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ness, the ratio volume/interface surface is small and,

consequently, coherent precipitates are energetically
more favorable. During coarsening, coherent precipitates

may lose coherency.
In the case of similar parallel lattices, several models

have been proposed which rank the energy of interface
orientations, but do not attempt to calculate the total
interfacial energy. All models calculate the strain or misfit
between planes of diferent orientations in the two lat-

tices, but they ditrer in the way that they treat elastic
stifness. In a first group of models (Bollmann and Nis-
sen, 1968; Bonnet and Durand, 1972; Robinson et al.,
197 l, 1977 ; Fleet, 1982) the only input data are the lattice
parameters of the two phases. In a second group of
models the elastic energy necessary to maintain coheren-
cy between the two lattices is minimized; the input data
are the lattice parameters as well as the elastic stiffness
coefficients (Cahn, 1968; Willaime and Brown, 1974).

In a recent paper on the calculation ofthe orientations
of phase and domain boundaries in crystalline solids,
Fleet (1982) presented a three-dimensional lattice misfit
model and compared it to previous models of Bollmann
and Nissen (1968) and Willaime and Brown (1974)' as

applied specifically to the calculation ofinterface orienta-
tions in feldspar intergrowths. Fleet contested the validity
of the model and some of the conclusions in the paper by
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Abstract

microscopy.

Formation of interface boundaries during exsolution
processes

During exsolution from homogeneous crystals, precipi-

tates are formed which generally have specific lattice and
interface orientations with regard to the host crystal
lattice. The driving force for exsolution is the reduction in
free energy due to chemical separation, and this is
opposed by positive free energy terms due to the creation
of interfaces between the two compositional domains. It
is generally admitted that the preferred interface orienta-
tion corresponds to a minimum in the latter free energy
terms, which involve a surface term proportional to the
interface area and a strain term proportional to the
volume of strained lattice. However, no one is at present
able to calculate the total interface free energy with
precision. The relative values of the surface and strain
terms will depend on the lattice coherency of the precipi-
tate/matrix interface. For coherent precipitates the strain
energy is dominant, whereas for incoherent precipitates
the surface energy is dominant.r Below a certain thick-

t In very special cases, coherency can be obtained without any
strain in the crystal, i.e., by a small rotation ofthe lattices; then
both the surface energy term and the strain energy term are
small.
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Willaime and Brown, to which we here reply, and we also
correct several errors in Fleet's paper as applied to
feldspars.

Comparison of the models--+train between the two
lattices

The different models so far proposed use different
theoretical approaches, but the calculated interface orien-
tations may be compared easily. For each model, it is
postulated that the two crystals have a boundary which is
an equivalent (hkl) plane in the two lattices. In low
symmetry crystals, it is rarely possible to find such a
plane in which structurally equivalent vectors have the
same length in the two lattices. This implies that a strain
will be necessary to obtain exact coincidence on this
plane between the two crystals.

Choosing orthogonal axes in the boundary plane, this
strain may be expressed by a two-dimensional strain
tensor whose components €ij can be calculated from the
strain free unit-cell parameters of the two crystals. This
strain tensor is indeed calculated in Fleet's model (F), in
the Willaime-Brown model (WB), as well as in the
Bollmann-Nissen model (BN). The models ditrer in the
way their authors use the components of this tensor to
determine the optimal boundary.

For easy comparison between these three models, it is
convenient to use the strain tensor in its diagonal form.
This is obtained through a suitable choice of reference
axes in the boundary plane, i.e. parallel to the principal
strains.

The strain tensor

parameters between the two lattices. Using the strain
tensor notation

P(BN) :4+4  e )
Fleet (1982: lattice misfit model) generalized to three

dimensions the previous two-dimensional model of Rob-
inson et al. (1971, 1977). In this model, the optimal
interface orientation is obtained by minimizing a strain,
the "area misfit" P (F), between equivalent planes in the
two lattices:

P (F) = le11l + le22l (3)

In Fleet's (19E2) paper, no indication is given about the
orientation ofthe reference axes; we assume that the axes
are parallel to the principal two-dimensional strains in the
boundary plane. Then

P (F) : lell + le2l (4)

(If the choice of the axes is different, this relation is still
valid when €11 ofld e22 are both positive or negative).

