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Abstract

A thermodynamic model of phase relations in the system CaCOTMgCO3 is presented.
The model is based on the tetrahedron-approximation in the Cluster Variation Method, for
a trigonally distorted face-centered-cubic (fcc) Ising lattice. We treat dolomite
[CaMg(CO3)u] type ordering as the separation of species-l and -2 atoms onto alternate fcc-
(lll) --+ hexagonal-(000l) planes and relate this ordering to an intersublattice pseudopair-
wise energy parameter (e1". ( 0). we also consider intrasublattice interactions associated
with the energy parameter (ei.. ) 0) and relate these interactions to exsolution. For
stoichiometric dolomite, we compare the tetrahedron-approximation to a Bragg-Williams
approximation for calculation of the stabilization energy, from experimental brackets for
the critical temperature of cation disordering (?"). We demonstrate that the tetrahedron-
approximation gives a better result for the stabilization energy precisely because it includes
short-range order (SRO), and we note that it predicts considerable SRO above T". For the
segment calcite-dolomite, our calculated diagram (for Re = -ei,^lei., = 6) is in qualitative
to semiquantitative agreement with the experimental diagram of Goldsmith and Heard
(1961). With just the two parameters €;". ood e;o the theoretical diagram is symmetric about
the dolomite composition and with three parameters an asymmetric diagram can be
obtained. For the segment dolomite-magnesite, the model is inadequate in some respects,
and we note that another configurational degree of freedom is required to achieve full
qualitative agreement between the calculated and experimental diagrams for this region.

Introduction

Binary phase diagrams of the type shown in Figure l,
or related diagrams, have been proposed for a number of
mineral systems (Table l). Characteristic features of
Figure I are: (l) a line \ indicating a transition higher than
first-order in character (first-order in the sense of Ehren-
fest); between a high-temperature higher symmetry phase
a and a low-temperature lower symmetry phase F. (2)
two-phase fields in which a and B coexist at low tempera-
tures. (3) tricritical points, {Xt,T} and {X3,.I3'}, where the
curve I intersects the two-phase fields.

The main purpose of this paper is to show, with the
system CaCO3-MgCO3 as an example, that the macro-
scopic phase relations represented in Figure I are predict-
ed directly by an Ising model-type calculation based on
the tetrahedron-approximation in the cluster variation
method, CVM (Kikuchi, l95l). With this calculation, we
achieve qualitative to semiquantitative agreement with

I Present address: Inorganic Materials Division, National Bu-
reau of Standards, Washington, D.C. 20234.

2 Present address: Hughes Research Laboratories, 30ll Ma-
libu Canyon Road, Malibu, California 90265.

experiment for the Ca-rich side of the diagram, and our
results lead to a particularly simple physical interpreta-
tion for the relationship between energy parameters and
observed phase relations.

The tetrahedron-approximation gives a very detailed
account of the equilibrium state of order including the
long-range order (LRO) parameter (Sr-ro), and short
range order (SRO) parameters for near neighbor (nn-)
cation pairs, triangles, and tetrahedra. Inclusion of SRO
is an essential difference between the CVM approach and
other proposed models for systems of this kind (Nav-
rotsky and Loucks, 1977; Merkel and Blencoe, 19E2), and
a second purpose of this paper is to discuss the advan-
tages of including SRO in the theory. Another fundamen-
tal difference is that the CVM explicitly includes consid-
erations of crystal geometry and symmetry that are
ignored in the other models. Specifically, because of this
difierence, the CVM tetrahedron-approximation yields a
topologically correct phase diagram for the Cu-Au sys-
tem (van Baal, 1973, and Kikuchi, 1974), but a Bragg-
Williams approximation (the approximation made in the
models listed above and in regular-type solution models)
yields a topologically incorrect diagram (Shockley, 1938).
This metallurgical example should serve as a warning to
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Fig. l. Idealized phase diagram for CaCO3-MgCO3 and
related systems. Phase a is a high-temperature higher symmetry
phase and B is a low-temperature lower symmetry phase. The
curve-I is a line of higher than first-order transition which, if
second-order, is defined by the condition detIa2d"d/av-dv,]ar. =
0, where v- and vn define the state of LRO. Dot-dashed
extensions of I are the ordering spinodals (as in Allen and Cahn,
1976). {h, Tr} and {Xr', I3'} are tricritical points below which the
stability field for B is flanked by two phase fields.

