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Abstract

Data for 66 refined crystal structures of micas were used to obtain several functions
representing the octahedral sheet that served as variables in a statistical analysis: metal-anion
bond lengths, two ratios of anion—anion octahedral edges, 'MEFIR (mean fictive ionic
radius), octahedral angle i, and counter-rotation of top and bottom anion triads.

All octahedra are flattened, those around larger cations usually more than those around
smaller ones. Flattening dominates over counter-rotation in octahedra with large cations and
vice versa, as required by the sheet’s uniform thickness. Mean counter-rotation in a sheet
increases as cation-anion bond lengths are less uniform, suggesting that it results from
interactions in the whole sheet. Consequently, both counter-rotation and octahedral angle ¥
for individual octahedra can be predicted by regression equations from cation-anion bond
lengths or 'MEFIR for all octahedra in the 1M subcell. Thus the octahedral geometry can be
checked or predicted from chemistry and an anticipated cation ordering.

Multiple linear regressions yielded a set of cation-anion bond lengths and effective ionic

radii for octahedral cations and the vacancy.

Introduction

Since the late twenties and early thirties, when the essen-
tial features of the crystal structure of micas were de-
scribed, the micas continued to receive considerable atten-
tion. As the technique of crystal structure analysis im-
proved and as more structures were determined and re-
fined, it became clear that the arrangement of coordination
polyhedra is less regular than first thought and that the
coordination polyhedra themselves are not ideal. The
number of refinements now available provides a sound
basis for a synthesis that should give us a better idea about
how and why the coordination polyhedra get distorted and
how and why they rotate and tilt. Apart from its intrinsic
value, such information might be useful to researchers con-
templating structural investigations of micas or other layer
silicates by permitting them to define their objectives more
deliberately or to predict the results more accurately.

We excerpted data from 66 structure refinements pub-
lished between 1960 and 1984. The set includes 46 triocta-
hedral and twenty dioctahedral micas of which 51 are na-
tural and fifteen synthetic. Fifty-four structures were re-
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fined from X-ray diffraction data, nine from electron and
three from neutron diffraction experiments. Most micas
belong to the 1M polytype (space group C2/m : 37 micas,
space group C2 : four micas), seventeen are 2M ,, four 2M,,
and four 3T polytypes. The R factors have a mean at 7.4%,
standard deviation of 3.7%, and range from 2.0% to
17.0%. A list of important data for the micas included
appears in Table 1.

Treatment of data

Atomic coordinates taken from the original papers were trans-
formed from fractional to absolute and to orthogonal (where non-
orthogonal), with the vertical axis parallel to ¢*. This included all
atoms needed for the construction of complete polyhedra around
M1, M2, and M3 cations. (Octahedra with M1 have OH, F, ClI
atoms in a trans, M2 and M3 in a cis arrangement; separate
positions M2 and M3 exist in structures without a plane of sym-
metry, but merge to M2 in others.) Centers of vacancies were
defined as lying at one-sixth of the sums of, respectively, the x, y, z
coordinates of the six surrounding anions.

There are five functions to which we reduced the geometry of
the octahedral sheet: (1) The metal-anion bond lengths d(M-A),,,
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Table 1. List of mica structures

No. Designation Polytype R Type Method Material Reference

1 Dioctahedral mica 1M 10,9 he-di * E ** M *x% Sidorenko et al. (1975)

2 Dioctahedral Al-mica 1M 16.0 me-di E M Soboleva and Zvyagin (1968)

3 Muscovite 1M 7.0 me-di E M Tﬁipurskii and Drits (1977)

4 Muscovite 2My 3.5 me-dl X M Guven (1971)

5 Muscovite 2M7 17.0 me-di X M Radoslovich (1960)

6 Muscovite 2My 12.0 me-di M Birle and Tettenhorst {1968)

? Muscovite 2My 5.0 me-di E M Tsipurskil and Drits (1977)

8 Muscovite 2My 2.7 me-di N M Rothbauer (1971)

9 Muscovite 2My 9.9 me-di M Richardson and Richardson (1982)
10 Dloctahedral mica 2My 11.7 me-dil E M Zhoukhlistov et al. (1973)
11 Muscovite 3T 6.4 hne-di X M Given and Burnham (1967)

12 Phengite 2Mp 4.5 me-di X M Gliven (1971)

13 Fe-celadonite 1M 10.8 me-di E M Zhukhlistov et al. {(1977)

14 Paragonite 1M 12.1 me-di E ] Soboleva et al. {(1977)

15 Paragonite 2Mq il 1l me-di E M Sidorenko et al. (1977)

16 Paragonite 3T 13.0 he-d1 E M Sidorenko et al. (1977)

17 Margarite 2Mq 16.8 me-di X M Takéuchi (1965)

18 Margarite 2My P S me-di X M Guggenheim and Bailey (1975)

19 F-polylithionite iM 5.1 me-trl X s Takeda and Burnham (1969)

20 Lepidolite 1M 6.7 me-tri X M Sartori (1976)

21 Lepidolite 1M 3.5 me-tri X M Guggenheim (1981)

22 Lepidolite 1M 6.2 me-tri X M Guggenhelm (1981)

23 Lepidolite M a3 he-tri X M Backhaus (1983)

2L Lepidolite 2M1 1953 me-tri X M Sartori (1977)