For comparison with the results obtained with his own
model, Fleet (1982) calculated a "coherent elastic strain
energy" by setting elastic strain components equal to the
corresponding principal two-dimensional strains. This
procedure does not measure the elastic energy necessary
for maintaining coherency between the lattices, because
it does not take into account the necessary deformation of
the lattices perpendicular to the boundary plane. The
value calculated by Fleet is

W (F) c< ll2 [cy 4 + 
"r, 

Q + 2 cp e1 e2] (5)

c;.; being the elastic stiffness coefficients of the material
expressed in the chosen reference axes.

Cahn (1968) and Willaime and Brown (1974, coherent
elastic model) determined the optimal boundary plane by
minimizing the elastic strain energy necessary to maintain
coherency between the two crystals.

In this procedure, the three dimensional strain resulting
from a two-dimensional coherency is calculated, taking
into account the fact that stress components outside of
the plane of the interface are zero. Therefore the elastic
strain energy is (Willaime and Brown, 1974, p. 321)

W (WB) = l l2 Zi:cii €i €j, with i : l , 2 and, j = 1,2,3,4,5
(6)

If the variation of the cij with the boundary orientation
is much smaller than the variation of the e;, the elastic
anisotropy of the medium is negligible and the elastic
energy can be calculated as if the medium were isotropic,
i . e . ,  C 1 1  =  C 2 z , C t 2 :  C | 3  :  C Z t : c Z l  a n d  C 1 a  =  C l 5  :  C 2 4  =

czs : 0'
Consequently:
The "isotropic elastic strain energy" calculated by

Willaime and Brown (6) becomes

W (WB) n lcrr (4 + 4)  + icrz(2 e1 e2* e1 €3 - t  e2g) ,

- = l;; ;;]
is transformed into

fe ,  o l
€ = | ^' I with e1 1 I ezz = 4 * ez

Lo eJ
As demonstrated by Willaime and Brown (1974, p. 32;

see also Willaime, l98l) either e1 and €2 in the plane of
minimum strain have the same sign (and there is one
plane orientation of minimum strain), or one of them is
zero (and there are two different plane orientations with
the same minimum strain).

Bollmann and Nissen (1968: optimal phase boundary
model derived from the 0Jattice theory) minimized a
parameter, P, which varies in a monotonic fashion with
the surface energy:

t=9*9 (r)
dt dz

where b1 and b2 are the Burgers vectors ofdislocations of
spacing d1 and d2. These arrays of misfit dislocations do
not necessarily exist in the boundary plane, but, if they
did exist, they would compensate for the differences in
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and assuming a constant-volume deformation, e1 + ez +
€3 = 0, then:

W (WB) * * (crr - cd (4 + el) and we will note:
P (WB) : f,, + el in tne following. Q)

The "isotropic elastic strain energy" calculated by Fleet
(5) becomes

W (F) cr ictt (4 + e) + ep €1 €2.

In a feldspar glass (Willaime and Brown, 1974, Table 2)'
cn -4c12 , the re fo re

W (F) a Lcrt (4 + 4 + ll2 er e) and we will note

P' (F) = 4 + ?, + ll2 e1e2, in the following. (E)

From the above, it can be seen that all the models
determine the optimal boundary by minimizing very
comparable quantities (for the special case of an elastical-
ly isotropic medium).

Bollmann and Nissen minimized

P (BN) : 4+ 4. Q)

Fleet minimized P (F) : l.rl + le2l; it follows that he also
minimized

P2 G) :  4  + ?,  + 2 le1 e2l  :  f ,  +  Q+ 2 e1 e2 (9)

(because, as seen above e1 and e2 never have opposite
signs).

In his calculation of elastic energy, Fleet minimized

P ' ( F ) =  4 + 4 + l l 2 e 1 e 2 .  ( 8 )

Willaime and Brown minimized

P (wB) = f,, + ?2. 0)

Comparison of the models. Effect of elastic
anisotroPY

The lattice misfit model of Fleet (1982) and the models
of Bollmann and Nissen (1968), Bonnet and Durand
(1972) and Robinson et al. (1971, 1977) do not work where
the misfit is isotropic, i.e., where the strain €ij does not
vary with the interface orientation. They cannot be

applied to exsolution in cubic crystals and they also fail to

distinguish between /r and kindices in hexagonal, tetrago-
nal and trigonal crystals.