the geological community that simple regular-type solu-
tion models may uot always be adequate for modeling
complicated ordering systems. Thus, the final purpose of
this paper is to acquaint the community with the more
powerful CVM theory.

Background

Experimental phase diagrams for the system CaCO3-
MgCOr (Fig. 6; Goldsmith and Heard, 196l ; Goldsmith and
Newton, 1969; Irving and Wyllie, 1975; Byrnes and
Wyllie, l98l) and the analogous system CdCO3-MgCO3
(Goldsmith, 1972) are similar to Figure 1. End members
and disordered solutions (space group R3c) are analogous
to phase d, and the ordered intermediate, dolomite
(CaMg(COr)2, space group R3) is analogous to phase B.
In the dolomite type of ordering, Ca+* and Mg*+ prefer-
entially occupy alternate (fi)01) planes (sublattice-a and

Table l. Binary systems for which the relations shown in Fig. I
have been proposed.

Syst6  l l tnere l  Nees References

tuCo3-uScO3

CdCO3 -ftSCO3

Fe2O3-FeT103

NaAlS1206-CsHSSl2O6

Na.AlSl3OE-CaAI2S120g

N.AlS13oE-IqIS 1308

4

1

2

sublattice-B, respectively), and the average M-O distance
in Ca** sites is larger than in Mg+* sites,2.387A and
2.081A, respectively (Althoff, 1977). An important difer-
ence between Figure l, and the experimental diagram is
that the experimental critical temperature for disordering
of dolomite (?") is lower than the consolute temperature
for two phases on the Mg-rich side of the diagram
(I"o,.orut"). This creates some theoretical problems which
we shall discuss later.

The model

The CaCO3-MgCOg cation sublattice is a trigonally
distorted version of the face centered cubic (fcc) lattice in
which one fcc-[11] direction has been shortened to
become the hexagonal-t0O011 direction (Fie. 2a). Thus, if
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Fig. 2. (a) Schematic drawing of a trigonally distorted fcc
lattice with alternating a and B planes. (b) Tetrahedron basic
clusters corresponding to the distribution variables T";rr and
Tpi5u; also indicating the energy parameters and subcluster
distribution variables associated with intersublattice (ei.., Y "ir)
and intrasublattice (q"u, H"i;) near neighbor pairs.

Ref6.ences are! .l - tuEton anit Kikuchi (1981)t 2 -

CatFntet (198J) t 3 o CarFnter (7978), 4 - Goldsilxh
(1972), 5 - coldamith anit Hearil (7967); 5 - Nerkel

ad Bfencoe (f982).
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we ignore other possible contributions to the configura-
tional entropy, such as rotational disordering of CO3
groups, and consider only the contribution from cation
disordering, we may treat CaCO3-MgCO3 as if it were a
binary fcc-derived alloy in which metal atoms are re-
placed by corner- and edge-sharing M-O5, octahedra.

In a CVM calculation the free energy of solution
(deviation from mechanical mixing) is expressed as a
function of distribution variables and configurational in-
ternal energies for some small basic cluster of atoms.
Basic cluster distribution variables indicate the probabili-
ty offinding the basic cluster in some specified configura-
tion, and an independent subset of these variables con-
tains all the thermodynamic information available in the
approximation. The CVM forms a hierarchical set of
approximations in which a basic cluster of a single site is
equivalent to the Bragg-Williams approximation; a pair of
sites as basic cluster is equivalent to Bethe's approxima-
tion and, in general, a larger basic cluster gives a better
approximation (Kikuchi, l95l). For this calculation we
take a tetrahedron as the basic cluster because it is the
simplest three-dimensional figure which allows us to
consider both intersublattice- and intrasublattice-pair cor-
relations. As our results show, intersublattice interac-
tions are associated with ordering and intrasublattice
interactions with exsolution. Thus, an explicit link is
established between specific categories of interactions
and specific features of the phase diagrams.

