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Abstract

Pauling's rules, first collected together over fifty years ago, have traditionally been
associated with electrostatic, "ionic" ideas of bonding in solids. In this paper we use a
purely orbital model to tackle some of the structural predictions made by the rules. As a
result of band structure computations on several model structures we present a scheme
which focuses attention on the local anion coordination. We also use simple orbital based
perturbation theoretical ideas to present a unifying explanation for Pauling's electrostatic
bond strength sum rule and for the first time one for Baur's extension of it. In almost all
areas the predictions of the rules and those of the covalent approach are similar, but their
explanations are very different. The ideas presented lead to a new level of understanding
concerning the structures of solids. These ideas have close ties with current models of
molecular stereochemistrv.

Introduction

ln 1929, Pauling proposed a collection of five rules
governing the geometries of ionic crystals (Pauling, 1929).
These rules and the body of additions and emendations
surrounding them passed rapidly into the accepted folk-
lore of crystal chemistry, and for more than 50 years they
have remained important and largely successful guides
for mineralogists and solid state structural chemists.

In their original formulation, Pauling's rules were pre-
sented primarily as ad hoc generalizations useful in
developing the hypothetical geometric models which
were necessary to the solution of complex crystal struc-
tures using the experimental methods available in the
1920's. While several of the rules are given interpreta-
tions based on the ionic model, their proof is clearly in
their applicability to real structures rather than in the
details of somewhat vague ionic arguments. Further,
nonionic ways of looking at crystals enter implicitly even
in 1929 (see Pauling's remark that 6-membered rings
occur in beryl because the bond angle at the oxygen atom
in such rings approximates the tetrahedral angle). In his
later writings Pauling (1960) is quite explicit in claiming
that even quite covalent materials may obey rules isomor-
phous to some of those applying in ionic crystals. Despite
efforts to distinguish between geometric precepts and a
particular method of computing crystal energies, Pau-
ling's rules have frequently been identified with the ionic
model, and the success ofthose rules has often been used
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as an argument for the ionic nature of the bonding in such
compounds.

Since about 1970, Gibbs and Tossell and their cowork-
ers (Gibbs et al., 1981; Tossell and Gibbs, 1978) have
made substantial progress in clarifying the origins of
Pauling's rules by showing that many of his geometric
predictions, most notably the shortening of shared poly-
hedral edges, are consequences not only of ionic argu-
ments but also of more or less covalent effects which can
be studied by performing molecular orbital calculations.
At present the results of such computations have led to
predictions of bond angles, the variations of bond
strengths with bond angles, and so on, which in general
seem in very good agreement with observation. Unfortu-
nately, the methods of Tossell and Gibbs have required
them to perform calculations not on crystals as a whole
but on "molecular" fragments chosen to mimic local
regions within a crystal. This is usually not a limitation in
investigating local geometric preferences, but it does
mean that the energies of crystal structures which differ in
basic atomic topology and connectivity cannot be com-
pared. The most obvious way to discuss theoretically the
electrostatic valence rule or the rules involving the desta-
bilizing character of shared polyhedral elements is to
compare the energies of real and hypothetical structures
some of which obey and some of which disobey these
rules. Calculations on small molecular clusters will not
lead to such information.

In this paper, we present an interpretation of Pauling's
rules based on the results of band structure calculations
using the "tight binding" approximation. These are just
covalent "molecular orbital" calculations applied not to
such clusters but to the crystal as a whole. Using these
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results we will obtain an electronic understanding of these
rules compatible with the arguments presently used to
rationalize a large number of molecular structures. This
understanding has a simple geometric content based on
the hybridization and coordination geometry of the an-
ions in the crystal. The structures we will consider can be
ordered energetically by considering anion coordination
spheres. While our calculations and interpretation gener-
ally support Pauling's rules, we mention several interest-
ing points at which our predictions differ from his.

The structure types we shall discuss are largely either
wurtzite derivatives or dipolar tetrahedral structures
(Mclarnan and Baur, 1982). This choice is motivated by
the desire to consider a large family of closely related
types which are typical of mineral structures with 4-
coordinated anions. We expect our major conclusions to
apply to a far larger class of structures than those actually
studied. Similarly, most of our calculations use atomic
parameters for Be and O, not because of the overwhelm-
ing mineralogical importance of bromellite (wurtzite-type
BeO), but because Be and O lie near the top of the
periodic table and BeO seems a typical "ionic" wurtzite-
type compound. None ofour conclusions depend on this
precise choice of parameters. In the final section we
mention some structures with two- and three-coordinate
anlons.

In discussing our calculations, we shall often use the
words "anion" and "cation" as a familiar shorthand for
electronegative and electropositive atoms, respectively.
This terminology is used solely for linguistic conve-
nience, and is not intended to have any implication
regarding the physical nature of the bonding in any
compound.

Pauling's First Rule: ionic radii

"A coordinated polyhedron of anions is formed about
each cation, the cation-anion distance being determined
by the radius sum and the coordination number of the
cation by the radius ratio." (Pauling, 1929). This is
perhaps the best known of Pauling's rules and introduces
the concept of atomic (or rathei ionic) size. Because
approximate molecular orbital methods predict bond dis-
tances poorly, we cannot directly use our band calcula-
tions to cast light on this rule. However we do wish to
point out the progress made in recent years using Phillips'
Mendeleyevian philosophy in the area of structural map-
ping (St. John and Bloch, 1974;Zunger and Cohen, 1978;
Bloch and Schatteman, l98l; Burdett et al., 1982). An
important result obtained by the use of pseudopotential
radii (r1) has been the much closer definition of atomic
"size". More specifically the identification of 11 rwith an
electronegativity has allowed a close correspondence to
be made between billiard-ball theories based on sphere
packings and modern electronic ideas based upon orbital
concepts. In this paper we will focus on the remaining
Pauling rules.

Rule 2: electrostatic valence sums

"In a stable coordination structure the electric charge
of each ion tends to compensate the strength of the
electrostatic valence bonds reaching to it from the cations
at the centers of the polyhedra of which it forms a corner;
that is, for each anion

(Pauling, 1929). Here -( is the charge of an anion, i runs
over all cations coordinated to that anion, zi and 4 are the
charge and coordination numbers, respectively, of cation
i, and s1 : z;lta. This electrostatic valence rule, while only
approximately satisfied by some compounds, has proven
an enormous aid to mineralogists and crystallographers.
It is, for example, the primary method for distingishing
02- from (OH)- and H2O in complex mineral structures.
Further, it was regarded by Bragg (1930) as the most
important and innovative of Pauling's rules.

Pauling himselfjustified this rule by saying that config-
urations satisfying it placed highly charged anions at sites
of large positive potential, and hence of high bond
strength sums; though this argument does little to prove
the equality of charge and bond sum. On the other hand,
the validity of the rule for simple crystals follows from
purely topological considerations: any binary compound
in which all atoms of each type have the same coordina-
tion number must satisfy the rule.

Since formal charge is not a quantity appearing in the
molecular orbital formalism, (although, given the molecu-
lar wavefunction we can calculate an atomic charge from
a population analysis) it does not seem possible to use
these calculations to test the valence sum rule numerical-
ly (i.e., to predict the allowable departure of Is1 from ().
It is possible, however, to ask whether such calculations
predict qualitatively that more highly charged anions
should occupy sites with larger bond sums. To do this we
must consider a structure with more than one type of
anion and with two or more cation species difering either
in charge or coordination number or both. The only
known such structure which is a derivative of the wurtzite
type is that adopted by a-LiSiON (Laurent et al., 1980;
Laurent et al., l98l;O'Keeffe et al., l98l), and probably
by MgAION and ZnAlON. This structure, shown in
Figure l, has a (2, l) unit cell; that is, it has c = 2as, b : bs
and c = c0, where as, bs, cs are the axes of the smallest
orthohexagonal cell of a hexagonal close packing. Also
shown in Figure I are three other hypothetical structures
representing the only ways to order equal numbers of two
cations over the metal sites in the (l,l) wurtzite supercell.
The notation employed for these types is that of Mclar-
nan and Baur (Mclarnan and Baur, 1982; Baur and
Mclarnan, 1982) who refer to a-LiSiON as the W-Pbc2;
(2,1)  type.

None ofthese four structure types exactly satisfies the
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to determine the charge on each atom in this model
crystal via a population analysis (Burdett, 1980; Chen and
Hoffmann, 1976).In the real compound, the more electro-
negative O atoms can be expected to occupy the sites
with the larger electron density (i.e., larger negative
charge). In order to avoid confusing effects due to metal
charge with those due to metal size, we have carried out
such calculations for MgAION rather than for LiSiON,
and have further chosen identical Slater exponents for the
two metals. Correspondingly, all calculations have been
performed with equal cation-anion distances. The result-
ing charges are given in Table l, which shows that indeed
sites with small bond strength sums, which according to
the second rule should be occupied by O rather than N,
are significantly more electron rich. A further test of this
is given in Table 2, which shows the site charges and
energies of all four of these structures calculated not with
averaged anions but with real O and N atoms. Values are
shown for both the ordering expected from Pauling's rule
and the opposite one. The correctly ordered structures lie
lowest in energy, followed by those in which O and N
occupy sites with equal electrostatic bond strength sum,
followed by those in which N occupies sites with lower
bond sum than O. Further, in the structures with the
Pauling's rule-predicted ordering, there has been a migra-
tion of charge away from both N and Mg, the more
electropositive anion and cation, toward both Al and O,
the more electronegative pair.