The coherent elastic energy model works for all crys-
tals, including cubic ones. It is particularly powerful

where the misfit anisotropy is small and the medium is

elastically highly anisotropic; results obtained using the

coherent elastic model should be correct, whereas those
calculated using the other models should be much less
precise. On the other hand, in a medium with low elastic
anisotropy, there would be no special advantage in using
the coherent elastic energy model, but it would still give

suitable results.
When several models are available, a determination of

the best one depends on the criteria used. The best one

may be the easiest to use or it may be the one that is the

nearest to physical reality; it may be the one for which the

calculated values are closest to the observed values. In

light of the above, the paper by Fleet (1982) will now be

discussed with special reference to the validity of the

comparison he made between two of the previous models

for the case offeldspar intergrowths.

Application to feldspar intergrowths

Fleet (1982) applied his model to feldspar intergrowths,
which are of great complexity as three exsolution regions
occur in plagioclase and one in the alkali feldspars, the

latter being complicated, however, by possible symmetry
changes in both exsolved Phases.

Effect of elastic anisotroPY

The feldspars are of low symmetry and rather strong

anisotropy of compositional expansion and small elastic
anisotropy. They are thus not a good test for distinguish-
ing between the two groups of models' and the calculated
orientations are very similar in most cases. This was

clearly pointed out by us (Willaime and Brown' 1974, p.

236), as the elastic anisotropy plays only a secondary tole
(see also Fleet, 1981, p.66). This, however' in no way

allows one to suggest that elastic anisotropy plays no role

at all in the calculation of the orientations of coherent
lamellae, as maintained bY Fleet.

Physical significance of the models

The question is whether there are theoretical reasons
for asserting that one model more closely approaches
physical reality than the others' As pointed out by Fleet
(1981, p. 67, ".. . there are conceptual problems in

equating coherent elastic strain energy directly with inter-

face energy," but certainly neither Cahn (1968) nor

ourselves (1974) considered that the two could be equat-

ed. Nevertheless, if the exsolution is coherent, which is

common at least in the early stages when the lamellar

orientation is determined, then a coherent model will be
physically more realistic (Tullis, 1975; Robin, 1974). If,

on the other hand, the lamellae are incoherent from the

start of the exsolution, the optimal boundary model of
Bollmann and Nissen (1968), which minimized the energy
of a dislocation array, seems more appropriate (Never-

theless, it must be noted that, from the results of the last

section, these two models are strictly equivalent when the

elastic anisotropy is negligible.)
Before using a model for calculating the orientation of

interfaces in anisotropic materials, it may be of interest to

examine the degree of coherency of the interfaces at the

beginning of and during exsolution. If one restricts dis-

cussion to fine-scale intergrowths (i.e. to the early stages

of exsolution), such as plagioclase/plagioclase inter-
growths and cryptoperthites, the evidence available sug-
gests (almost) complete coherency. All diagonally associ-



ated cryptoperthites examined by Brown et al. (19g3) are
fully coherent, as shown by high-resolution microscopy
(Brown and Parsons, 1984; Brown, 1983). The common
occurrence of strained cryptoperthites also speaks in
f1vo1 of coherency. No report of dislocations along
plagioclase/plagioclase interfaces has been published.
Only two reports of dislocations, one periodic, are known
in cryptoperthites, both An-rich, the high An_content
blocking diffusion and interface rotation at low tempera_
ture (Brown and Willaime, 1974; Brown and parsons,
unpublished data). Coarser intergrowths, such as micro_
perthites and macroperthites, have rarely been studied by
TEM and little is known about their degree of coherency
except for two microperthites with periodic dislocations
(Gandais et al., 1974; Aberdam, 1965). The presence of
periodic dislocations shows that such interfaces are semi_
coherent (Brown and Parsons, 1984), and for such cases,
the coherent elastic model is still appropriate as well as
the Bollmann-Nissen model.