The grand potential

The thermodynamic function we minimize is called the
grand potential and is defined as:

E = E - T S - ) p i N i  i : 1 , 2  ( l )

where $ is the grand potential, E is the internal energy of
solution, T is absolute temperature, S is configurational
entropy, trri is the chemical potential of species-i and N1 is
the number of species-i atoms in the system.

The grand potential for an N-site system in the dolo-
mite structure ordered phase can be expressed (in a
normalized form) as:

Qo,a = Qo + QB = $/NnZ, (2a)

where /< is Boltzmann's constant and (from the derivation
in Appendix I)

Q.= F{,eiiur - i(s,i + t\+ t+ + rr.)}Tiir.r

1 [  I
+ > L(riikr) - ; I > L(Hif + ) usiil + ) L(Hr0 |

i i k l  . L r j  j k  k i  I

L(Yf) + >
jr

5 [  I
* ; l>  L(x i l  +> L(x f  +> L(x f l+)  t - txOl

o l i  j  k  I  I

/ \
+ F\" I I 

- > Tflr.rf + ) (al * c1 * an)Tiir<r
\ ijkl / i:kl

and

6p: gLei:yt - i(pt + k+ t+ + pJiTfri

r f  I
+ ) L(rfrJ - ;l > L(Hfl + > L(Hro + > L(Hf)l

i j k r  o L i  j k  k i  I

L(xf)+> L(xf l+) I- txr" l l
k r l

i[+ LGfl + > L(Yfl + > L(Y,o]

. ih L.'r) + )

(2c)

/ \
+ Flp| I - > rf*'l - ) (a6 * a1.; * qilTf,rr.

\ iin / iikl

Here ij,k,l = 1,2; L(x) = x lnx - x; T1j[r, Y;f, Hf and X;"
are distribution variables for T" tetrahedra, Yo intersub-
lattice pairs, Ho intrasublattice pairs, and Xo sites, re-
spectively (and similarly for B variables; Fig. 2b); F :

(kT)-t; egrr is the internal energy of solution of a tetrahe-
dron in configuration iikl; and the terms )ro \B, 41, <r;r, {rrr
are Lagrange multipliers which constrain T variables to
be normalized and to have appropriate symmetry (Appen-
dix I). The normalized grand potential for the disordered
phase (dai") can be obtained from equation (2) by includ-
ing the additional constraint Tlfs : Tf,rr.

If we take the indices I and 2 to signify Ca** and
Mg**, respectively, then for example, Tfi12 indicates the
probability of finding a tetrahedron with three Ca*' on
sublattice-c and one Mg** on sublattice-B. The Y's, H's,
and X's are called subcluster distribution variables and
describe the probabilities of finding qertain short-range
correlations in the system. Subcluster variables may be
regarded as dependent variables because they are related
to the basic cluster variables by geometrical equations of
the form:

Yn: Yif,= Yf : ) T,iu': ) Tfu' (3a)
jk jk

H'i= ) r,i"
kl

Xr": > Tiji.r: ) T,{ri
jkr jklih L(Yjf) + > L(Yfl]

(3b)

(2b) (3c)
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where the summation is always taken over those indices
not appearing in the subcluster variable of interest. Equa-
tion (3a), for example, expresses the probability offinding
a Y-type pair with species-i on sublattice a and species-l
on sublattice F; Eq. (3b) gives the probability of finding an
t-j pair with both atoms on sublattice-c and Equation (3c)
gives the probability of finding species-i on sublattice a
Similar equations may be written for HB pairs and trian-
gles.