The valence sum rule, however, says more than just

that very electronegative cations, i.e., those with small
negative formal charges, should be located in sites of
small electrostatic valence sums. It also says that the
bond strength sum should equal the negative ofthe formal
charge. In our covalent language, this means that anions
of the same electronegativity should be found in sites of
equal bond sum. Thus, in calculations in which all anions
are taken to be identical, the W-Pmczt (l,l) structure in
which every anion receives the same bond strength sum
should be favored over the W-P3m (l, l), W-Pmnzt (l, l)

( d )

Fig. |. ldealized crystal structures of a-LiSiON : W-Pbc2r
(2,1) (a) and three hypothetical arrangements of the same
stoichiometry: W-Pmn21(l, l) (b), tN-P3m (l, l) (c) and \N-Pmc21
(l,l) (d). The anions are hexagonally close packed and the
cations fill tetrahedral holes. Filled squares : Si(0),N(i); empty
squares : Li(0),O(il; filled circles = Si (),N(0; empty circles :
L(t,O(il.Only the cation tetrabedra at z: 0 are drawn.
Structures b{ and their antistructures are the only ones
geometrically possible for LiSiON with a (l,l) orthohexagonal
cell.

electrostatic valence rule (Fig. 2). In three of them, a-
LiSiON, W-Pmn21 (l, l) and W-P3m (l, l), half of the
anions are coordinated to 3 atoms of metal A and one of
metal B, and the other half are coordinated to 3B + lA.
For (A,B) : (Li,Si) this produces bond strength sums of
3.25 and 1.75, while for (Mg,Al) the bond strength sums
are 2.75 and 2.25. While the bond strength sums are not
equal to 3 and2, it is easy to see that they come as close
to these values as is possible for wurtzite derivatives
where all metal atoms of each kind are crystallographical-
ly equivalent. In the W-PmcZ1(l, l) type, every anion is
coordinated by 2A + 28, and hence has Is; : 2.5.

We would like to show that in an ABON crystal with
the w-Pbc21 Q,l), w-Pmn2' (1,1) or w-P3m (l, l) srruc-
ture, the nitrogen atoms will occupy the sites of higher
bond sum, and that these structures all lie lower in energy
than the W-Pmc21(1,1) type in which O and N atoms see
the same bond sum. The standard way of predicting site
preferences of this sort using modern electronic ideas is
to calculate the orbital wavefunction of a material in
which O and N atoms are both replaced by hypothetical
atoms intermediate in size and electronegativity, and then

SiSiLiLi

AIAIMgMg

i t
L i I  S i  S i i  L i

t t

t t
ebs=1.75 ebs= 3.25

Msi Ar o,l Ms
t t

ebs=2.25 ebs= 2.75
Fig. 2. Electrostatic bond sums for LiSiON and MgAION in

the structure types W-Pmn2r (l,l) or tN-P3m (l,l).
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Table l. Electronic charges in MgAl(O,N)z structuresa

Structure

populations of all crystallographically distinct Mg-O, Al-
O, Mg-N and Al-N bonds in the eight structure types of
Table 2 as a function of the electrostatic bond strength
sum at the anion. These bond overlap populations are a
measure of the calculated bond strength between two
atoms, and hence normally correlate inversely with bond
lengths. Thus, the calculated decreases in the bond
overlap populations of all four types of bonds with
increasing anion saturation represents a prediction by
"molecular orbital" methods of exactly the qualitative
bond length variations observed generally by Baur. We
emphasize that these numbers come from computations
which generate the band structure of the infinite crystal
and not from molecular fragments. It is also important to
note that all of the calculations are performed on struc-
tures with identical anion-cation distances so that there is
no geometrical bias initially built into the problem. The
effects we are seeing are purely electronic ones.

All of these results can be understood using the meth-
ods of perturbation theory (Burdett, 1980; Hoffmann,
l97l) using well-known techniques. The occupied orbitals
in MgAION are largely located on the anions, so to
evaluate the bonding energy of a particular structure for
MgAION we must ask how the anion levels are perturbed
in the crystal from their energies in a free atom. These
perturbations will arise on our model primarily from the
strongest orbital interactions experienced by the anions,
namely those with the neighboring metal atoms. Consider
therefore the interaction of a single anion orbital with
energy H11 with a single cation orbital with energy H22 >
H11 as in Figure 4. The magnitude of the interaction
between these two orbitals is measured by their overlap
integral S12. It is therefore reasonable to write (Burdett,
1980) the energy ofthe perturbed anion orbital as a power

t s

2 . 7 5
2 -75

2 . 2 5
2 - 2 5
2 -25

f l - P b c 2 l ( 2 , 1 )
U - P n n 2 t ( l , l )
W - P 3 m ( 1 , 1 )
W - P n c 2 t { 1 , 1 )
l , l - P m c 2 r  (  1 , 1  )
t { - P b c 2 1  ( 2 , 1  )
H - h r n 2 t ( 1 , 1 )
H - P 3 n ( 1 , 1 )

7.5238
7 .5223

7 -5919
7 .5932
7 . 6 6 4 3
t . o o ) J

a 
Ttre number, q,  of  valence eleclrons on slLes r l lh

dtf ferent electrostat ic bond strenSgh sums ln l€Al(0,N)r '

Four dl f ferent 6Lrucbures vtLh this cooposit ion are con--

sldered. fn these calculat lons al l  anions {ere glven
ident ical  paraneters lnEermediate between those ol  0 and N,

so bhat var lat lons ln q ref lect dl f ferences assoclated
wlth the si tes, not ui th ghe nature of the anions. In
l h l s  a n d  o t h e r  t a b l e s  i n  t h e  t e x l  s e  h a v e  d e l i b e r a t e l y
a e p o r L e d  B o r e  s i S n i f i c a n t  f i S u r e s  t h a n  p e r h a p s  a b s o l u t e l y
n e c e s a a r y ,

andW-Pbc2 (2,1) type s in which half the anions have Is;
= 2.25, and half have Is1 = 2.7t. That this is so is shown
in Table 3, which gives the energies of these four struc-
tures with all the anions given equal parameters midway
between those of O and N. We shall return below both to
this calculated preference of identical anions for similar
environments and to the significant fact that the energy
difierences in Table 3 are smaller than those in Table 2.

One other important variation on Pauling's second rule
is the Zachariasen-Baur extension of it (Baur, 1970) to
state that oversaturated anions should form unusually
long bonds to their cation neighbors, and that undersatu-
rated anions should form unusually short bonds. As
shown by Baur (1981a) nearly all of the variation of
individual Si-O bond lengths which can be attributed to
any local effect is due to this relation between pe, the
electrostatic bond strength sum at an oxygen atom in the
structure, and d(Si-O). Figure 3 plots the bond overlap

Table 2. Bond sums, charges and energies of MgAION variants'

)  
s . ( v u ) q (e , l

St  ruc tu  re tlsA1 Energy (eV )

w - P b c 2 t ( 2 , 1 )

W - P m n 2 r ( 1 , 1 )

W - P 3 m ( 1 , 1 )

w - P m c 2 l ( 1 , 1 )

l , l - P n c 2 . ,  (  1 , 1 ) *

t l - P b c 2 . ,  ( 2 , 1 ) *

W - P n n 2 t ( 1 , ' ! ) r

w - P l m ( 1 , 1 ) r

2 . 2 5  2 . 7 5

2 . 2 5  2  . 7 5

'1  .76 \ ' t  1 .365\  0 .8255

7 :7659 1  .3627 0 .8209

7 .7673 7  .3586 0 .8211

7 .7  127 7  . \3 \9  O .8269

7 . 7 1 1 6  ? . 4 3 8 3  0 . 8 2 3 1

? . 6 5 0 8  7 . 5 3 0 2  0 . 6 8 1 3

7 . 6 5 0 2  ? . 5 3 1 0  0 . 6 ? 3 q

7 . 6 5 1 0  7 . 5 2 8 9  0 . 6 7 8 ?

0 .0ll rr4

0  . 0 5 0 5

0 . 0 4 7 0

o.0255

o .0270

o  . 1  3 7 7

0 .  r 4 5 3

0 . 1 q 1 4

-291 .212

-291 .2  12

-291 .22 \

- 2 9 1 . 1 5 3

- 2 9 1 . 1 4 3

-290 .742

-290.733

- 2 9 0 . 7 \ 3

2 . 5

2 . 5 2 . 5

2 , 1 5  2 . 2 5
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Table 3. Energies of some averaged MgAION structures" Bond overlop populotions ot I

Struclure Energy (eV/fnla -untt  )

'Tlre 
energies of 4 posslble structureg for l laAloN,

conputed f l i th both 0 and N replaced by an averaged anion
wlth atof, ic parameters midvay betveen thelrs.  The f iost
s t a b l e  s t r u c t u r e  t y p e  t n  t h l r  c a l c u l a t i o n ,  W - R r c 2 t ( 1 , 1 )
ia the one in which al l  anlons aee equal bond strdngth
s u n s  o f  2 . 5 .

series in Srz. As long as Hrr,Hzz and H22-H11 are of the
same order of magnitude, the leading terms in this series
ar€ E1 = Hn + H12S?2/(Hrr - H2). Thus e..ua : HTzS?zl
(Hrr - Hz) < 0 is the first order energetic stabilization of
the filled anion orbital. Often the numerator of this
expression is sufficiently constant so that one can write
€5166 a(H11 - Hzz)-'. Thus, the stabilization resulting
from two interacting orbitals is inversely proportional to
their energy difference. Further, these second order ener-
gy terms are additive so that if the anion is coordinated by
several cations of energies Hzz, HLz, Hiz, . .. one has
G31a6 a(H11 - Hz)-t + (Hrr - HL)-t + (Hrr - Hiz)-l
+ . . . . The metal orbital is pushed up in energy, i.e., it is
destabilized. Since it is unoccupied it will not contribute
energetically to the problem and we will mention it no
further.

The atomic orbitals in MgAION increase in energy in
the order O < N < Al < Mg. In structures ordered
according to Pauling's second rule, the most numerous
nearest neighbor interactions are between O and Mg and
between N and Al. The common pairs of neighbors in
structures with the opposite ordering are O-Al and N-
Mg. Let H1 be the energy of an atom of element i. Then
the efect of interchanging the anions (Fig. 2) in a struc-
ture satisfying Pauling's postulate is to replace contribu-
tions to the crystal binding energy proportional to (Ho -
Hrr)-t + (HN - Ha)-r with terms proportional to (He -
HeD-r i (HN - Hr*)-t. To determine whether or not
this change is stabilizing, we evaluat€ Ae,66 = (Ho -
Ho,)-l + (HN - H"r)-' - (Ho - HMJ-I - (HN -
HeJ-' = [(Ho - HeD-' - (Ho - HrJ-t] + [(HN -

HMJ-r - (HN - -^J*tl. Expanding this yields (Her -
Hve) {[(Ho - HeJ (Ho - Hr,aJ]-t - [(HN - HaJ (Hr., -
Hue)l-t). Since H6 - Hnr ( HN - Hel and Hq - Hr*le (
HN - Hr"re and all four of these terms are negative; the
expression in braces is negative and Ae,66 > 0. Thus the
arrangement with the ordering predicted by Pauling's rule
should be the more stable one, as observed and as
calculated.