Comparison between observed qnd calculated ori-
entations

Fleet claimed that his model gave calculated orienta-
tions closer to the observed ones than the coherent elastic
model. It must be pointed out that his calculation proce_
dure for elastic strain energy (5) differs from that defined
in the coherent elastic model (6), which could invalidate
his conclusions. Furthermore, a table comparing sets of
data calculated with both models to observed orientations
is essential to justify the better precision of one or the
other, preferably with angular posirions rather than indi-
ces which are hard to compare. Fleet did not give such a
table, so that the reader is unable to judge for himself.

Fleet (1982, p. 932) is correct when he supposes some
imprecision in measurements made from TEM observa_
tions, but he should cite the authors he suspects to have
rounded the indices of the observed orientations in the
diagonal association to make them consistent with the
calculated boundaries of Willaime and Brown (1974). The
diagonal association was observed by Brown et al. fl972)
and the orientations easily measured (on (001) cleavages
and not (010) as reported by Fleet); they published their
results before extending Cahn's model to crystals of low
symmetry.

As previously noted, the elastic anisotropy of feldspars
is low and the calculations of coherent elastic energy
would not be very different using elastic stiffness coeffi_
cients of a feldspar crystal or using those of an isotropic
feldspar glass. Therefore the diferences in the calculated
optimal boundaries for the different models should be
mainly related to the difference in the parameters p (BN),
P2 (F), P' (F) and P (WB) defined in a previous section.

With certain sets of lattice parameters two plane orien-
tations have the same minimum strain; as mentioned
previously, this implies either e, or e2 eeual to zero. In
this case, the parameters p (BN), p2 (F), p' (F) and p
(WB) are strictly equal (= .? o. : ?) and the calculation
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by the three methods should give the same results. This
situation occurs for the calculation of exsolution lamellar
orientation in plagioclases. In fact there is very good
agreement between observed orientations and those cal-
culated using the different models (Nissen, pers. comm.,
1972; Willaime and Brown , 1974; Fleet, 1982).

For alkali feldspar exsolution, there is only one lamel-
lar orientation in most cases. The parameters P2 (F) and
P' (F) differ from P (BN) and P (WB), and therefore rhey
may give diferent calculated orientations that are of
interest to compare with the observed ones.

Whichever model is used, the choice of input data is
important and errors in the lattice parameters (or in the
elastic stiffness coefficients) will affect the calculated
orientations. There are indeed some problems in the
choice of input data for perthite intergrowths, except for
those in which both phases are monoclinic. All TEM
studies on cryptoperthites (except rare monoclinic/mono-
clinic ones) have shown that either the Ab-rich phase
alone or the Or-rich phase as well are triclinic. In such
cases the triclinic phases are twinned in such a way as to
show that both phases were monoclinic at the beginning
of exsolution-the overall diffraction symmetry is mono-
clinic. We are thus not free to use any combination of
input data, but must take into account the morphological
development of the intergrowth. This explains the choice
of input data of Bollmann and Nissen (1968) and of
Willaime and Brown (1974). Fleet (1982), however, took
no account of such constraints and attempted to use his
calculations to disprove deductions made by us from
TEM observations. We will illustrate this by a discussion
of only the diagonal association, as the diagonal associa-
tion develops from the normal perthite texture, and braid
perthite develops from the diagonal association (Ram-
berg, 1972; Lorimer and Champness, 1973; Willaime et al.
1976; Brown et al., 1983; Brown and Parsons, 1984). All
stages in this sequence are given by Brown and parsons
(1984).

In normal cryptoperthites (moonstones) lamellae of
periodically albite or pericline twinned albite occur with
lamellae of monoclinic Or-rich feldspar. It was clearly
shown by Bollmann and Nissen (1968) that agreement
between calculated and observed orientations was good
only when they took account of the periodic twins. This
was confirmed by our calculations (Willaime and Brown,
1974). The overall monoclinic symmetry shows that twin-
ning occurred after exsolution, as does the relationship
between twin width and lamellar thickness (Willaime and
Gandais, 1972; McLaren, 1974; Willaime et al., 1976).
Calculations by Fleet (1982, Table l, normal perthite,
numbers 2, 2A, 3 and 3A.) using cell parameters of
sanidine and untwinned anorthoclase or high albite have
no applicability to perthites and it is singularly inappro-
priate to have compared the misfit model and coherent
elastic model using only such physically unrealistic input
data (Fleet, 1982, calculation 2, Table l, and Fig. 5).