Minimizing equations (2b) and (2c) with respect to T1j[1
and Tfr.r, respectively (at fixed T and p.), and solving the
resultants for Tifr.r and Tfrr yields:

l n T i f L l : F t t ( p " +  k +  w +  u )
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- ei;nJ + B)to * c;; * cil * du

,,- (HiFI.ift H,f; YifYjfYfi)"t

(xi"xfxfxf)r/E

lnTf*' : pt*(A + h + p+ + pa)
- e;;r.rJ * F\B - ari - drj - arr

+ r" 
(Hf,Hjfl Hf; yfiyf,yfi )'/2

(xfxfxfxr")5/E (4b)

Note that in differentiarine (2b) and (2c) we treat T
variables as independent, and maintain a strict separation
of a- and pvariables throughout (e.5., Yft and yf are
numerically equal but when we differentiate, we treat Y;fr
as a function of Tijlr only and Yf, as a function of T,f11
only). Equations (4a) and (4b) can be solved numerically
for Tifr.r and Tf,rrr by a combination of the Natural Iteration
Method (Kikuchi, 1974) and the Minor Iteration Tech-
nique (Kikuchi, 1976). An alternate method for solving
equations of this type, based on a Newton-Raphson
approach, is given by Sanchez and deFontaine (1979).

Coexisting phases

With the Natural Iteration Method the calculation is
done at fixed values of I and p, to obtain equilibrium
values for the distribution variables. The bulk composi-
tion and other quantities such as Slpe and various SRO
parameters, may then be calculated with the geometrical
equations. Compositions ofcoexisting ordered and disor-
dered phases are determined by locating the intersection
of d",a vs. g, and doi" ys. p at fixed temperature. In
practice, the @ vs. /, curves are almost linear, and we find
the two-phase equilibrium value for p by an iterative
technique based on linear extrapolation.

Tricritical points

Close to a tricritical point it is very difficult to calculate
the compositions of coexisting phases with any precision.
This unfortunate situation occurs because the curves 0o.6
vs. p and 061" vr. g, have identical slopes at a tricritical
point and, therefore, relatively large changes in p (and,

therefore, X) produce relatively small diferences in ener-
gy between the ordered and disordered phases (Oo,a -
@6;"). For this reason we do not have great confidence in
our estimated values for {Xs,T} and {X3' ,73'}, and we are
somewhat unsure about the shape of our calculated
diagrams in this region. A related problem is that the
Natural Iteration Method calculation converges very
slowly near a tricritical point, again because of the small
difference in energy between the ordered and disordered
phases. This situation is analogous to the experimental
problem of obtaining an equilibrium assemblage when
energy diferences are small.

S e co nd-order trans ition

The second-order transition curye, corresponding to )r
in Figure l, is obtained by evaluating the determinant of a
Hessian matrix [H]:

dettHl = det[a2Oo.d/Av-dvn]61" : 0 m,n : 1,2, . . . 5

where the subscripts (ord and dis) indicate that differenti-
ations are performed on 0o.6 but the numerical calcula-
tion is performed for 06;.. The v variables are a set of five
independent parameters which define the LRO:

vt  = Arrzr

Yz = Lzztt

y=( l l2) (L2zzr-  Atn)

Yt = Anzz

Ys = Lzzn

(6a)

(6b)

(6c)

(6d)

(6e)

where Aiip = l/2(Tiiri - ffu,l and linear constraints of
normalization and symmetry require four dependent u-
variables:

U r = A l t 1  = - 2 v t - v z (7a\

trz = Lzzzr : -vrl2 - vz * v3 - va - v5l2 (7b)

ur = Aruz : -vtl2 - Y2 - v1 - va -v512 (7s)

uq = Lzzzz : -2vs - vq (7d)

Note that at the composition X = 0.5, for a perfectly
symmetrical phase diagram, we have accidental degener-
acies such that vr : v5, &od vz: vqi thus, we have chosen
the v-variables in a way that maximizes the symmetry of
tHt.