25 Lepidolite 2Mq 9.0 me-tril X M Swanson and Balley (1981)

26 Lepidolite 2M5 7.2 me=-tri X M Takeda et al. (1971)

27 Lepidolite 2M, 10.6 me-tri X M Sartori et al. (1973)

28 Lepidolite 2M5 4.8 me-tri X M Guggenheim (1981)

29 Lepidolite 3T L.7 he-tri X M Brown (1978)

30 Protolithionite BT 3.8 he-tri X M Pavlishin et al. (1981)

31 Zinnwaldite 1M 5.7 he-tri X M Guggenheim and Bailey (1977)

32 Phlogopite 1M 4.1  ho-tri X M Hazen and Burnham (1973)

33 Phlogoplite 1M 13.1 ho-tri X M Steinfink (1962)

34 Pnlogopite 1M 5.0 ho-tri N M Rayner (1974)

35 Phlogopite 1M 2.0 ho-tri N M Joswlg (1972)

36 Mg-mica M 2.9 ho-tri X s Toraya et al. (1978)

37 Tetraferriphlogoplte 1M k.2 ho-tri X M Semenova et al. (1977)

38 F-phlogopite 1M 6.1 ho-tri X S McCauley et al. (1973)

39 Li,F-phlogopite 1M 7.3 ho-tri X s Takeda and Donnay (1966)

Lo Mn, Ba-phlogopite 1M 8.1 ho-tri X M Kato et al. (1979)

L1 Mn, Ba-phlogoplte 1M 10.6  ho-tri X M Kato et al. (1979)

L2 Mn, Ba-phlogopite 1M 6.0 ho-tri X ‘M Kato et al. (1979}

43 Kinoshitalite 1M 7.8  ho-tri X M Kato et al. (1979)

Ly F-mica 1M 3.8 ho-tri X 5 Toraya et al. (1976)

45 Trioctahedral mica 1M 3.0 ho-tri X M Hazen et al. (1981)

46 Biotite 1M 4.4 me-tri X M Takeda and Ross (1975)

47 Biotite 2My 5.6 me-tri X M Takeda and Ross (1975)

48 Mn-bilotite 1M 12.1 ho-tri X M Kato et al. (1979)

4o Oxyblotite M 4.4 me-tri X M Ohta et al. (1982)

50 Oxybiotite ZMl 3.9 me-tri X M Ohta et al. (1982)

51 Annite 1M L.4  me-tri X M Hazen and Burnham (1973}

52 Trioctahedral Fe-mica 1M 9.3 ho-tri X s Donnay et al. (1964)

53 Taeniolite 1M 2.4  me-tri X s Toraya et al. (1977)

54 Mg-mica M 9.2 me-tri X S Tateyama et al. (1974)

55 Ge-mica 1M 3.8 me-tri X S Toraya et al. (1978)

56 Ge-mlca 1M 5.5 me-tri X S Toraya et al. (1978)

57 Ge-mica 1M 3.7 ho-tri X 8 Toraya et al. (1978)

58 Xanthophyllite 1M 10.8 me-tri X M Takéuchi (1965)

59 Bitylte 2My 11.5 me-tri X M Sokolova et al. (1979)

60 Ephesite 1M 11.5 me-tril X M Sokolova et al. (1979)

61 Ba-mica M 7l ho-tri X ) McCauley and Newnham (1973)

62 Hendricksite M 7.2  ho-tri I M Robert and Gasperin (1984)

63 Chernykhite 2Mq 12.0 me-di X M Rozhdestvenskaya and
Frank-Kamenetskii (1974)

64 Mn, P-mica 1M 4,3 ho-tri X S Toraya et al. (1983)

65 Ge-mica 1M 4,2 me-tri X S Toraya and Marumo (1983)

66 Paragonite 2My 4,5 me-di X M Lin and Bailey (1984)

# d1 = dioctahedral, tri= trioctahedral, ho= homooctahedral, me = mesooctahedral, he = heterococtahedral
*% X = X-ray diffraction, E=electron diffraction, N=neutron diffraction

*%% M=mineral, S=synthetic

Except for 'Type', all information is taken over from the original papers.
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given in the original papers were checked and supplemented with
those for vacancy-anion in structures containing vacant sites. 2
The lengths of anion-anion edges, checked and corrected, were
used to compute ratios R, = mean unshared edge/mean shared
edge (Toraya, 1981) and R, = mean of longer shared edges/mean of
shorter shared edges. (3) The *MEFIR, mean fictive ionic radius of
Hoppe (1979) was calculated for each cation from fictive ionic radii
(FIR), which are defined as bond lengths divided in proportion to
the radii of cation (r,y) and anion (r,):

FIR; = dM — Adgrsj TulTy + Ly
The 'MEFIR,,, is a weighted mean of FIR;:

=6 j=6
'MEFIR,,, = Y wj-FIR,/ Yw
i=1 i=1
where w; = exp[IFIR;/FIR,,,)°], FIR,,,, being the smallest F IR;
in an octahedron. Hoppe’s (1979) formula is a sum from one to
infinity, but we limited the summation to the six nearest neighbors
because the second coordination sphere did not affect the values
obtained. (4) The octahedral angle y and (5) the counter-rotation
6 are defined and illustrated in Figure 1 (note that é is not identi-
cal with @ of Appelo, 1978). The thickness of the octahedral sheet
foe» Which is used to compute y, is the difference between mean
vertical coordinates for, respectively, the top and bottom anion
triads in an octahedron. These data appear in Table 2.