More generally, the consequence of this reasoning is
that stable crystal structures should allow as many inter-
actions as possible between electronegative cations and
electropositive anions and between electropositive cat-

605

225 2 50 2:15
f,s;Iv.ul

Bond overlop populotions ot 0

2.25 2.50 2.75

!s;[v.u]

Fig. 3. The metal-anion bond overlap populations for all
inequivalent bonds in the eight possible structures for MgAION
listed in Table 2, plotted against the bond strength sum at the
anion. In all cases a negative correlation is predicted, in
accordance with the extended valence sum rule.

ions and electronegative anions. This conclusion is essen-

tially equivalent to that arising in a slightly diferent

context from Pearson's ideas of hard and soft acids and

bases (Pearson, 1966). It is interesting however that here

W - R r c 2 1  (  1 , 1  )

w - P 3 D (  l ,  I  )

W - P m n 2 1 ( 1 , 1 )

W - P b c z t  ( 2 , 1  )
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Hrt

E l
anron cation

Fig. 4. Schematic orbital interaction picture showing the
stabilization of the bonding orbital (largely anion centered) and
destabilization of the antibonding orbital (largely cation
centered).

the major driving force for (hard-soft) + (soft-hard) -+
(hard-hard) + (soft-soft) is the strong covalent stabiliza-
tion of the soft-soft pair rather than any type of ionic
interaction.

It is of interest at this stage to compare this result with
the ones of Ramberg (1952) concerning the position of
chemical equilibrium in metamorphic systems. From
electrostatic considerations Ramberg suggested that the
most stable pair of compounds for a system containing
two anions and two cations of equal charge is the one
where the smallest anion and cation are paired and the
largest anion and cation are paired. As an example, for an
ensemble composed of Be, Sr, O and S ions, the predic-
tion (and indeed the observation) is for the stability of
BeO + SrS to exceed that of BeS + SrO. This of course is
the opposite result to our conclusion above f it were
extended to this problem. However our result must be put
in perspective. It is a way, borrowed from molecular
chemistry of examining site preferences, and not a route
for the generation of heats of formation of individual
molecules or crystalline compounds. (We note, too, that
Ramberg's qualification of his rule to include covalent
interactions, is in the direction treated by our approach
above.)

Appendix 2 develops the perturbation theoretic analy-
sis further and demonstrates the following results:

(l) The preference for the ordering given by pauling's
rule in MgAION does not depend on the constancy of
ftjSfr. fnus, in general in a compound containing two
anion species the more electronegative anion should
prefer the site of smaller ls;, i.e., it should prefer to have
a smaller coordination number or to be coordinated by
more electropositive metals.

(2) In the transformation from structures with po :
2.75,  pN :2.25 to s t ructures wi th pe :2.25,  pp = 2.75
electrons migrate away from both Mg and N toward both
Al and O.

(3) In any metal-anion bond, increasing pun;on de-
creases the bond overlap population and therefore in-
creases bond length.

(4) Anions of the same species prefer to occupy sites of

equal bond strength sum, though the energetic effects
driving this preference are of smaller order than those
driving electronegative anions to occupy sites of lower
bond strength sums than electropositive ones. That is,
this effect appears only in considering second order
perturbations ofthe anion energies, notjust the first order
terms discussed above.

Thus, simple perturbation arguments serve to give a
complete qualitative explanation of the results derived
above by more elaborate calculations with the computer.
Of course, these local perturbation arguments represent
simplifications of the real situation by ignoring all but
nearest neighbor interactions, by passing over the effects
of local geometry on these interactions, and by glossing
over the fact that all four types of atoms have not one
isolated valence level but an s and three p orbitals at
different energies. These all introduce additional numeri-
cal complexity into the bonding picture but do not affect
the validity of the perturbation arguments in broad out-
line. Hence the four rules stated above can be expected to
be valid generally in "ionic" insulators, i.e., in solids in
which atoms can be divided into "cations" and "anions"
differing significantly in electronegativity and in which all
close bonding interactions are between a "cation" and an
anion".

Although the results of this orbital-based analysis
closely parallel those ofPauling's rule and an electrostatic
model, they are not identical. Because formal charge does
not directly appear in our molecular orbital language we
cannot comment explicitly on the numerical relation ( =
trsi. Nevertheless our rules, that anions of increasing
electronegativity occupy sites of decreasing 2s; and that
identical anions occupy sites of similar Is1, coupled with
the topological constraint that when averaged over the
contents of a unit cell (() : (Is;), go a long way toward
securing approximate numerical satisfaction of this rule.
Further, as pointed out frequently (Baur, l98la) differ-
ences ofup to 40Vo between ( and Is; are not uncommon
even in stable compounds; so that an ability to predict
numerical equality is not necessarily a desirable feature in
the theory.

An advantage of the orbital approach over a purely
ionic model is that it allows an extremely simple explana-
tion for Baur's extended electrostatic valence rule. At the
simplest level, this rule amounts to the remark that
increasing the coordination number of an anion or the
electronegativity of its metal neighbors ties up more and
more of its electron density in these bonds and leaves less
density available for bonding with another fixed neighbor-
ing atom. The perturbation argument in Appendix 2
phrases this explanation more precisely, and the detailed
calculations shown in Figure 3 confirm it further. By
contrast, in a simple ionic model with point charges and a
spherically symmetric repulsion, the force between a pair
of atoms is unaffected by neighboring atoms. Thus, a
fairly complex argument involving second nearest neigh-
bors or polarization would have to be used to explain



BURDETT AND MCLARNAN: ORBITAL INTERPRETATION OF PAULING'S RULES @7

ionically the extended valence sum rule, making it seem
rather a surprise that it has the predictive power it does.
The rule's extraordinary predictive power would thus
seem extremely puzzling from the standpoint of the ionic
model.

The most significant departure of our analysis from
conventional ideas, however, lies in the replacement of
formal charge with electronegativity. In most cases,
increasing the formal charge of an anion decreases its
electronegativity. Our rule that more electropositive an-
ions occupy the sites of larger Isi then results in the same
ordering as that predicted by Pauling. Where this is not
the case, the two theories would make opposite predic-
tions. Thus importantly, since nitrogen is more electro-
negative than sulfur despite its higher formal charge, we
predict that LiSiSN and MgAISN should not be isostruc-
tural with the analogous oxynitrides but should have
structures in which ps > pN in violation of Pauling's
second rule. Synthesis of these or other compounds
involving two anions in which the more electronegative
has the higher charge would thus be extremely interest-
ing.

In order to make our prediction of orderings violating
the electrostatic valence rule more plausible, and at the
same time to show the importance of relating mineralogy
and molecular chemistry, we mention another site prefer-
ence problem previously treated by us (Burdett, 1982).
The AsaSa molecular unit found in realgar is shown in
Figure 5. This is not an ionic structure since it possesses
As-As bonds and 5-rings, and so the electrostatic va-
lence rule does not help us decide which atom should
occupy the two-coordinate sites and which atom the
three-coordinate sites. A calculation on this molecule
giving all atoms the same atomic parameters results,
however, in placing more charge on the two-coordinate
sites, so that these positions are predicted to be occupied
by the more electronegative S atoms. This is in keeping
with the general rule (which can be justified by a pertur-
bation argument like that above) that the more electro-
negative atoms in a molecule occupy the site of lower
coordination number.

Of course, were realgar the only such structure known,
one might be tempted to argue instead, that S occupies
the site of lower coordination number because of its
smaller "valence". This argument would be similar to
one using the valence sum rule, since in ionic compounds

Fig. 5. The SaNa and As4S4 (realgar) structures showing the
exchange of the sulfur atom locations.

s

valence : formal charge. That this explanation is not
generally valid and that the one using electronegativity is

of better predictive value is seen by considering the
structure of SaN+, also shown in Figure 5' Here nitrogen,
despite its larger valence, does not occupy the As sites in

realgar but the S sites, while sulfur, now the less electro-
negative atom, is found in the sites of higher coordination
number. Electronegativity thus seems more important
than valence in determining site preferences in molecules,
and we predict the same should be true in more "ionic"

crystals as well, as suggested by our numerical calcula-
tions.

Rules 3 and 4: shared geometric elements

"The presence of shared edges, and particularly of
shared faces, in a coordinated structure decreases its
stability; this effect is large for cations with large valence
and small coordination number, and is especially large in
case the radius ratio approaches the lower limit of stabil-
ity ofthe polyhedron." "In a crystal containing different
cations, those with large valence and small coordination
number tend not to share polyhedron elements with each
other." (Pauling, 1929). With these two rules, the second
of which is an obvious corollary of the first, Pauling
moves from considering the geometry within an atom's
coordination sphere to discussing systems of linked poly-
hedra. With these rules, too, Pauling's ionic interpreta-
tion appears most conspicuously: the absence of shared
geometrical elements is attributed to the destabilizing
effects of cation-cation Coulombic repulsions in struc-
tures where they occur. Numerous structures violating
these rules, especially the third rule, are now known.
Conspicuous examples include B-BeO (Smith et al., 1965)
and the isotypic compounds BeCl2, SiS2 and SiO2-W, all
of which contain edge-sharing tetrahedra. Another strik-
ing example is the lovely dumortierite type (Moore and
Araki, 1978) which has in one crystal edge-sharing octa-
hedral chains, face-sharing octahedral chains, and octa-
hedral chains combining edge- and face-sharing. Never-
theless, these rules are satisfied frequently enough to
merit further investigation using molecular orbital meth-
ods. A preliminary account of our studies on BeO has
been published (Burdett and Mclarnan, 1982).