The situation is, however, worse for the diaeonal
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association. This texture consists of periodically albite
twinned low albite lamellae which may pinch and swell
and parallel-sided zig-zag lamellae of maximum micro-
cline. The interface between the two is oblique to b*,
each zig (and each zag) corresponding to a single micro-
cline orientation and to an average monoclinic albite
twinned albite. The indices of the interface cannot be
chosen freely-(66-l) and (6Ot) are equivalent in the
overall monoclinic symmetry bnt not for the triclinic
microcline. The indices of the interface must be given
relative to the triclinic microcline lattice. From dark-field
and high resolution studies (Brown, unpublished data) the
indices correspond to (661), the same result obtained, but
not clearly stated, by Brown et al. (1972), and definitely
not to (661).

Calculation by Fleet (1982, Table l, numbers 4, 5 and
5A) using untwinned high or intermediate albite have no
applicability to the early stages of diagonally associated
cryptoperthites as can be shown by TEM observations-
no cryptoperthite has ever been found which has
untwinned albite lamellae, either parallel or oblique to b*,
in any Or-rich matrix whatever. Furthermore, Fleet's
calculations give two minima, but no sign of two orienta-
tions has ever been seen. Only one of the six calculated
minima (number 5b) is even close to the observed orienta-
tion of (661). Fleet does not give the calculated minima
for the phases actually found, namely low albite and
maximum microcline. In addition, the poles to the faces
(66T), (63T), (661) and (63t) are wrongly plotted in his
Figure 5, as are (861) and (86T) in his Figure 6-clearly
(601), (631), (661), and (010) l ie in the [106] zone.

The coherent elastic model, on the other hand, gives
only one calculated minimum which varies from near
(601), to near (121), to near (85t) as the Or-rich phase
varies from orthoclase through intermediate microcline to
maximum microcline, in very good agreement with ob-
served orientations.

To sum up for the diagonal association, it is erroneous
for Fleet (1982, p. 934) to conclude that his analysis
". . . . indicates quite positively that the fine albite twin
lamellae in the Na-feldspar post-dale intergrowth devel-
opment" (Fleet's italics), as this is contradicted by his
own calculations (five out of six of his minima are in the
wrong place), by TEM observations (McLaren, 1974;
Willaime et al., 1976: Brown and Parsons, 1984) and by
the impossibility, following Fleet's chronology, to sug-
gest any explanation for the periodicity of the twin-
lamellae in the diagonal association configuration. This
periodicity is easily explained if twinning occurs at the
stage of a normal perthite configuration ((601) lamella
orientation): the twin period is related to the width of the
Ab-rich lamella (Willaime and Gandais, 1972; McLxen,
1974).lt the twinning occurs in an already existing Ab-
rich domain of variable thickness, it will depend on this
thickness; the greater the local thickness of the Ab-rich
lamella, the greater will be the width of the twins (see, for
example, Mclaren, 1974, Fig. 22, which shows the

variation of the twin width in a lens-shaped Ab-rich
lamella in an Or-rich feldspar).

Conclusions

In conclusion, Fleet's paper brings nothing new to our
understanding of feldspars, as by his own admission
calculated orientations using either model are similar in
most cases. In spite of this, Fleet comes to conclusions
which "quite positively" contradict our own conclusions,
not for plagioclase or normal moonstone but for more
complex cryptoperthites. As shown above, these difer-
ences come not from the models but from the choice of
input data which are inappropriate for diagonally associ-
ated cryptoperthites as shown by TEM observations.

Therefore, Fleet's calculations cannot be used for a
rigorous comparison of the different models. The coher-
ent elastic model (Cahn, Willaime-Brown) is physically

the most realistic if coherency exists and is maintained
between the lattices during exsolution, whereas the Boll-
mann-Nissen model is the best if the lamellae are incoher-
ent from the start of exsolution. Fleet's model cannot be
related to any physical mechanism, but seems useful as it
is simple. Nonetheless, these three models give very
similar results because, in spite of differences in the initial
principles, they calculate very similar parameters. Future
progress in our knowledge of exsolution in minerals will
probably not depend on the choice ofa model' but rather
on the choice of suitable input data, and on high quality

observations on geologically well chosen specimens'
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