Among the above functions, R, and R, are easier to calculate
than  and . Fortunately, there is an excellent relation between
and R, permitting an easy conversion (y = 37.96 R, + 16.95, cor-
relation coefficient r = 0.999, number of data n = 198). Practically
the same holds for 6 and R, (Fig. 2), where two relations appear,
one for larger and one for smaller cations (there is one larger
cation per two smaller in muscovite-type structures, the inverse
holds for xanthophyllite-type). Data for homooctahedral micas,
which are a trivial case common to both series, cluster near the
origin, but yield a good regression relation. The & values required
can be obtained from R, by means of appropriate equations in
Figure 2. For the sake of lucidity we preferred ¥ and & throughout
this paper.

Muttiple linear regressions of bond lengths and MEFIR are
based on equations of the type

dM — O),,, =3 dM — O);- X,

where the atomic fractions X; ¢ < 00; 1.0> and Y X, =10

i
Bond lengths metal-oxygen d(M-O); or 'MEFIR, obtained by
regression will be referred to as partial, to differentiate them from
experimenial ones for octahedra occupied by one cation only. This

ic¥ view down c*

Toct

y=arc cos(toct/2dM-Algps)

—GOI

Fig. 1. Octahedral angle y and counter-rotation & represent
distortions of the octahedral sheet. Angles ¢; are measured in pro-
jection onto the ab plane, z_i(M-A)‘,,,, is the mean cation—anion
bond length in an octahedron.

is because these quantities are equal to partial derivatives of
d(M-0),,, with respect to atomic fractions X, Correlation coef-
ficients were computed as

l.Z =10- Z (yi - ycllc)z/z (YI - y)z'
i i

Several computer programs were written and used to perform
these and other calculations.

Results

Regression analysis of bond lengths and MEFIR

These results are in fact by-products. In order to be able
to calculate 'MEFIR,,, for individual octahedra, we
needed a radius of the vacancy. The most straightforward
way was to subtract 1.26A (crystal radius of oxygen in
coordination VI, Shannon, 1976) from the partial vacancy-
oxygen “bond length” obtained by multiple linear regres-
sion of bond lengths, d(M-0),,. The resulting radius of
0.97A was combined with the crystal radii of Shannon
(1976) to yield FIR; and 'MEFIR,,, reflecting proportions
of cations on individual sites. The 'MEFIR,,, thus ob-
tained, in turn, were subjected to multiple linear regression
yielding a set of partial 'MEFIR,.

Our partial bond lengths (Table 3) compare fairly well to
bond lengths of Drits (1975) based on various layer silicates
(correlation coefficient 0.91). There is also a good agree-
ment between partial 'MEFIR; and the crystal radii of
Shannon (1976) (correlation coefficient 0.95, Na*, Ca2*,
V3* and V** not included).

A few points merit mentioning. First, the partial “bond
length” for vacancy-oxygen and the partial 'MEFIR,; for
vacancy calculate with small errors. True, the vacancy is
among the most frequent “cations”, which increases the
precision; but the main cause must be the tendency of the
octahedral sheet to impose a constant size on vacant sites.
By the same token, the presently obtained 0.96A applies to
the octahedral sheet of micas, but not necessarily even to
the same coordination in different structures (Barry and
Roy, 1967). Second, Table 3 has entries for Na*, Ca?™,
Zn**, V3* and V**, which were reported in only a few
octahedra. The partial 'MEFIR, for Na* and Ca?*, al-
though exhibiting the biggest difference from Shannon’s
radii, is the largest of all and cannot be confused; thus the
presence of Na* and Ca’* in octahedral sheets must be
real. Third, the bond lengths are a product of crystal struc-
ture refinements only, but the 'MEFIR,, are calculated
from bond lengths and input radii. As a check of consist-
ency, we calculated apparent ionic radii of oxygen by sub-
tracting partial *MEFIR; from the corresponding partial
dM-0),. A weighted mean with weights proportional to
the reciprocals of estimated variances equals 1.25A, which
is acceptably close to the 1.26A (Shannon, 1976) used at the
outset. Consequently, the 'MEFIR,,, and the partial
'MEFIR, are directly comparable to ionic radii.