In order both to test Pauling's argument for rules 3 and
4 and to seek a covalent understanding of these rules, we
have compared the observed wurtzite type structure of d-
BeO with alternative structures having an h.c.p. oxygen
framework but including varying amounts of edge-sharing
among BeO4 tetrahedra. Such structures can be produced
from the wurtzite type by occupying some upward-
pointing and some downward-pointing tetrahedra in the
h.c.p. framework, instead of filling only the upward-
pointing sites as in wurtzite. We have considered only
those structures in which occupied tetrahedra share edges
but not faces. These structures are called dipolar tetrahe-
dral structures by Mclarnan and Baur (1982) who show
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Fig. 6. The relation between numberofshared edges between
cation tetrahedra and both the electrostatic Madelung energy and
the one-electron covalent band structure energy for 2 real
observed and 2l hypothetical polymorphs ofBeO. The structure
types plotted are the wurtzite (o-BeO) type (cross), the pBeO
type (x) and the 2l hypothetical dipolar tetrahedral structures
with (l,l) or (2,1) unit cells. The small numbers by some of the
points tell how many points are represented by the single
symbol.

that there are five such structures possible with a (l,l)
orthohexagonal cell, and seventeen such structures with a
(2,1) cell. For the composition BeO they all satisfy the
electrostatic valence rule exactly, so that from the stand-
point of Pauling's rules applied to idealized structures
with all tetrahedra regular, they should differ in energy
only because they ditrer in amount of edge,sharing.

Figure 6 shows the energies of these twenty-two struc-
tures plotted as a function of the number of shared edges.
In this plot we have evaluated the energy both using our
covalent band structure calculations and irsing a pure
point charge Madelung sum (i.e., E = ll2 l(qiq:/rii),
where q; and q are the charges on atoms i andj separated
by a distance rij), the most extreme and simple ionic
model. As can be seen, in both cases the energy can be
described accurately as a linear function of the number of
shared edges, in keeping with Pauling's third and fourth
rules. Thus, either a purely electrostatic or an essentially
purely orbital model predicts that counting shared edges
is nearly equivalent to working out total energy. Of
course, the two methods have different standard states,
and both produce meaningful relative energies but not
meaningful absolute energies; so one would not expect
either the intercepts or the slopes of the two lines to be
equal.
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Electrostatic interactions fall off very slowly with dis-
tance (they diminish as 1/r), so one might well imagine
that the Madelung energy of a crystal should be poorly
predicted from a knowledge of purely local geometry.
The high degree of linearity in the plot of Madelung
energy vs. shared edges (r2 = 0.869) is thus actually a
surprise. Overlap interactions fall off much more rapidly
than electrostatic (at least as t/d), but this fact alone
obviously does not explain the observed linear relation (r2
= 0.959) between number of shared edges and band
structure energy.

To understand the variation in covalent energy, it is
natural to consider first the atoms on which the majority
of the electron density resides, that is, the anions. In
these twenty-two crystal structures there are four possi-
ble anion coordination geometries, which are shown in
Figure 7a. These geometries are numbered 0, l, 2 and 3,
the numbers indicating the number of shared edges in
which an anion in that configuration participates. The
energetic efects of these different geometries can be
assessed by computing the energies of eight-electron
OBei6 "molecules" via Extended Htickel calculations of
the molecular type. For conceptual simplicity and in
order to model better the crystal calculations which place
very little electron density on the metal atoms, we employ
pseudoberyllium atoms having only s orbitals in these
calculations. The parameters are listed in Appendix I,
and the energies are given in Table 4.

Given these values, approximate energies for the
twenty-two crystal structures can be computed by simply

4{ }--t

Qn C," Dro SE Q.,(el

Fig. 7. (a) The f ive dif ferent oxygen coordination
environments found in the 23 structure types in Fig. 6.
Conformation 0 is a regular tetrahedron. Conformations l, 2 and
3 are derived from a tetrahedron by replacing tetrahedral angles 0
= 109.47" with angles of 18010 between l, 2 and 3 pairs of bonds,
respectively. Arrangement B, found only in pBeO, has local
symmetry mm2, as shown. (b) Five other possible molecular
geometries for OBea.

(o)

(b)
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Table 4. Energies and overlap populations in OBea Molecular
Units'

" l {olecule" E(ev ) E ' ( e v )

Bond Overlap Populal ions
<B€-0> <Be-Be>

by ensuring a realistic ligand environment, which can
only be achieved in the crystal itself). Crystal energies
are then, to a first approximation, the sums of energies
associated with the anion coordination environments.
However we cannot completely exclude an extra orbital
effect, increasing with the number of shared edges, and
transmitted through the bridging oxygen atoms, since we
have no means of knowing whether the variations in the
local geometry sum numerically accounts for all of the
calculated variation in the band structure energy. With
this qualification we develop the idea that increasing the
number of shared edges, increases the number of less
stable anion coordination environments.

As a further test of the importance of anion coordina-
tion, we consider the structure of pBeO (Smith et al.,
1965) shown in Figure 9. This material is a three-dimen-
sional framework composed of edge-sharing Be2O6 di-
mers which then link by vertex-sharing. The oxygen
atoms are not closest-packed but form the less dense
rutile packing of Baur (l98lb). If the BeO4 tetrahedra in
this arrangement are taken to be regular, as in the twenty-
two dipolar tetrahedral structures above, then the coordi-
nation about the anions is that shown in Figure 7. An
OBea molecule with this geometry lies below any of the
conformations 1,2 and 3 in energy (Table 4), and as
shown in Figure 6, the three-dimensional pBeO crystal
structure lies lower both in one electron orbital energy
and in Madelung energy than any of the twenty-two types
above except that of wurtzite (a-BeO). This occurs
despite the fact that four ofthe twenty-one higher energy
types have the same number of shared edges as pBeO,
and one has fewer. As shown in Figure 8, the energy of p

BeO relative to a-BeO is well approximated by the same
linear expression.based on the relative energies of the
constituent OBef,6 molecules which applied to the dipolar
tetrahedral structures. Thus, anion coordination geome-

th

Fig. 9. Idealized crystal structure of B-BeO. Shaded

rhombuses are pairs of edge-sharing BeO4 tetrahedra seen down

z. The dashed lines show one of the planar four-membered rings

composed of 2 Be atoms (squares) and 2 O atoms (circles).
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taking IniEi where n; is the number of anions per unit cell
having coordination geometry i, and Et is the energy of
this geometry from Table 4. As can be seen in Figure 8'
this calculated energy obtained from "molecular" frag-
ments and the crystal energy from the full band structure
computation agree extraordinarily well (r2 : 0.994). The
slope of Figure 8 is not exactly unity, since the local
geometries have been energetically modelled by taking s
orbitals alone on the ligands. (Use of the valence s and p

orbitals on the Be atoms does not improve the situation.
An accurate numerical representation could be obtained

Locol geometry energy sum {eVformuto unit)

Fig. E. The correlation between the one electron band
structure energy of BeO polymorphs and an energy computed by
adding local contributions from each anion coordination
polyhedron. Energies of the 5 possible local environments (Fig.

7) are found from calculations on OBef,6 "molecules." The
structures plotted and meaning of symbols are as in Fig. 6. The
small numbers by some of the points tell how many points are
represented by the single symbol.
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try alone can enable one to rank energetically even
sufficiently similar structure types with different anion
packings. It can further help to rationalize the occurrence
of structures like B-BeO with more shared edges (but also
more stable anion environments) than some unobserved
alternatives. We shall return to the B-BeO structure in
discussing shared edge shortening and nonbonded repul-
sions.

Although our analysis thus arrives at the same conclu-
sion concerning the lowest energy structure as does an
ionic interpretation, it is important to stress that it does so
for very different reasons. In particular, the different
anion coordination geometries do not differ in energy
because of increased cation-cation repulsions at the
tighter Be-G-Be angles. Instead the energy diferences
are due almost entirely to the ability of the central oxygen
atom to form stronger bonds when its coordinated Be
atoms are arranged tetrahedrally. This can be seen from
several arguments.

First, one can consider the various bond overlap popu-
lations in molecules 0-3. As can be seen from Table 4, the
average Be-O bond overlap population increases for the
more stable molecules, and the correlation of energy with
Be-O bond overlap population for these molecules is
nearly exact (r2 = 0.9997). The Be-Be bond overlap
population not only has a poorer correlation with the total
energy (12 : 0.8765), but correlates the wrong way: the
higher energy molecules have less total Be-Be repulsion
as measured by average bond overlap populations. Thus,
while Be-Be interactions contribute a net destabilization
to all of these molecules, that destabilization is reduced
by bringing the Be atoms closer together. This is not
surprising when one considers that the Be atoms are
extremely electron poor, so that bringing them together
enhances small bonding interactions between them. So,
decreasing molecular stability in the sequence 0, l, 2, 3 is
dominated by poorer Be-O bonding (measured by smaller
O-Be bond overlap populations), with a slight counterbal-
ancing effect due to Be-Be attractions (measured by less
negative Be-Be bond overlap populations).

Perhaps an even stronger argument for this point of
view in the molecular case is provided by the data in the
third column of Table 4. This shows the relative energies
of the four molecules determined by a calculation in
which all overlap integrals and Hamiltonian elements
between different Be atoms were set equal to zero. In this
calculation the ligands can feel only the central atom, not
one another. Despite this, the energy differences in this
calculation are proportional to and nearly as large as
those in the calculation including ligand-ligand overlaps.
Thus, at most a small percentage ofthe differences can be
caused by metal-metal interactions. Whether the de-
crease in Be-O bonding, as the geometry distorts away
from tetrahedral, is due to a change in s-p mixing
(Burdett, 1979) or occurs via a change in overlap between
predominantly oxygen 2p orbitals and the ligands (Bur-
dett,1976) in a question we shall not tackle here. That the

Table 5. Energies and overlap populations in solid BeO
variants"

Struclure Energy(ev) Bond overlap Populat ion Suns

Be-O Be-Be 0-0

3 . 2 7 3 6  - 0 . 4 ? 2 8  - 0 . 0 8 6 4

3 - 1 7 2 8  - O . \ 2 2 8  - 0 . 0 8 1 6

3 . 0 ? 8 {  - O . 1 l l ? O  - 0 - 0 7 8 3

3 . 0 0 9 6  - 0 . 4 0 3 2  - 0 . 0 7 7 2

2 . 8 6 4 0  - 0 . 3 6 9 6  - 0 . 0 6 9 0

w u r t z i t e  - 6 2 1 . O \ ' l

D - P o n n ( 1 , 1 )  - 6 2 0 . 8 6 7

D - P n  1 ( 1 , 1 )  - 6 2 0 ' 6 7 4

D - P n c n ( 1 , 1 )  - 6 2 0 . 5 7 5

D - P J n c ( 1 , 1 )  - 6 2 0 . 2 1 8

aThe 
energles per 8 aton uni l  ceII  and Lhe Lotal  f l rsc and second

i" ignUo"-Uona overlap populablons per cel f  of  the f lve dlpolar tetra-

h e d r a l  s t r u c t u r e s  v i i h  ( 1 , 1 )  u n l t  c e l l a '

total one-electron stabilization energy associated with
oxygen-beryllium orbital interactions decreases on dis-
tortion is, however, unequivocal.

