} \) ions undergo no first order spin orbit interactions and \(g \) is expected to lie near the free electron value of 2. Since experimental data reveal \(g_{\text{eff}} \) values much higher than 2, the theory of large \(g \) values, based on the spin Hamiltonian (Brodbeck, 1980)

\[
\hat{H} = \beta S g B + D(S_z - S(S + 1)/3) + E(S_x - S_y)
\]

was used for the interpretation of the EPR spectra. \(\beta \) is the Bohr magneton, \(S \) the effective spin, \(g \) a second rank tensor with the eigenvalues \(g_x, g_y, g_z \), \(D = 3B \) is the axial and \(E \) (orthorhombic) the orthorhombic component which describes the splitting of the \(\text{Fe}^{3+} \) Kramers doublets in the crystal field. The orthorhombic character of the crystal field is expressed by the ratio \(E/D = \lambda \) where a completely rhombic field is achieved if \(E/D = \lambda = 0.33 \). \(E/D = 0 \) implies a crystal field of axial symmetry. A single EPR signal with \(g_x = g_y = g_z = 4.27 \) will be observed when \(\lambda = 0.33 \) and \(h\nu/D < 1 \) (\(h \) is the microwave energy).

Values for \(g_x, g_y, g_z \) as a function of \(\lambda \) were calculated by Gaite and Michoulier (1970). According to this calculation the \(g_{\text{eff}} \) values of 4.3 and 3.9 correspond to \(g_x \) and \(g_{\text{eff}} \), respectively, of a \(\text{Fe}^{3+} \) center with \(\lambda = 0.28 \). This means that the crystal field at the \(\text{Fe}^{3+} \) centers in cristobalite and tridymite is of strong orthorhombic character. The shift of \(g_{\text{eff}} = 4.3 \) and 3.9 towards higher and lower values, respectively, indicates a decrease of the orthorhombic character of the crystal field with increasing temperature.

Cristobalite

Grunin and Pavlova (1971) suggested that \(\text{Fe}^{3+} \) enters the cristobalite structure at interstitial sites. In contrast, microchemical studies on iron-bearing cristobalites from used silica refractory bricks suggested an incorporation of \(\text{Fe}^{3+} \) at the place of \(\text{Si}^{4+} \) if the \(\text{Fe}_2\text{O}_3 \) content of the silica phase is low (<0.05 wt.\%), but a tetrahedral and interstitial incorporation if the \(\text{Fe}_2\text{O}_3 \) content is high (>0.05 wt.\%). Charge balance was believed to be achieved by interstitial incorporation of alkali or alkaline-earth ions, and in the case of higher \(\text{Fe}_2\text{O}_3 \) content additionally by interstitial incorporation of \(\text{Fe}^{3+} \) (Schneider and Majdic, 1984). With respect to our samples, we believe that \(\text{Fe}^{3+} \) favorably enters the \(\text{Si}^{4+} \) positions. The low \(\text{Fe}^{3+} \) content incorporated into cristobalite supports this. Since the ionic radii of \(\text{Si}^{4+} \) (0.26 Å) and \(\text{Fe}^{3+} \) (0.49 Å) are very different, Shannon and Prewitt, 1969) differ considerably in size, \(\text{Fe}^{3+} \) substitution for \(\text{Si}^{4+} \) can be expected only if \(\text{Fe}^{3+} \) content is low. The structure refinement of low cristobalite (Dollase, 1965) yielded one silicon and one oxygen position corresponding to a regular \(\text{SiO}_4 \) tetrahedron. If the \(\text{Fe}^{3+} \) to \(\text{Si}^{4+} \) substitution produced a regular \(\text{FeO}_4 \) complex, the EPR spectrum should exhibit a signal at \(g_{\text{eff}} = 2 \). This was not observed, but a signal group near 4.3 appeared instead. Loveridge and Parke (1971) pointed out that an EPR signal can be expected at \(g_{\text{eff}} = 4.3 \) if the tetrahedral paramagnetic complex has a \(\text{Fe}^{3+} \) configuration with \(C_2 \) symmetry. Another possibility to build a complex with \(C_2 \) symmetry is to combine the tetrahedral iron-oxygen groups with adjacent \(\text{Na}^{+} \) ions occurring in structural voids to a charge-balanced complex \(\text{Fe}^{3+}\text{O}_4\text{Na}^{+} \) (Fig. 4). In order to satisfy the \(C_2 \) symmetry, the \(\text{Na}^{+} \) ions must lie on the \(C_2 \) axis of the complex. Such complexes are possible in cristobalite, since \(\text{Si}^{4+} \) lies on a twofold axis which precisely points to the center of a neighboring void. However, on the basis of our EPR data we cannot decide whether the signals arise from a complex of the type \(\text{Fe}^{3+}\text{O}_4\text{Na}^{+} \) or \(\text{Fe}^{3+}\text{O}_4\text{O}^{2-} \). The split EPR lines at \(g_{\text{eff}} = 4.33 \) and 4.3, and the structure of the EPR line at \(g_{\text{eff}} = 3.91 \) (Fig. 1) suggest that two structurally inequivalent \(\text{Fe}^{3+} \) centers occur in cristobalite. The occurrence of two inequivalent cation sites has also been discussed for \(\text{V}^{4+} \)-substituted cristobalites (Grunin, 1971). Dollase's space group of low cristobalite, \(P4_22_2 \), allows only one cation position. This discrepancy may be explained as follows: the \(\text{Fe}^{3+} \) incorporation causes a symmetry lowering from \(P4_22_2 \) to \(C222 \), which is a subgroup of \(P4_22_2 \) and actually contains two cation positions in accordance with the two observed \(\text{Fe}^{3+} \) centers. On the other hand the finding of two slightly different \(\text{Si}-\text{O} \) distances, and of four different tetrahedral angles in cristobalite (Dollase, 1965) may suggest that the true symmetry of low cristobalite is lower than that published by Dollase, due to a non-regular tetrahedral site, and hence, contains
more than one cation site. Again, from the EPR data it cannot be decided whether the two Fe3+ centers can be explained by symmetry lowering which is due to a local deformation of the oxygen tetrahedra caused by Fe3+ to Si4+ substitution, or if in pure low cristobalite the tetrahedra are distorted due to factors inherent in the structure itself. However, the EPR data raise the question of the true symmetry of cristobalite.