Distortions of octahedra

The relationships obtained in the present review did not
warrant a separate treatment of dioctahedral and triocta-
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Table 2. Data for individual octahedra

No. d(M-A)gps & ) IMEFIRobS d(a-A)gpg Ry Ry toor® No. d(M-A)gps ¢ 5 IMEFIRobs d(a-8) s Ry Ry  toop®
1Ml 2,220 61.6 1.4h 0.968 3.130 1.175 1.020 2.11k4 33 M1 2.101 58.1 0.00 0.856 2.969 1,086 1.000 2.219
M2 1.921 56.6 13.18 0.673 2.718 1.044 1.154 M2 2.105 58.2 0.16 0.857 2,975 1.087 1.002
M3 1,958 57.3 14.57 0.700 2.770 1.061 1.177 34 M1 2,077 59.2 0.00 0.845 2.932 1.113 1.000 2.127
2 ML 2.153 59.4 0.00 0.938 3.0h2 1.117 1.000 2.192 M2 2.064 59.0 0.54 0.840 2.915 1.107 1.007
M2 1.993 56,6 7.80 0.693 2.819 1.085 1.089 35 M1 2.066 59.2 0.00 0.838 2.919 1.113 1.000 2.117
Ml 2.262 61.5 0.00 0.988 3,189 1.174 1.000 2.158 M2 2.063 39.1 0.18 0.837 2,913 1.111 1.003
M2 1.947 56.3 15.67 0.700 2.757 1.037 1.183 36 M1 2.062 358.8 0.00 0.845 2.913 1.103 1.000 2.138
M1 2.24% &2.1 0.00 0.979 5.184 1.188 1.000 2.104 M2 2.063 58.8 0.04 0.84% 2.91% 1.103 1.001
M2 1.932 57.0 15.45 0.683 2.736 1.054 1.186 3 M1 2.085 59.0 0.00 0.846 2.945 1,100 1.000 2.147
5 ML 2.204 61.2 0,00 0.950 3.108 1.165 1.000 2.121 M2 2.085 359.0 0.02 0.847 2.945 1.109 1.001
Mz 1.955 57.1 12.13 0.689 2.767 1.056 1.143 38 M1 2.062 59.0 0.00 0,846 2,912 1.108 1.000 2.1l24
6 M1 2.258 2.3 0.00 0.986 5.180 1.195 1.000 2.097 M2z 2.065 59.0 0.12 0.847 2.916 1.109 1,002
M2 1.925 57.0 16.63 0.679 2.725 1,052 1,201 39 M1 2.061 59.3 0.00 0.847 2.911 1.117 1.000 2.102
7 Ml 2.247 62.2 0.00 0.981 3.166 1.193 1.000 2.094 Mz 2.060 39.3 0.07 0.846 2.500 1.116 1.001
Mz 1.927 57.1 15.86 0.682 2.728 1.055 1.192 4o Ml 2.122 57.9 0.00 0.853 3.000 1.080 1.000 2.255
8 M1 2.241 62,2 0.00 0.978 3.159 1.193 1,000 2.089 M2 2.113 57.8 0.4 0.849 2.987 1,076 1.005
M2 1.930 57.2 15.35 0.680 2.732 1.059 1.187 41 M1 2.101 58.4 0,00 0.845 2.968 1.092 1.000 2.203
9 ML 2.253 61.9 0.00 0.983 3.176 1.184 1.000 2.124 Mz 2.090 38.2 0.43 0.841 2.955 1.087 1.005
M2 1.940 56.8 15.40 0.686 2.747 1.050 1,185 4z M1 2.087 58.8 0.00 0.829 2.967 1.102 1.000 2.163
10 M1 2.195 60.9 0.00 0.956 3.096 1.158 1.000 2.13% M2 2.079 58.7 0.34 0.827 2.936 1.099 1.004
Mz 1.956 56.9 11.80 0.689 2.767 1.052 1.138 43 M1 2.095 58.6 0.00 0.837 2.961 1.097 1.000 2.185
11 ML 2.231 61.7 2.35. 0.968 3.147 1.178 1.03% 2.113 M2 2.087 $8.4 0.40 0.833 2,549 1.093 1.005
Mz 1.613 56.5 13.06 0.671 2.707 1.0b0 1.151 Ly M1 2.062 58.0 0.00 0.855 2.915 1.082 1.000 2.187
My 1971 5.6 15.35 0.703 2.793 1.068 1.189 Mz 2.064 38.0 0.06 0.856 2.917 1.083 1.000
12 Ml 2.223 é1.4 0.00 0.970 3.13% 1.171 1.000 2.127
M 195 57.1 12,92 0.717  2.768 1.056 1155 uswo2.0r7 -8 000 08B 293 1) oo
13 M1 2.141 58.3 0.00 0.935 3.025 1.090 1.000 2.249 46 M1 2.086 359.2 0.00 0.815 2.0h6 1.112 1.000 2.139
M2 2.5 56,6 4,60 0.757 2.888 1.046 1.052 M2 2.068 58.9 0.76 0.807 2.921 1.104 1.009
WMl 2,091 39.9 0.00 0.913 2,952 1.130 1.000 2.100 = N
Mz 1,970 5.8 5.78 0.698  2.784 1.076 1.069 w205 g5 g LS 2800 1B 10 T
15 M1 2.160 60.5 0.00 0.941 3,049 1.148 1.000 2.125 48 W1 2.120 57.5 0.00 0.810 5.004 1.072 1.000 2.278