Finally, it is possible to apply our reasoning about bond
overlaps directly to the crystal structures themselves.
Table 5 shows the energies and Be-O, Be-Be and G-O
bond overlap populations of the five possible BeO struc-
tures with a (1,1) cell. These were computed using the
results of band structure calculations on the infinite
crystals and not from molecular calculations on finite
molecules. The Be-O bond overlaps have been summed
over all Be-O bonded contacts in one unit cell, the GO
populations represent similar sums over all pairs of O
atoms coordinated to one another in the h.c.p. oxygen
lattice, and the Be-Be populations are sums over all pairs
of Be atoms bonded to a common oxygen atom. Just as in
the molecular case the total energies are extremely linear
in the Be-O bond overlap population (t = 0.994), as
shown in Figure 10. The Be-Be interactions again be-
come less antibonding in the less stable structures, and
vary much less than the Be-O interactions. Further, in a
multiple linear regression these interactions explain only
6Vo ofthe energy variation not attributed to linear depen-
dence on the Be-O bond population. Be-Be interactions
thus play only a slight role in the total crystal energy. The
same is true of the even smaller O-O interactions. Thus.
the orbital model does not in this situation bear out the
traditional explanation given for Pauling's third and

R2 = 0994

0.18 0 19 0.20
(Be-o Bond overlop populotior)

Fig. 10. The correlation between average Be-O bond overlap
population and the one-electron band structure energy for the
wurtzite structure and dipolar tetrahedral structures of Table 5.
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fourth rules, even though it agrees with these rules'
predictions.

Why then are the results of the Extended Htickel
calculations so strongly correlated (r2 : 0.935) with those
of Madelung calculations for our twenty-two possible
BeO structures? To answer this question, we must first
consider why these structures have different Madelung
energies. The fixed h.c.p. oxygen framework in these
structures guarantees that every anion sees the same site
potential due to neighboring anions in all twenty-two
structures. Further, every anion in any one of these
structures has the same number of cations at any given
distance as any other anion, so the contribution ofcation-
anion interactions to the Madelung energy will also be
identical throughout these types. They will differ in
energy only because of cation-cation repulsions. The
strong correlation between Madelung energy and shared
edges suggests that repulsions between neighboring cat-
ions account for most ofthe energy diferences. Thus, an
approximation to the Madelung energy could be obtained
by evaluating the cation-cation repulsions in molecules 0-
3. This is simply

The total one-electron energy of these molecules, how-
ever, is very surprisingly also proportional to

>lri;
This is shown in Figure I I, which plots energy as a
function of

not only for molecules 0-3 but for a number of other
arrangements (Fig. 7) of four Be atoms around a central
oxygen. These include both fairly regular and extremely
distorted geometries. In this plot we have dropped all
interactions between pairs of Be atoms in order to guaran-
tee that we are seeing a covalent effect unrelated to Be-Be
repulsions, but an identical correlation results if these
interactions are retained.

The origins of this remarkable proportionality (suggest-
ed to us by Dr. T. H. Upton) which plainly lies at the
heart of the agreement between the covalent and ionic
models in their energetic predictions on this family of
structures leads to a problem in molecular stereoche-
mistry which is at present unresolved. As already
stressed, the result is not a reflection of Be-Be repul-
sions. Rather the molecules behave as if there were
localized hybrid orbitals pointing to each of the ligands,
and as if these bonding hybrids interacted purely by
electrostatic repulsion.

2 2  2 1  2 6  2 . 8  3 0

L'/,,
Fig. 11. The covalent energies of ll different conformations

for a molecule OBef,6 as a function of the sum of the Be-Be
distances. The 1l geometries are shown in Fig. 7.

The geometrical implications of this result are thus
identical to the predictions of the familiar valence shell
electron pair repulsion (vsepn) model (Burdett, 1980;
Gillespie, 1972) which attempts to explain molecular
geometries as resulting from so-called "Pauli repulsions"
between localized pairs of electrons about a central atom.
If these pairs repelled one another entirely by Coulombic
forces, the energy predicted by vsern would be propor-
tional to

Is -
-, 

rij

and hence parallel to the variations in the one-electron
molecular orbital energy. The vsEPR approach can be
codified and applied to dynamic problems in the so-called
points-on-a-sphere (POS) model (Bartell and Plato, 1973;
Bartell, 1984). Here ligand atoms are treated as points at a
constant distance from a central atom which interact via
repulsive forces to give an energy of I l/ql for some n.
Physically, these interactions are presumed to include
hybridization effects, ligand-ligand steric repulsion, elec-
trostatic forces and "Pauli forces" between bond pairs.
Using these assumptions the observed vibrational force
constants may be used to fix the value of n. For molecular
PF5 it appears that the repulsions may be much harder
than those seen in the "ionic" case here (n : 7). This may
be caused by the large nonbonded repulsions between the
electron-rich, closed shell, fluorine atoms compared with
weak attractive interactions between the electron-poor
Be atoms in OBef6. If n were not close to I in OBea,
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Madelung calculations alone would not provide a means
of computing relative energies of our BeO polymorphs,
though a more complex ionic model incorporating a l/rn
repulsive force might apply. Also it has not escaped our
attention that PF5 is a much more "covalent" system
than OBef,6. Molecular orbital calculations for hypotheti-
cal octet AX4 systems show that the law of force between
the ligands, or bond pairs hardens quite dramatically as
the electronegativity difference between A and X de-
creases. This may well be the reason for the failure of
Madelung type ideas in general to predict the most stable
structure in more "covalent" materials.

Finally, we comment on the relation between our ideas
and Pauling's (1960) own valence bond interpretation of
molecular structures. We predict that shared edges are
destabilizing because they result in distorted anion coor-
dinations and hence weaker metal-oxygen bonding. This
argument is quite similar to that used by Pauling to
explain the tetrahedral structure of methane. This struc-
ture is found not because of H-H repulsion but because
the tetrahedral arrangement enables strong sp3 bonding
hybrids to form. lndeed both Pauling-type generalized
valence bond (GVB) calculations (performed by Dr. T. H.
Upton) and Extended Htickel calculations predict meth-
ane to be tetrahedral, and the two methods agree numeri-
calfy to within 7Vo in their predictions of the energy
differences among molecules CHa in configurations 0, l,
2, and 3 (Table 6). Unfortunately, GVB calculations can
be applied neither to highly ionic molecules like OBei6
nor yet to solids, but the qualitative argument that four-
coordinate eight electron anions should seek to form sp3
hybrids and hence should prefer a regular tetrahedral
geometry remains. Interestingly, in his original paper on
rules for ionic solids, Pauling (1929) implicitly uses this
argument by rationalizing the six-membered rings in beryl
as making the Si-O-Si angle close to the tetrahedral angle
of 109". In a purely ionic compound this angle should
prefer to open to 180". By and large, of course, Pauling
employed ionic ideas in dealing with solids, but it is
startling to see how applying modern ideas of electronic
structure to "ionic" crystals results in an interpretation
of their geometry which is largely convergent with that
pioneered by Pauling in the molecular realm.

The important role we have assigned here to anion
coordination geometry and our almost total neglect of

Table 6. Relative energies (eV) of CHa molecules in the
geometries O-3.

Extended

Hiicke I

Cenefa lLzed

va lence bond

0
1  - 3 9 0
2 . 6 3 0

cation coordination is not by any means new to us. Wells
(1975), O'Keeffe and Hyde (1982), Caro (1968, 1972), and
Franzen (1966)) among others have all pointed out the
importance of anion coordination in explaining a number
of otherwise complex structure types. The concentration
of O'Keeffe and Hyde (1978, 1981, 1982) on anion coordi-
nation and cation-cation distances is particularly close to
our view of the importance of bond angles at the anions.
Nevertheless, the tradition of reporting and considering
only cation coordinations, though condemned already by
Bragg (1930), is still alive. Crystallographers should
therefore again be reminded that not every structure type
is best described or explained by ignoring the environ-
ment of half the atoms and most of the valence electrons.

Rule 5: parsimony

"The number of essentially different kinds of constitu-
ents in a crystal tends to be small." (Pauling, 1929.)

It is not obvious that this rule bears a particularly close
connection to any particular energetic model, and it has
not been frequently addressed in the literature after 1929.
Brage (1930) regarded it as a corollary of rule I (which
limits variation in cation coordination number) and rule 2
(which combined with rule I limits the number and type
of cations about each anion). While this rule is not
intended to imply that essentially equivalent constituents
must be crystallographically equivalent, it is certainly
related to the more fundamental observation that most
common materials are crystalline rather than amorphous.
This at least guarantees that the number of essentially
different kinds of constituents of a material will be finite
rather than infinite.

We have little insight as to why either of these rules
should be the case beyond the fact that they are conse-
quences of the short-range nature of interatomic poten-
tials. (Consider, for example, an assemblage of balls
connected by springs which would at equilibrium possess
a periodic arrangement). Covalent forces in the Extended
Hiickel approximation fall off much more rapidly than
electrostatic forces (energies decrease at least as r-3
rather than r-r). Further, the perturbation arguments
carried out in Appendix I and alluded to above have
shown that orbital interactions operating solely between
nearest neighboring atoms act to favor identicalty coordi-
nated anions. To what degree observation demands these
extremely short range forces rather than much longer
range ionic interactions is by no means obvious, howev-
er. Indeed one of the more difficult problems for either
the covalent or ionic model to resolve is how ordered
structures with extremely large unit cells (e.g., 15004
dimension c in some polytypes of SiC (Shaffer, 1969) can
be produced even by electrostatic forces.