The temperature-induced merging of the EPR signals around \(g_{\text{eff}} = 4.3 \) to one single peak above room temperature indicates that the two Fe3+ centers become structurally indiscernible with the increase of temperature. The low merging temperature shows that the difference between the two physically inequivalent Fe3+ centers is rather small. This means that the two cation sites differ only slightly with respect to their structural environment and that the crystal field at the two Fe3+ sites must be very similar.

Tridymite

The similarity of the EPR spectra of tridymite and cristobalite implies that the incorporation mode is comparable in the two phases. This is reasonable because of the close structural relationships between cristobalite and tridymite. The poor resolution of the tridymite EPR signals is explained by its distorted low-temperature structure (Kato and Nukui, 1976; Konnert and Appleman, 1978): Si\textsubscript{3}O\textsubscript{4} groups of tridymite having their trigonal axis parallel to \(c \) display a strong expansion-induced distortion along \(c \), which is caused by the unfavorable cis-configuration of oxygen atoms (see Schneider et al., 1979, fig. 6).

On the other hand, all Si\textsubscript{3}O\textsubscript{4} groups in cristobalite are in the stable trans-configuration. A possible conclusion is that a number of slightly different Fe3+ centers occurring in tridymite give rise to a couple of EPR signals, which lie so closely together that they cannot be resolved.

Glass sample

The shape of the EPR signal at \(g_{\text{eff}} = 4.2 \) of the glass sample is similar to the shape of the corresponding signals in cristobalite and tridymite. Therefore, a similar short-range order of the SiO\textsubscript{4} tetrahedra in glass as well as in cristobalite and tridymite can be assumed. A tridymite-like short-range order of silica glass has also been inferred from infrared spectroscopic studies (Lippincott et al., 1958; Hanna, 1965). The EPR signal at \(g_{\text{eff}} = 2 \) which only appears in the spectrum of the glass sample but not in those of cristobalite and tridymite shows a line shape which corresponds to a paramagnetic center with axial symmetry (Meads and Malden, 1974). Such signals are found in non-crystalline silicates and are attributed to oxygen-associated hole centers (Friebeck et al., 1976). Thus, the absence of the EPR signal at \(g_{\text{eff}} = 2 \) in the cristobalite and tridymite spectra may be taken as a criterion that the investigated samples were glass-free. The broad EPR signal at \(g_{\text{eff}} = 8 \) is explained by hematite submicroscopically dispersed in the glass sample.

Acknowledgments

The authors are grateful to Dr. D. E. Appleman for critical reading of the manuscript and valuable comments.

References

Brodbeck, C. M. (1980) Investigations of \(g \)-values correlations associated with the \(g = 4.3 \) ESR signal of Fe3+ in glass. Journal of Non-Crystalline Solids, 40, 305-313.

Manuscript received, February 6, 1985; accepted for publication, August 31, 1985.