M2 1950 7.0 10.27 0:690 2,758 1.osh 1121 . Mz 2.130 57.7 0.16 0.813 3,010 1.073 1.002
16 M1 2.061 59.7 0.67 0.851 2,909 1,128 1.008 2.07 = ' : “o6a, .15
B OEE O Cf N 158 LS MR AW wmonem ge s so 2ey 1 e
M3 1.981 s8.4  L.b1 0.732 2.799 1.092 1.055 S0 ML 2.076 59,k 0.00 ©.801 2.93% 1.119 1.000 2,114
17 M1 2.203 61.9 3.00 0.260 3,105 1.18% 1.002 2.076 M2 2.060 39.1 0.74% 0,764 2.507 1,111 1.009
Mz 1.912 57.1 14.51 0.670 2.707 1.057 1.17
18 M1 2.193 1.8 0.k3 0.956 3,091 1.181 1.006 z2.074 Ot g% gig% gg:g g:gg g:ggi g:ggg %:ggg i:ggg 2,208
M2 1.902 57.0 14.19 0.5686 2,690 1.052 1.169 2 510F 2903 0.0s 0.790 2o 1537 1lo00 2.153
19 M 2.106 0.2 0.00 0.851 2.972 1.138 1.000 2.096 Mz 2.107 59.3 0.03 0.790 2,972 1.116 1.000
M2 1.981 58.1 5.86 0.761 2.799 1.083 1.071
20 K1 2.113 60.8 0.00 0.882 2,981 1.155 1.000 2.060 2 N1 g'ggg g;'g g:gg g g% 2.323 %:g;g e 2.193
M2 1.972 58.5 6.56 0.747 2.786 1.095 1.082 54 M1 2.083 38.0 0.00 0.851 2.943 1.084 1.000 2.206
21 M1 2.118 60.9 g-gg O-BEZ 2-932 1-152 1-030 2.057 M2 2,094 358.2 0.50 0.859 2,959 1.088 1.006
Mz 1.970 58,5 6.88 0.7 2,784 1.096 1.087
22 M1 2.119 60.% 10.09 0.874 21991 1,143 1.1b2 2.093 35 g-ggg ?3'% g'gg g'ggz Sggg %ﬁg 1'8gg 2.13
Mz 1.878 56.2  0.27 0.685 2.657 1.036 1.003 56 M1 2.179 40.1 0.00 0.919 3.07F 1.137 1.000 2.171
23 ML 2,098 60.5  6.00 0.865 2.961 1.147 1.082 2.066 M2 2.070 58.4 4.79 0.852 2.925 1.002 1.059
Mz 1.913 57.3  1.97 0.671 2.704 1.065 1.023
M3 2.058 59.9 7.98 0.840 2.906 1.129 1.108 7 " 2'873 gg g g-gg g'gﬁg’ g'g?jg %itg o 2.064
24 Ml 2.121 60.9 0.00 0.89% 2.992 1156 1.000 2,062 .o 12 2008 B8 ER ondh 2322 I'tea 1l008 2.150
Mi ; 2 zg 6 668 g'ggz 2:792 1098 1'°2g . M2 2.072 $8.7 1.42 0.838 2,906 1.098 1.017
25 M1 2.107 60.7 0.00 O. 2,972 1.153 1.000 2.062
Mz 1.977 58.6 6.00 0.759 2.793 1.096 1.075 B i'égg ‘;(13-; lg%g g‘ggg g'ggg i'%gé Joes 2.067
26 » i.u{:n 6%‘2 009 Gears 2o i‘%gﬁ Tl 2.077  go w1 2.130 61.3 0.05 0.898 3.00% 1.166 1.001 2.047
§ 90 20'8 ¢ 'ZB -7 £ 45 . M2 1.920 57.8 9.98 0.674 2.725 1.076 1.120
27 M1 2.123 60.8 0.00 0.887 2,996 1.154 1.000 2.07
M2 1.080 58.4 6.66 0.750 2.798 1.032 1.083 e 23'2 8'28 3'3?5’ 3'3?3 i%gg To 2:156
28 M1 2.121 61.1 0.00 0.893 2.992 1.162 1.000 2.053 o, ne 3 00% 222 020 (lal; 2:352 1'e32 11000 2.188
H 1'96: 58'2 ;'22 °'7ZZ 2780] 1.096 A.00L . M2 2.088 58.4 0.20 0.842 2.952 1.092 1.000
29 M1 2,036 59. .20 0.7 2.868 1.117 1,110 2,060 . = !
MZ 1.920 57.6 4.10 0.677 2,716 1.068 1.046 63 Ml 2.24k Eg‘é J:88 Sugey 2206 L0 3,800 20
M3 2.113 60.8 4.40 0.882 2,980 1,153 1,061 o Y2 2,814 amb o'g o'Ei& 2'022 T'eas. 1'Dog Buine
30 M1 2.120 60.4 9.90 0.839 2,094 1.155 1.139 2,092 4 0 2. DYL 3. QDR Bt 2920 032 D000 mae
M2 1.908 56.8 1.0 0.671 2.699 1.051 1.018 Mz 2.071 5B, 9: -85 <920 1. -
M3 2.149 60.9 B.50 0.850 3.032 1.156 1.121 65 M1 2.103 59.6 0.00 o.gég 2,969 1‘123 1,{:02 2.130
1 Ml 2.132 60.8 10.10 0.851 L01h 1,156 1.145 2.0 Mz 2,091 59.5  0.50 0.85 2,953 1.118 1.00
2 M2 1.332 56,5 0.06 0.623 3.556 1.031+ 1,00 7 66 M1 2.221 62,1 0,00 0.969 3.130 1‘193 1,000 2,077
M3 2.131 60.8 10.10 0.849 3.012 1.155 1.146 Mz 1,908 57.0 15.70 0.670 2,701 1.054 1.190
32 M1 2.063 59.0 0.00 0.843 2.914 1.108 1,000 2.126
M2 2.06k 35.0 0.05 0.843 2,916 1.109 1.001