Finally, it is interesting that Baur et al. (1983) have
developed a numerical index for the degree ofparsimony
in a crystal structure, and have shown that using this
measure many crystal structures are not parsimonious
but lavish in their use of different local environments.
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Shared edge shortening and nonbonded repulsions

Pauling's five rules deal entirely with structures pos-
sessing idealized regular cation coordination polyhedra.
In the remaining portion of his papei (Pauling, 1929),
however, he states an extremely useful consequence of
the electrostatic model of crystal energies, namely that
shared edges between cation coordination polyhedra
should be shortened because of metal-metal Coulomb
repulsions. More recently O'Keeffe and Hyde (1978,
1981, 1982) have argued that many features of crystal
structures can be explained by very hard metal-metal
repulsive potentials resulting in cations behaving essen-
tially as hard spheres with large and constant nonbonded
radii.

Shared edge shortening has been investigated exten-
sively using molecular orbital methods of widely varying
degrees of sophistication (see references in Gibbs et al.,
l98l). These studies have invariably employed molecules
or "molecular" fragments torn from crystal structures,
but have almost always produced results in close agree-
ment with observation (one exception being a CNDO/2
study of Mg2SiSa, the sulfide analogue of forsterite
(Mclarnan et al., 1979).

To see qualitatively how nearest neighbor covalent
forces might produce shared edge shortening even in the
absence of direct metal-metal interactions, Consider the
coordination polyhedra about the anions in a dipolar
tetrahedral structure with only one shared edge in each
MO4 tetrahedron. This local geometry is shown in Figure
12. It is obvious that shortening the O-O distance in the
shared edge while maintaining a constant M-O distance
results in more regular OMa tetrahedra. Such a distortion
should therefore be favored by the anion hybridization
effects which were used above to explain the energetic
differences among dipolar tetrahedral structures with
regular cation coordination tetrahedra. Indeed, one might
expect that in the total absence of nonbonded interac-
tions, the requirements of anion hybridization would lead
to a configuration in which the OMt tetrahedra were
exactly regular and the MOn tetrahedra suffered extreme
distortions (in particular, they would have one O-M-O
angle of 70.53). Thus, shared edge shortening certainly
does not imply direct metal-metal repulsions.

Fig. 12. The local coordination geometries about the two
oxygen atoms composing a shared edge in a dipolar tetrahedral
structure.

- 1 5 5  0

o'-g-a-_6/0-

80' 90' lod tlO'
lo-ee-o

Fig. 13. The calculated energy of pBeO as a function of the
O-Be-O angle at the shared edges.

To render this argument more quantitative, to study the
roles of M-M and O-O interactions in shared edge
shortening, and to understand why observed structures
do not show the extreme distortions of cation coordina-
tion polyhedra predicted from hybridization efects above
it is necessary to carry out some calculations. The
obvious choice of structure on which to perform these is
FBeO (Fig. 9), both because it is observed and because it
can be distorted to give the O-Be-O angle at the shared
edge any desired value without changing any of the Be-O
distances. Details of the distortion pathway are described
in Appendix l. An additional advantage of B-BeO is that
if the O-Be-O angle in the 4-rings (and consequently the
Be-O-Be angle as well) is set equal to 90o, a structure
results which is its own antistructure. That is, interchang-
ing the Be and O atoms produces a geometrically identical
crystal. This self-complementary arrangement is that
predicted by a pure Madelung calculation. Thus, distor-
tions from O-Be-O : 90" can be used to measure the
relative importance of Be-Be repulsions (which would
tighten this angle) and O-O repulsions (which would open
it). Of course, hybridization effects around the anions will
also prove important here.

The one-electron energy ofp-BeO as a function ofthe
O-Be-O angle at the shared edge is shown in Figure 13.
As can be seen, a shortening of the shared edge is
predicted, and the calculated O-Be-O angle of 103.3'is in
acceptable agreement with the observed value of 98.4'
obtained from powder data (Smith et al., 1965).

The explanation for this calculated bond angle can be
seen in Figure 14, which shows the variation with O-Be-
O angle of (l) the Be-Be and GO bond overlap popula-
tions across the ring, and (2) the average of the O-Be
bond overlap populations at each oxygen. This shows
that there are two effects acting to open the O-Be-O
angle. First, there are cross-ring O-O repulsions between
the nearly filled shell oxygen atoms, and second there are
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Fig. 14. Calculated average bond overlap populations
between bonded atoms and between the nonbonded metal and
oxygen atoms at the shared edge in p-BeO.

cross-ring Be-Be attractions between the extremely elec-
tron deficient beryllium atoms. This attractive interaction
between the metal atoms means that the observed angle
cannot be viewed as a balance between O-O and Be-Be
interactions, since these both act to enlarge the angle O-
Be-O. The balancing energetic contribution acting to
decrease this angle is the preference ofthe oxygen atoms
for tetrahedral OBea coordination. This effect is not
clearly shown by the trend of the O-Be bond overlap
population, but its importance in the total energy of both
crystal and molecular tetrahedral structures has been
amply demonstrated above by examining rather simpler
structure types than FBeO.

In order to confirm the importance of O-O repulsions
and Be-Be attractions and to attempt to weigh their
relative magnitudes, we repeated these calculations
"turning down" first the O-O interaction and then the
Be-Be interaction by artificially halving all O-O (or Be-
Be) overlap integrals. In both cases the O-Be-O angle
shrank, as expected if O-O interactions were repulsive
and Be-Be ones attractive. The change in equilibrium
angle was, however, small (1.8'when O-O interactions
were reduced and 1.5'when Be-Be were reduced). This
suggests that either the Be-Be attractive potential or the
O-O repulsive potential must be quite hard (presumably
the latter). Further. it hints that while both Be-Be attrac-
tions and O-O repulsions affect the equilibrium geometry,
the O-O interactions may be somewhat more important.

This is borne out by the bond overlap populations plotted
in Figure 14. The greater electronegativity of oxygen
means that changes in O-O bond populations have a
larger energetic effect than comparable changes in those
for Be-Be. All these conclusions might be strengthened
by reducing nonbonded interactions further still; but
unfortunately, attempting this results in an ill-conditioned
Hamiltonian matrix.

The interpretation that shared edge length represents a
compromise between short anion-anion edges favored by
anion hybridization efects and long edges favored by
anion-anion repulsion and cation-cation attraction is obvi-
ously at odds with the conventional electrostatic model.
It is also at odds with O'Keeffe and Hyde's (1978, 1981,
1982) view that crystal geometries are largely determined
by a very hard repulsive cation-cation potential, of which
we see no trace. Both these other interpretations, result
in incorrect geometric predictions for B-BeO. A pure
point charge model leads to an GBe-O angle of 90'. A
model in which metal-metal repulsions dominate O-O
repulsions should result in d(Be-Be) > d(O-O) in the 4
rings, so that O-Be-O < 90". Some indication of the
failure of this second approach is shown in Table 7, which
compares metal-metal and O-O distances in p-BeO and
two of its derivatives with the sums of the "one angle"
nonbonded radii from O'Keefe and Hyde (1981). Let us
state first of all that our use of these "one angle"
nonbonded radii is technically incorrect since they are not
designed for such square environments but much more
open ones. However, we have used these values for lack
of anything better to represent that ill-defined quantity
"nonbonded radius." As can be seen, the oxygen atoms
are well over two radii apart, but the metal-metal separa-
tion averages 0.42A less than the sum of the nonbonded
radii.

Thus, our energetic interpretation is novel, and the
covalent approach, unlike models based on point charges
or fixed nonbonded metal-metal distances, produces

Table 7. Geometric data in pBeO and derivatives"
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qualitatively correct behavior in the 4-rings (d(Be-Be) <
d(GO)), and indeed makes a quantitatively acceptable
prediction of the O-Be-O angle.

Lower anion coordination numbers

In all the compounds discussed so far, the anions have
coordination number four, and hence prefer a tetrahedral
environment, just as they wotild in the electrostatic
model. With lower coordination numbers, however, the
predictions of the two models diverge further. A pure
point charge model would predict that a molecule like
NH3 should be planar and that H2O should be linear, since
in these conformations the cation-cation distances are
maximized. Molecular orbital arguments, however, lead
to the correct prediction that both these molecules should
be bent. To a first approximation, the hydrogen atoms
should occupy 2or3 of the vertices of a tetrahedron, with
lone pairs of electrons pointing toward the remaining
vertices. This prediction is made either by simple argu-
ments from perturbation theory or Walsh diagrams (Bur-
dett, 1980) or using traditional electron counting methods
(Gillespie, 1972).

Numerical calculations of the extended Htickel type
reproduce poorly the geometries oftwo and three coordi-
nate molecular hydrides but appear to be reliable for
nonhydrides. There is also evidence however that, as the
electronegativity ofX decreases, a long way below that of
A in an AXn system with n -- 2, 3 then the linear and
trigonal planar geometries respectively are the ones ex-
pected on both orbital and electrostatic reasoning. Molec-
ular examples however are few; linear Li2O is one known
experimentally as a gas phase molecule, but calculations
have been performed on many unknown molecules of this
type (Dill et al., 1977\. LiNH2 is one such species,
predicted to be pyramidal by vsnrn but computed to be
most stable at the planar structure. The electronic factors
influencing the stabilities of the two geometries will be
finely balanced, involving ionic and covalent contribu-
tions to the energy.

In view of this difficulty, we must be careful in using
band structure calculations to study the local anion
geometries in solids with two- and three-coordinate an-
ions. It is interesting however, that an informal survey of
binary halide crystal structures with two- and three-
coordinate halogens shows that pyramidal or bent anion
configurations occur in a substantial majority of these
structures. The exceptions are nearly all very ionic fluo-
rides. A preference for bent or pyramidal coordination
does not imply massive violation of the third and fourth
rules, since a tetrahedral bond angle at the anions is
sufficient to preclude the sharing of, say, tetrahedral
edges or octahedral faces without substantial distortion.
Of course, bent configurations are known to be often
found at the oxygen sites in silicates, for example.
(Tossell and Gibbs, 1978; Newton, 1981; Gibbs et al.,
l98 l ) .