With the above definition for the Hessian, det[H] is a
discriminatory function such that: det[H1 = 0 defines ?";
detlH] > 0 characterizes the disordered region; and
det[H] < 0 characterizes the ordered region. Because the
sign of det[H] changes across the transition, it is easy to
set up an iterative calculation which converges toward ?i.
All values used in constructing the theoretical diagrams
presented in this paper are converged such that f - T-
< 0.00001, where 7* < 7" < T+ ; and superscripts (+ and
-) indicate the sign of det[H] at these temperatures.

(4a)



Energy parameters

Calculated phase relations depend critically upon the
signs and magnitudes of energy parameters. As a first
approximation, we write the tetrahedron energy as a sum
of intersublattice- and intrasublattice-pseudopairwise en-
ergy parameters, 6;". and e;o, respectively. Here, the
intersublattice nn-pairs are iJ, j-1, k-1, and the intrasub-
lattice nn-pairs are i-j, j-k, k-i (Fig. 2b); and we use the
term pseudopairwise to emphasize that these need not be
two atom interactions, but may just as reasonably be
regarded as interactions between corner- and edge-shar-
ing M-O6 octahedra. In general, negative parameters
stabilize l-2 nn-pairs and are associated with ordering,
while positive parameters destabilize 1-2 nn-pairs and are
associated with exsolution. The parameter ei", is defined
in the usual way as:

Eier = Etz,ier - (llZ)(e111,i., I ezz,i.r) (8a)

and similarly for e1,u, such that

e1n = (l/2)(nijkteier * Ill1rr€ira) (8b)

where the factor ll2 is included because each pair is
shared by two tetrahedra; ni;n is the number of l-2
intersublattice nn-pairs; and mi;g is the number of l-2
intrasublattice nn-pairs in configuration ijkl.

Constraints ok Eis, and eiru

For the dolomite structure phase to be stable, and the
calculated phase diagram to resemble Figure l, three
constraints must apply to the energy parameters:

(l) ei". < 0
(2) ei., 12ei,^
(3) e;'. > 0

Constraint (l) simply expresses the necessity ofassign-
ing negative energies to configurations which character-
ize the dolomite structure ordered phase (configurations
associated with the variables Tfi12 and TSzr), such that

€rrt2 : t222t = (312)ei., < 0. (9)

Constraint (2) applies because configurations with two
atoms of each species (e.g.,1122, 1212, . . . , etc.)have
energies

Et l22 :  eDlZ :  :  t1 " ,  *  6 i r . (10)

Thus, if constraint (2) is violated, then an ordering
scheme based on these configurations will be lower in
energy than the dolomite structure scheme.

Constraint (3) is less obvious than (1) or (2). We find
that for e6 ( 0 the dolomite structure-calcite structure
transition is first-order in character (as for AB-type
ordering in the Cu-Au system; Van Baal, 1973; Kikuchi,
1974) and the calculated phase diagram resembles the Cu-
Au diagram, neglecting those features related to ArB-,
and AB3-type ordering. That is, the calculation predicts a
diagram in which narrow two-phase fields (ioined at a

r69

point at or neax X = 0.5) separate the ordered and
disordered regions, and the line defined by detlH] : 0
occurs metastably, below the transition temperature. The
reason for this result (Kikuchi and Sato, 1974) is that
favorable l-2 intrasublattice configurations compete with
more favorable l-2 intersublattice configurations, sup-
pressing the transition temperature, and imposing some
first-order character on the transition.

Results of these calculations and others (Burton, 1982)
support an interesting generalization concerning the rela-
tionship between energy parameters and phase diagrams
predicted by CVM approximations:

(a) When the sum of intersublattice interactions is
negative and the sum ofintrasublattice interactions is also
negative, then the transition is first-order as in the Cu-Au
system.