*

octahedral thlckness

hedral micas, so this traditional division was abandoned in
favor of a more expedient one based on the symmetry of
occupancy of individual octahedral sites: in homooctahe-
dral micas crystallochemical entities (cations) in all three
octahedra are identical; two are identical and one different
in mesooctahedral; and all are different in hetero-
octahedral*. We considered two octahedra as identical if

! These terms are introduced for purposes of this paper and are
not meant for general use unless approved by the LM.A.

the cations inside them are chemically identical (or, if the
chemical identity is not stated explicitly, if they have the
same scattering power) and if their mean metal-anion bond
lengths differ by <1 esd given by the authors of the struc-
ture refinement. Our set contains 7 heterooctahedral, 39
mesooctahedral, and 20 homooctahedral micas.

As a reconnaissance, we examined the relations between
¥, 6, and *MEFIR,,. A plot of ¥ vs. 'MEFIR,,, (Fig. 3) is
quite interesting. First, not a single octahedron is ideal, the
closest to ideality being flattened by about 13° (all occupied
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Fig. 2. Relations between ratio R, (mean of longer shared edges/
mean of shorter shared edges) and counter-rotation &, permitting
an estimation of  from R,. For more clarity, homooctahedral
micas are not plotted; however, the corresponding regression
equation is included.

with Al). There is no self-apparent reason why octahedra
combined in a sheet should be geometrically ideal, but it is
interesting to note that a regression line through all data
points reaches the ideal geometry for 'MEFIR,,, ~ 0.52A.
Second, the plot suffers from more scatter than one would
expect from such precise data. It does not diminish if just
structures with a small R factor are plotted or if we plot
only data for octahedra lying on a plane of symmetry
(6 = 0°, all open and most solid circles in Fig. 3). Hence the

scatter is not a matter of the precision of refinement nor is
it associated with the magnitude of counter-rotation o.
Third, and most interesting, there is an overall tendency for
larger cations to occupy more flattened octahedra. In fact,
there might be one relationship for cis octahedra and an-
other, moderately different, for trans (see regression lines in
Fig. 3).

The last point is at variance with the conclusion of
Hazen and Wones (1972, Fig. 7) based on micas with octa-
hedral sheets fully occupied with Fe?*, Co2?*, Cu?*,
Mg?*, and Ni**, respectively. Hazen and Wones (1972)
used the formula derived by Donnay et al. (1964)

b
3./3dM — Ay’

obviously unsuitable for micas with different cations in dif-
ferent octahedra whose contributions to the b parameter
tend to cancel each other. Although more general, our for-
mula (used e.g. by Guggenheim and Bailey, 1977) must give
practically the same results as that of Hazen and Wones for
their micas. This is seen on homooctahedral micas in
Figure 3, which outline a poorly correlated trend similar to
that of Hazen and Wones (1972). The only safe conclusion
that can be drawn from Figure 3 is that the octahedral
angle ¥ is not a simple function of the size of the cation
inside an octahedron (see also Lin and Guggenheim, 1983).

A plot of counter-rotation & vs. 'MEFIR_,, indicates no
meaningful relationship at all. There is very little improve-
ment even if octahedra with 6 = 0° (lying on a plane of
symmetry) are left out. More strikingly than ¢, 6 of an
octahedron is in no simple relation to the size of its oc-
cupant.

Both distortion functions could still be related to each

sin § =

Table 3. Partial bond lengths and partial ‘MEFIR for octahedral cations in micas, and distribution of cations between larger and

smaller octahedra

d(M—O)i d(M-0) 1MEFIR1 Crystal radi Mean composition of
w ¥ present Drits present Shannon catlongiiin gerahedra) 2

work (1975) work (1976) larger smaller
a13+ 105 1.914(4) 8 1.922 8 0.671(2) & 0.675% 0.033 0.627
Felt 56 2.113(11) 2.120 0.792(4) 0.75 %%x 0.066 0,044
rg2t 123 2.085(4) 2.075 0.847(2) 0.86 0.190 0.159
1] 55 2.116(8) 2.160 0.885(3) 0.90 0.266 0.080
Mn2* 38 2.194(24) 0.843(9) 0.81 0.008 0.002
FeX* 46 2.057(27) 1.990 0.724(11) 0.69 *xx 0.013 0.036
Ti4t 29 2.271(68) 0.715(27) 0.745 0.005 0.014
Nat , calt 7 2,424 (243) 0.916(95) 1.16, 1.14 0.002 0.000
zn?* 3 2.033(89) 0.874(35) 0.88 0.000 0.000
v g 2 2.025(24) 0.772(9) 0.78 , 0.72 0.000 0.019
vacancy 79 2,233(6) 0.963(2) 0.417 0.019
n 396 198 53 85
r 0.924 0.993