Despite its shortcomings, the Extended Htickel method

can still be employed to study energetic diferences
among structures having two- or three-coordinate anions
as long as all the anion sites in the structures in question

have substantially identical nearest neighbor environ-
ments (e.g., all planar or all pyramidal). We have done
this, for example in a study of structures related to
arsenic with pyramidal three-coordination (Burdett et al. '
l98l). We sketch here the broad results of a study of the
structures of rutile and a-PbO2. If these structure types
are idealized by regarding them as based on ideal hexago-
nal close packing of the anions, as shown in Figure 15,
then the anions in both structures have the nearly planar

Y-shaped coordination environments of Figure 16. Band
structure calculations using these idealized structures
with Si and O atomic parameters and with d(Si-O) set
equal to that in stishovite (rutile-type SiOz) places the
rutile type significantly lower in energy than a-PbO2' as

Fig. 15. Idealizations of the crystal structures of rutile (a) and

o-PbOz &), where both structures are regarded as having ideal

h.c.p. anion-arrays. Stippled octahedra are occupied by cations

at z = ll2; unstippled octahedra have cations at z = 0' Also

shown are fragments of the two different infinite M2X (M =

cation, X = anion) chains which make up these structures. In

these chains, 3-coordinate atoms are anions and the other
(bridging and terminal) atoms are cations.
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M
Fig. 16. The oxygen coordination environment in the

idealized rutile and a-pbO2 structures.

expected. Both rutile and a-PbO2 can be formed by fusing
together chains of composition Si2O which are shown in
Figure 15. These chains are chosen to be the simplest
ones that contain all of the silicon atoms which coordinate
a given chain oxygen atom. The Si2O chains in the two
structure types are inequivalent; those in a-pbO2 repre-
sent twisted versions of those in rutile. The difference in
the energy per oxygen atom in these two chains, treated
as l-dimensional crystals, is nearly exactly equal to the
diference in energy per O atom we computed in the 3-
dimensional crystal structures themselves. Thus, ro com-
pare the energies of these two structures, it is sufficient to
compare the energies of the constituent chains. It is
possible to understand the energetics of these two chains
by looking at individual orbitals at various points in ft-
space, but the analysis is complex and will not be
presented here. Notice however that the chains we con-
sider are not the octahedral edge-sharing (SiOa) chains
which would first occur to a crystallographer looking at
the cation coordination in these structures, but are based
instead on the anion coordination environments. As
should be expected, the energies ofthe octahedral (SiOa)
chains, in which the electron-rich O atoms have their
coordination environments disrupted, do not match the
energies of the two 3-D structures. This illustrates again
the extreme importance of anion coordination in deter-
mining "ionic" crystal structures. It is interesting that we
have not been able to understand the energy differences
between rutile and a-PbO2 by using small "molecular"
fragments like the OBea units used above, but this time
have been compelled to consider infinite chains as our
building blocks. We suggest that an orbital interpretation
of solids with 2- and 3-coordinate anions in general should
be accessible using similar ideas.

Conclusions

We summarize our major conclusions.
l. Pauling's first rule predicts coordination numbers

badly, even for the alkali halides. Far superior sorting of
structures can be obtained using pseudopotential radii,
which are correlated with both atomic size and electro-
negativity. (This comes from earlier work; see Burdett
and Price, l98l).

2. The valence sum rule has a large topological compo-
nent. Much of the nontopological content of this rule can
be understood to follow from the conclusions ofperturba-
tion theory. Electronegative anions tend to be coordinat-
ed by electropositive cations and vice-versa, and identical
anions prefer similar environments. In hypothetical com-
pounds such as LiSiSN in which the more electropositive
anion has a lower formal charge, perturbation theory and
the valence sum rule make opposite site preference
predictions. The orbital interpretation, unlike the ionic
model, yields a simple explanation for the extended
valence sum rule.

3. Cation coordination polyhedra in tetrahedral com-
pounds tend not to share geometric elements because
structures with edge or face sharing have distorted anion
coordination environments which result in poor anion
hybridization and weaker metal-anion bonds. The energy
of a distorted tetrahedral OMa "molecule" is proportion-
al to >l/rij, where r;i runs over all metal-metal distances in
the molecule. This proportionality helps to explain the
success of the electrostatic model and Madelung calcula-
tions in general.

4. Shortened shared edges between cation coordination
polyhedra arise from a balance between anion hybridiza-
tion effects (favoring short edges) and both anion-anion
repulsion and, to a lesser degree, cation-<ation attraction
(favoring long edges). Nonbonded metal-metal repulsion
does not play a significant role.

Thus, molecular orbital ideas allow one to reinterpret
Pauling's classic rules in terms more compatible with
modern ideas of bonding than the original electrostatic
model. The reinterpretation bears out many of Pauling's
predictions and allows some others to be modified to fit
better the results of the past fifty years of structural
research. Like any simple model, qualitative or approxi-
mate, our molecular orbital methods represent an approx-
imation to the precise quantum mechanical truth. Never-
theless, this approximation has proven tremendously
productive in understanding molecular structures. It is
thus pleasing indeed to one believing in the unity of
nature that such methods have something to say about
crystals as well.

Finally, there is a nice symmetry in an understanding of
Pauling's rules based on the very ideas of orbital hybrid-
ization and covalent interactions which Pauling himself
pioneered in the study of molecules.
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Appendix 1: Geometrical and Atomic Parameters

Our calculations were of the extended Hiickel type (Hotrman,
1962; Hotrmann and Lipscomb, 1962) and employed, for the
crystalline materials the standard tight-binding approach (from
Whangbo et al., 1978, for example). The band structure program
was written by M-H Whangbo (North Carolina State Universi-
ty). Calculations on crystalline BeO used Slater exponents 0.975
(Be) and 2.275 (O). The Hii (in eV) were -10.0 (Be2s), -6.0
(BeZp), -12.1 (O2s) and -U.8 (O2p). The Be-O bond distance
was 1.649A. The wurtzite type and other close-packed structures
had the anions in an ideal h.c.p. arrangement. In ftBeO the angle
O-Be-O between the two Be-O bonds in a four-membered rine
was varied, keeping d(Be-O) : l.649l. The O-Be-O angt!
between the two "back" bonds not in the 4-ring was set equal to
lW.47". Calculations on OBea "molecules" used the same bond

distance and oxygen parameters, but allowed only 2s orbitals on
Be with H;i  :  -8.0 eV.

Calculations on MgAION used the above oxygen parameters.
Other Slater exponents were 1.950 (N) and 1.058 (Mg and Al).
Coulomb integrals were -26.0 (N2s), -13.4 (N2p), -9.0 (Mg3s),
-4.5 (Mg3p), - 12.3 (Al3s) and -6.5 (Al3p). In some calculations
O and N were replaced with an averaged anion whose Slater
exponent and Hi; were the arithmetic means of those for O and
N. The crystal structures used were ideal h.c.p. arrangements
with a volume per anion equal to that reported for MgAION by
O'Keeffe et al.  (1981).

Calculations on SiO2 in the rutile and a-PbO2 types used the O
parameters above. The Slater exponent for Si was 1.383 and its
Hi; were -17.3 (3s) and -9.2 (3p). No d orbitals were included.
The crystal structures were idealized to hexagonal close-
packings with a Si-O distance for 6-coordinate silicon of 1.77 A.
The calculations on one-dimensional chains replaced the
terminal Si by Si' having only a 3s orbital at -13.2 eV.

The H1 were computed by using the arithmetic mean
Wolfsberg-Helmholz formula with K = 1.75. Energies were
computed using the special points method (Baldareschi, 1973;
Chadi and Cohen, 1973). Here is not the place to discuss the
details of the tight-binding approach we have used. The
enquiring reader should refer to Whangbo et al. (1978) for a
discussion.

Appendix 2: Perturbation Theoretic Results

For two orbitals q and 92 with energies Hrr ( Hzz < 0, the
Extended Htckel secular determinant is

l H , , - g  H r 2 - s r 2 E
0 : d e t |  

'

l H t '  -  S , E  H r ,  -  E|  - '
If we assume Hu : fS,, (Hi; + Hr;) with K : 2, andwrite E = H,,
+ e this becomes

l - .  (Huz  -  e )Srz
0 :  d e t  I

l (Hzz  -  e )Srz  H22 -  H11 -  e
t - -

: -4Hzz - Hil - e) - (Hzz - e)2Siz (l)

If we are interested only in the stabilization of the lower energy
orbital, 91 we may assume eis small. Explicitly, we assume Hr2
and H22 - H, , are of the same order and that e and Sf2H22 are of
the same order and are small compared to H22. Equation (l) can
then be written to first order in e as

-  eo(Hzz-  H, , )  -  H ; rS?,  =  0 ,  i .e . ,  en  -  -  H l ts l
'  

H z z - H l

Since ee is of order (HzzSrz)2, this is called the second order
correction to the energy. To find the fourth order correction to
the energy, we let e : qy + 4 in (l). Now all terms linear in ee or
quadratic in S,, cancel, and the largest remaining terms are those
involving n, 4 or Sf2. Keeping these rerms only in (l) gives
-tn(Hzz - Htt) * 4 + 2H22 esS]2 : 0, so that

.e 2H22eoSl2 HlrSl, 2H)2s12
' "  

H : ,  -  H , ,  H2z  -  HU (Hz:  -  H , r )3  (Hzz  -  H , , )2

To find the wavefunction ry' of the lower energy molecular
orbital to second order, write r2 : ctgr I c2(p2 and solve
simultaneously the secular equations
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(Hrr - E)cr + (Hrz - SrzE)cu : 0

(H12 - S12E)c1 + (Hzz - E)c, :  g

Using

E = H r r * e o : H r r -
H1rS1,

Hr ,  -  H t t

and ignoring terms smaller than second order yields

" , : -Ed5", ,H r '  -  H ,

so that when properly normalized,

/ tzu,,u,, - H3,)s?,\ H,,s,,
v- | | ----::::-------- rvr ::---------::-v2

\  2 ( H 2 2  -  H " ) '  I  H z z  -  H ' r

Higher order wavefunctions are found in the same way.
Between typical pairs ofreal atoms, Sl2 is not independent of

Hr, - H", but is roughly proport ional to (Hzz - H11)- ' .  In the
calculations below, we assume Sl2 a(H22 - H,,) n, n > 0, which
includes both this case and the case S12 = constant (as in some of
the numerical computations discussed in the text).