(b) However, when the sum of intersublattice interac-
tions is negative but the sum of intrasublattice interac-
tions is positive, then the transition is second-order above
T3 and first-order below, as in Figure 1.

It should be noted that CVM calculations are by no means
tied to a pairwise interpretation for the energy parame-
ters, and that we use this approach only as a convenience.
Any method which provides a set of tetrahedron energies
would serve as well, and the above stated generalization
would still apply. We note, however, that for more
complicated nonconvergent systems the statements
above may require some modification.

Comparison with Experiment I
(Quantitative Constraints)

Stabilization energy of dolomite X : 0.5

We have shown above that certain a priori constraints
apply to ais. ofld e6, if we are to calculate a diagram with
the appropriate topology and we now consider some more
quantitative constraints provided by experimental stud-
ies:

(1') 1100"C < T" < l l50'C at X :0.5 (Reeder and
Nakajima, 1982).

(2)t LH'd"t = -3.8(tl.l) kJ/mole (calculated from
data for the enthalpy of formation from oxides; in
Robie er al., 1979) where AI1&or = HSoromite -

fl3alcite - Hiuene"ite.

(3') {Xn71,l = {0.42,1070"C} (from the experimental
diagram of Goldsmith and Heard, 1961).

Given our very simplified and inflexible formulation for
the internal energy and the approximate nature of the

3 Note that this value of Allios is rather modest but the critical
temperature is quite high. These apparently contradictory obser-
vations provide another rationale for the assignment e;.u ) 0:
repulsive intrasublattice interactions imply resistance to disor-
dering and therefore a high value for T".

BURTON AND KIKL|CHI : TERMINATION APPROXIMATION
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Re' - (€ i ro  /€ i r r )

Fig. 3. (a) The enthalpy of stabilization of dolomite, A^If6oq,
as a function of R, (R. =- e;,"/e;..). The horizontal dashed lines
indicate the thermochemical value (Alfaor = 3.8tl.l kJ/mole
from Robie et al.,1979); the solid curve gives calculated values
for the tetrahedron approximation; and the dashed curve gives
calculated values for the Bragg-Williams approximation. Note
that for a fixed value of Tc, the tetrahedron approximation
always gives a lower value for A1f6o1 than the Bragg-Williams
approximation. (b) The quantities (\lT") and X, as functions of
R,. Note that a value of R" = 12 is required for agreement with
the experimental diagram, as opposed to the value 2 = R.= 4.5
that is indicated by Fig. 3a.

treatment as a whole, we do not expect to satisfy all three
constraints simultaneously, and indeed this is not possi-
ble. It is an instructive exercise, however, to calculate
MIi"1 (constraint 2') from the experimental brackets for
?" (constraint l') and compare the results with a Bragg-
Williams approximation.

In Figure 3a we plot A.EIiol as a function of the
parameter R, where

R"= -(e1.u/e1".) ( l  l )

The horizontal dashed lines in Figure 3a indicate the
thermochemical value for A,Eliol (constraint 2'); the solid
curve is for the tetrahedron-approximation; and the
dashed curve gives the Bragg-Williams approximation.
We expect both approximations to overestimate the con-
figurational entropy and, therefore, to underestimate the
stabilization energy (i.e., L,Hi^1" > AII3uJ. Thus, the

lower value of Mfiel that is obtained in the tetrahedron-
approximation (for all values of R") should be interpreted
as indicating improved agreement with the experimental
data.

To obtain the tetrahedron-approximation curve we
calculate r" (temperature in reduced units) as a function
of R" where

r. = -2kT"/3ei., (rZa)

and make the approximations

3ei", - AEi6 - A.EIiol (l2b)

In the corresponding Bragg-Williams case we have

Zi"rai., - Zioeio = -2kT. (13a)

34i", : -2kT.l(Zi., * Z;pR") (r3b)

where Zi". and Zi6 are coordination numbers for inter-
and intrasublattice cation-cation nn-pairs, respectively,
and in this easa 261 : Zi^ = 6.