* number of octahedra containing the cation

** ordered structures only (homooctahedral micas not included)

*¥% Jow spin
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Fig. 3. Relation between 'MEFIR,,, (cation radius) and octa-
hedral angle . Angle ¥ for a geometrically ideal octahedron
would be realized for MEFIR,,, ~0.524.

other. To test if they are, we transformed ¥ and d values to
dimensionless and mutually comparable ¥, and J,, by sub-
tracting the respective means and dividing by correspond-
ing standard deviations. When plotted against 'MEFIR,,

T T u T
OCTOhequI occupancy
ml | trans cis ¥
o o homo- .. A N
. [ ] meso- & hetero- '3 O ° ¢

Per - Btr

y=

=ax + b
s yu b r n T
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[eX°)

I
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x = MEFIRgps . A
Fig. 4. The difference between transformed octahedral angle
and counter-rotation §,, plotted as a function of 'MEFIR .

Fig. 5. Differences of y in a sheet, that is |¥(M1) — y(M2)],
W(M2) — y(M3)|, [¢(M3) — y(M1)|, plotted against correspond-
ing differences of &. Inasmuch as both variables are a function of a
common cause rather than of one another, no lines were fitted
through the data points. A total of 198 points is shown, 59 of
which plot at the origin.

the sum W, + J,, shows no functional dependence. The
points concentrate about ¥, + &, = 0 and spread parallel
to the 'MEFIR_,, axis. Even though there is considerable
scatter, the pattern is that corresponding to a case where
¥,, and &, in an octahedron compensate each other. There-
fore, we plotted y,, — &, vs. '"MEFIR,,, (Fig. 4). The result
is a fairly tight positively sloping linear relation. Inasmuch
as positive values of y,, and &, correspond to larger-than-
average octahedral angles (flatter octahedra) or counter-
rotations, respectively, positive ¥, — 6,, represents octa-
hedra with more flattening than counter-rotation, while
negative ¥, — &, marks more upright octahedra with con-
siderable counter-rotation. Puzzling at first sight, the result
is a predictable consequence of the octahedral sheet’s uni-
form thickness.

An important hint comes from the plot of Ad vs. Ay
(Fig. 5). Despite some recalcitrant points belonging to he-
terooctahedral micas, the plot shows an impressive corre-
lation between the differences of § and ¥ in the octahedral
sheet. It supports the conclusion anticipated when inter-
preting relations between ¥, 4, and 'MEFIR,,,: both dis-
tortions in a particular octahedron are due to interaction
in the whole sheet rather than the octahedron alone (analo-
gous conclusions were drawn from 26 refinements by Lin
and Guggenheim, 1983, who approached the problem from
a different angle). Consequently, to unravel the causes of
distortions, variables representing the whole sheet have to
be employed.

One such variable is a measure of scatter (we opted for
the esd divided by the mean), the mean is another. In Fig-
ures 6 and 7 the abscissae represent the scatter of bond
lengths d(M-A),,, and the scatter of 'MEFIR,,, in individ-
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Fig. 6. Measure of scatter of y angle in a sheet, esd()/y, plot-
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IMEFIR_,, (b).

ual octahedral sheets. Along the ordinate is plotted the
scatter of y (Fig. 6) and d (Fig. 7). Inasmuch as uniformity
of bond lengths or '"MEFIR,,, (no scatter) signifies a § =
0°, Figure 7 yields a nonzero & if there is scatter; 8, in turn,
is easily converted to ¢ for individual octahedra in ho-
mooctahedral and mesooctahedral micas. However, uni-
formity of bond lengths or "MEFIR,,, does not spell an
unequivocal § and therefore the plot in Figure 6 is as far as
we can go without introducing another variable.

Several valuable general conclusions can be drawn from
Figures 6 and 7. First, the correlations including scatter of
d(M-A),,, are considerably better behaved than those in-
cluding scatter of 'MEFIR,,_. This has to do with the fact
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that "MEFIR,, a mere scalar, implies a spherical entity,
while the bond lengths allow for the more realistic aniso-
tropism. Second, Figure 7a indicates that once there is an
ordering among the octahedral cations, bond lengths are
its direct consequence and they, in turn, determine the
counter-rotation 6. A different form of the same was ob-
served by Lin and Guggenheim (1983) who correlated
counter-rotation « (Appelo, 1978) with the ratio
E(MI-A)/E(M2-A). Finally, the fact that correlations be-
tween pairs of independent variables as good as those in
Figures 6a and 7a can be obtained signifies that the octa-
hedral sheet cannot be under much stress from both the
interlayer and the tetrahedral sheet. In other words, the
octahedral sheet must be the most rigid element in the
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Fig. 7. Mean counter-rotation 3 in a sheet plotted against the
measure of scatter (esd/mean) of bond lengths d(M-A),,, (a) and
'MEFIR,, (b).
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Table 4. Constants in regression equations for predicting octahedral angle i from mean bond lengths d(M-A),,,and *MEFIR,,,.*

Heterooctahedral (7) **

Mesooctahedral (39)