Now let et, ez, e3 and ga be four atomic orbitals with H1 <
Hzz ( H:r ( Haa ( 0. Orbitals g and 92 are to lie on anions, 93
and ga on cations. For convenience, we denote H;; simply by H;.
In all our calculations the occupied orbitals are strongly anion-
located, so it is enough to look at how various interactions
p€rturb orbitals 91 and rp2. We now prove remarks l-4 from the
text.

Remark l: A crystal containing interactions (q, q) and (Ez,

9r) is more stable than one containing interactions (91, 9i) and
\pz, Ei.

Proof: The second order stabilization resulting from the first
pair of interactions is - (H?S?4)/(H4 - H,) - (H3S33)/(H3 - Hr),
and the stabilization resulting from the second pair is - (H4SL)/
(Hr - H,) - (H?S;4y(H4 - Hr). If Sfr a(H1 - Hi) n, then the
difference between these two stabilizations is proportional to

Hi H?
(Ho -  H,)"* t  (H,  -  Hr)"* t

- H i - H 3
(Hr  -  Hz)n* r  (Hr  -  Hr )n* r

This can be written as f(Hz) - f(Hr),

where f (x )  =  
'1  

,  -  t3  
, .

(Ho - x)n*t (Hr - x)"* '

We would like to show f(HJ - f(Hr) < 0, for which it is enough
to show that j! < 0 for x < H3. A bit of algebra yields

df
; =  t n  +  I X H ; ( H r  -  x ) " * 2
ox

- Hl(Ho - x)'*2)/(H3 - x)""2(H4 - x)n+2

The denominator of this expression is positive whenever x ( H..
Further, H3 > H?and Ha - x ) Hj - x >0, sothenumeratoris
negative, as desired.

Remark 2: lf the pair of interactions (q, E), (ez, e) is
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repfaced by (Et, E), @2, *), charge migrates away from orbitals

92and ga and toward orbitals q and 91.
Proof: It is obvious that since the energy decreases in this

process, there must be some such movement of charge from
higher to lower energy orbitals. To work out the details, we
construct the wavefunctions to second order. In the first case,
the two occupied molecular orbitals will be

|  -  (2HrHi  -  H i rs i . \  H . ,S13

[ ' -  2 1 g . - " y  / e ' - H , - H r  
e 3

and

| .  (2H2H4 - H?)si\  HoS,o
I r - --------:- t Q) - -- --------:--94 .

\  2 (H4 -  Hr ) '  I  
-  

Ho-  Hr '

In the second case, the orbitals will have the same form but with
subscripts (1,4) and (2,3). To compute the orbital charges result-
ing from a normalized orbital agi + b91, one observes that the
charge density is a2tfi + ZabE1q + b2d. If the charge coming
from rg2 is assigned to orbital 9; the charge coming from 9i is
assigned to 91, and the bond density from 9; 9; is divided evenly,
and if the orbital contains two electrons, then the number of
electrons in g is 2a2 + 2absij, and the number of electrons in g.; is
2b2 + 2absij. Applying this formula to the orbitals above and
ignoring terms ofdegree greater than 2 in 51 results in the atomic
orbital occupancies shown in Table 8. The inequalities listed in
that Table are those we prove here.

If Sfr a (It - Hi)-", then to prove the relationship claimed for
the charges on orbital 3 amounts to showing that

H r H r HrH.

i . e . ,  t ha t

(H, - Hd"" 
- 

Ar, - ,U* 
'

H r  H 2

(H3  -  H1 )n *2  (H :  -  H r ) " * ' ,

Table 8. Charges from perturbation theory

( 1 , 3 ) ; ( 2 , 4 ) ( 1 , r t ) ; ( 2 , 3 )
In  LeracL ions

Orbi!a1

^ ^ltr"'rt3l I
Inu-u,  l ' I

H.s^s?.
^  I  J  I J

( H 3 _ H 1  ) -

urnus!u

ln r-'r)'

^  ̂  l t , tr t lq I
l H u - H ,  l ' l

^ ̂ l tr t : t3r I
I  tu.-r.  l ' l

n-u-si-
1 '  - )

( H . - H -  ) -

t r tutlu) --  
{Hu-n t ,  ) '

a 
The charges  on  four  abon ic  o rb i ta ls  in  the  case thaL in te rac t ions  ex is l

oe tween or l iLa ls  1  and 3  and bebueen 2  and !  ( le f t  co lumn)  and io  Lhe

c a s e  l h a t  t h e  i n t e r a c t i n g  p a i r s  a r e  ( 1 , 4 ) ; ( 2 , 3 )  ( r i g h t  c o l u m n ) '
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It therefore suffices to show that

d l  *  \- l - l < 0
dx \ (Hr  -  x ) " * ,  I

when x < H3. This derivative is (Hr + (n + l)x)i(Hr * x)n*3.
Since x < Hr < 0, this is negative, as desired. The proofs for the
other three orbitals are identical.

Remark 3: Increasing pu^1on decreases the bond overlap popu-
lation between the anion and a given metal neighbor.

Proof: We show that if Hr < H2, Hr ( Hr, 91 interacts with 92
and 93 and Szr = 0 then the bond overlap population between
orbitals I and 2 increases as H3 increases. We first treat this
three orbital problem just as we did the two orbital problem
above, and find that the lowest energy molecular orbital has, to
fourth order, a normalized wavefunction of the form
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differences of order 52 like those in Remark l, but to (smaller)
energy differences of order 54.

Proof: Let Ht < Hz ( H3 ( 0. We shall show that the energy
of a pair of orbitals p1, on€ of them interacting with two rg
orbitals and one with two g, orbitals, is greater than that ofa pair
of 91 orbitals, each interacting with one <p and one 93. The
diference between these energies appears only in fourth order
sii.

The second order energetic stabilization resulting from inter-
acting 9r with <p2 and ra (i.e., forming a "molecule" epzq) is

H3s?3 H3si'
H r - H t  H r - H t

Similarly, a "molecule" ete2g2is stabilized by

H3S?"-tH., 
-  r l ,  

'

and q9191is stabilized by

H?S?.-2Hr-

Hence, to seeond order, two qtqzes "molecules are stabilized by
exactly as much as one ete2e2 and one gr93g3 "molecule.'r

Define e2 to be

H3sil
H z - H '

H3s?.
H r - H ,

(2HrH, - HrS?,
2(H2 -  H)2

(2H,H. - Hi)S?. \-IC;:TF= + o(S")Jer
/

S'zS?r
( H z - H r X H r - H r )

2(Hr -

- l

H ' )

't
I
I

H3)H:(2HrHr
+ ors'))q,

.  I  HrSr:  .  (4HrH3- Hl)S?3
T - T

\  H, - H, 2(H3 - Hr)3

/ HrS,, (3H,Hl - Hl)S?,
- \  

H z - H '  ( H 2 - H ' ) l

H3(2HrH2 -

2(H2 - H,)

In this wavefunction, we may assume S12 and Sr1 are positive
(otherwise just replace rp or 93 by - g2or - e).

In a normalized molecular orbital c191 + c2g2 + ca93 the bond
overlap population between atomic orbitals I and 2 is 4c1c2S12.
For this wavefunction that population is

S'.S?t
(Hr - HrXHz - Hr) and er to be

and

Then the fourth order contribution to the energy of 91g2g is

Hjt ors'r)e.l.
I

( - -J- .  - - l  _  ) ,  ex + eetz +
\ (H ,  

-  H ' )  (H3  -  H ' ) /
€2* '  €3

( H 2 - H | X H 3 - H r )

HrHlS,2S?3

( H 2 - H r ) 2 ( H r - H , )

- H2(2H|H3 - H3)S'2Sil  ,  ^,os.\
(H,  -  H ,XH,  -  H , ) t  

+  u (J" ) /

Only the third and fourth of these terms involve H3, so to show
that the bond overlap population increases as H3 increases, it
sufrces to prove the derivatives of these two terms with respect
to H3 are positive whenever H, ( H. < 0. Assuming that Sf3
c(H3 - H1)-", the derivative of the the third term is proportional
to

4 HrH3S?2

(H2 - Hr)2(H3 - H,) '* 
{2(Hr - Hr) - (n + l)Hr} '

Since the quantity in braces is positive and H1H3 is positive, this
is greater than 0. By a similar argument, the derivative of the
fourth term is also positive, as desired.

Remark 4: Anions of the same species prefer to occupy sites of
equal bond strength sum. This preference is not due to energy

{H,SL + H3S?3 + 2H2(H3 - Hr)S?z + 2H3(H2 - Hr)S?3} =

l t r \
I - T - l t € ? f € 3 r -
\ H ,  

-  H ,  H ,  -  H , /  
' - '

f r ,
t ( e r *  e r ) { -  

-

t  H r - H '
€3 2H2S?2 2H3si3

H r - H r  H z - H r  H r - H r

= 4h + e2q(fu + F) + 4Pc + (eu + e) ("tz + yr), where

I I

H i - H t

Obviously, then, the fourth order contribution to the energy of
the bonding orbital of ete2e2 is 4elg + 4e2y2, and the fourth
order contribution to 919393 is 4ejfu I 44y3. The diference in
energy between2(epze) and (919292 + p,gq) (each molecule
having 2 electrons in the lowest energy orbital) is then 4(e2 - e3)
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(&Jes - kcz) + 4(ca - cs) (7r - t). We would like to Ehow that
this is negative, whiqh follows at onae from the obvious lnegual-
ities e2 ( er < 0, 12 < 73- < 0, and 0 < fu < k. Thiq completes the
proofofremark 4.

It is worth rcmarking that in spesial cBse6 likc 51 = constant or

h = l all of the proofs above simplify to yleld argumeltE rnore
like that given in the body of the paper for Remart. L We have
attempted hcre to present proofs as Sgneral as possible in order
both to sugge$t the range of validity of our retults and to qhQw

that sush simplifyi4g assumpti,ons are unneces$ary.