Micas (n)
Homooctahedral (20) #%

Regression based on
Equation for

Regression based on

Regression based on

lMEFIRobS d(M-8) jpe IMEFIRobS E(M_A)obs IMEFIRobS d(M-4) g
8y 4.8 8.1 8.6 8.3 -2.7 -15.8
as -35.7 -11.8 -10.2 -11.9 i it
&(Ml) aj -4,8 -2.9 L2 23 L2 2 *e% L2 2}
ay, 8L.3 71.8 60.3 66.2 60.9 91.5
53 0.998 0.998 0.844 0.916 0.078 0.519
a) a5y 7.5 -7.3 -7
8y Ly 7 6.2 5.9 5.1
¢ (MZ) a} 5_ 5 -2.7 3 xH N 222
a), 21.0 66.8 60.0 63.4
r 0.943 0.996 0.828 0.793
8y 0.3 =7.7
a, 4.0 -11.9
¢ (M3) a5 20.2 13.4 haad bl
8y 40.3 71.2
X, 0.979 0.999

* 4(M1,H2,M3) =a, 'MEFIRopg(N1) + a, 'NEFIR,yo(N2) + aj 'MEFIRG, (M3) + &y

(ML, H2,H3) =y AML-B) g + 8p A(M2-A) gy + 85 d(M3-A)gpg + 2y

%% Some of the errors (not shown) exceed the associated constants, apparently due to pauclty

of data.

#*%% M3 is not defined in homooctahedral and mesooctahedral micas, and M2 is geometrically

identical with M1 in homooctahedral micas.

structure of micas, subject to only subordinate influence
from the rest of the structure (see also Radoslovich and
Norrish, 1962).

Spurred by the preceding, we performed a final set of
calculations to obtain regression equations suitable for pre-
dicting octahedral angle § and counter-rotation é in octa-
hedra M1, M2, and M3 (where defined) from either bond
lengths or 'MEFIR ,, (or cation radii) for all octahedra in
a sheet. The size constraints inherent in the definition of
mesooctahedral and homooctahedral micas dictate the
number of constants necessary: it is highest in heteroocta-
hedral micas and lowest in homooctahedral. For heterooc-
tahedral micas an approach was adopted according to
which M3 is always the larger cis cation. Although the
group of heterooctahedral micas would benefit from more
data, the equations (Tables 4, 5) afford realistic estimates of
octahedral geometry for detected (e.g., Mdssbauer) or an-
ticipated ordering schemes and allow the user to fathom
octahedral distortions before the results of a structural re-
finement are available. Possible ordering in micas other
than homooctahedral, which must be decided upon before
the equations in Tables 4, 5 are applied, can be devised

according to the distribution of individual elements be-
tween larger and smaller octahedra (Table 3). Better predic-
tions should make better results easier to obtain, improv-
ing thus our understanding of the structural details in this
important mineral group.

In conclusion let us observe that although plots with
impressive correlations have been obtained, in some there
is more scatter than one would expect. Of course, scatter
may be a liability of the site-size approach in which charges
are ignored. Also, the definitions of all functions repre-
senting distortions embody some oversimplification.
Unable to fully express the complexity of individual poly-
hedra, these functions must introduce some scatter. An-
other possible cause may be the practice of refining struc-
tures in supergroup rather than subgroup symmetries (see
Guggenheim and Bailey, 1977). As a consequence, possible
octahedral orderings in some micas may have been sup-
pressed or overlooked and the distortion functions may
have become somewhat unrealistic. No correction short of
a new refinement is possible here, but future projects
should benefit from the hindsight and, hopefully, yicld data
with less bias.
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Table 5. Constants in regression equations for predicting counter-rotation & from mean bond lengths Z(M-A)n,,, and 'MEFIR,,.*

Micas (n) %%

Heterooctahedral (7) #%#

Mesooctahedral (39)

Equation for Regression based on Regression based on
IMEFIR,g  @(M-A)gpe IMEFIR pg  d(M-A) gy
a; -16.5 -1.3
e, -129.6 -41.2 s(M1) = 0°
6(ML) 84 25,4 40.9 due to symmetry
ay, 87.4 3.3
2} 0.956 0.9997
ay -122.0 41.5 56.5 58.8
2, ~Lhg, 7 24,1 -35.5 -32.9
6(M2) aj -182.2 -30.4 EREE XN R
ay, 560.6 -66.8 -17.0 -53.2
1) 0.928 0.900 0.931 0.949
a; 1.4 Lo 4
ay -251.8 -42.3
8(M3) a5 -48.6 -8.5 EHE N
aj 217.0 2.9
r 0.997 0.999

1 il
* 5(M1,M2,M3) = allMEFIRobs(Ml) +ay MEFIR,p. (M2) + a3 MEFIR .. (M3) +ay

8 (M1,M2,M3) = 2, 2(M1-A)°bs

* %

+ a, d(MZ-A)ob

s * 85 3(M3-A)obs + ay

Homooctahedral micas are not included because thelr M2 is

geometrically identical with M1, hence 6(M1) =6(M2) =0° .

*NR
apparently due to paucity of data.
L2 2 2]

Some of the errors (not shown) exceed the associated constants,

M3 is not defined in mesooctahedral micas.
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