In Figure 3b we plot the parameters (T3l7:) and & as
functions of R, and compare them with the corresponding
experimental data (constraint 3'). Our plotted values for
T3lT.) and Xr have been estimated graphically and, as
indicated above, are subject to some uncertainty. None-
theless, Figure 3b indicates that a value of R" = 12 is
required and this result clearly contradicts constraint 2'
and Figure 3a, which suggest 2 = R" = 4.5.

Importance of SRO

Improved agreement in the tetrahedron case (a more
negative value for A,ff!"D is a direct consequence of
including SRO in the theory. The tetrahedron calculation
predicts a second-order transition with substantial SRO
above T" (Figure 4), and, therefore, a )t-type specific heat
curve (C"(fl) with a significant high-temperature tail
(note that here C"(fl is only the configurational contribu-
tion to the specific heat). The Bragg-Williams approxima-
tion assumes no SRO above 7", and, therefore, no high-
temperature tail. In Figure 4 we plot Saqs, o12,ig1, = Y12
* Y21 and ot2.ira = Hi2 + Hzl as functions of reduced
temperature (T/T"). Above TlT" = l, the Bragg-Williams
approximation assumes that both orz,i", illd o12,1o have
the random distribution value of 0.5 (horizontal dashed
line), however, the tetrahedron-approximation predicts a
small, but significant, positive deviation (from 0.5) for
o12,1s1 &ttd a very large negative deviation for o12.1*. Note
that the relative magnitudes of these deviations are simi-
lar to the relative absolute magnitudes of e1", and e;., os
one would expect.

Analytically, the relationship between LEZov Cu(T),
and SRO can be understood by considering the energy of
transition (A.Eton,) from the completely ordered state
(with energy Er=o) to the completely disordered state
(with energy Er:).

R. r -(e 
;ro /c;.r)

F'

F

x

o 6
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UJ
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UJ
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lr
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o
E
o

T/T"=1

x = o 5

3L''3s,,"=o

Fig. 4. The long-range order parameter (St*o : crosses), and
two short-range order parameters, or2,i"t = Y12 * Y21 (open
circles) and (rrz.i,^= H'p -l H'21(closed circles), as functions of
reduced temperature (TlT") for X = 0.5 and R, = 6. Note that
above TIT," = I both SRO parameters deviate significantly from
the random distribution value of 0.5; also note that o12.;.,
deviates far less than o12.i.. because the absolute value of e;". is a
factor of six smaller than the absolute value of e;*.

pairwise parameters that are independent of composition.
To obtain an asymmetric diagram, one must either in-
clude composition dependence in the energy parameters,
or use many-body interactions as done by Van Baal
(1973\. In the Natural Iteration Method based on the
grand potential, it is easier to use composition indepen-
dent parameters because the calculation is done with
fixed p rather than fixed X; and, therefore, we have
adopted the many-body approach (Figure 5, dashed
curve). The specific parameters we add are called fi", and
Q*, and we simply append the factor (Nz,urr - 2)4". to
aisl and likewise for e6 such that

ey.r = (l/2){niirr[er". * (Nz,iir.r - 2)4*]

* trllrr[€ira + (Nz,iin - 2)q-]] (16)

where N2,1;q.q is the number of species-2 (Mg) atoms in
configuration irjkl; and the many-body parameters fi". and
Qo are treated as perturbations on elsy &nd si13, r€sp€c-
tively. Although it is possible to produce an asymmetric
phase diagram with only one such parameter, it seems
more reasonable to treat many-body perturbations of e;".
ofld e1.. as independent. In Figure 5 we take both Q". and
4r" to be positive which has the efect of stabilizing
configurations with three species-l (Ca) atoms and desta-
bilizing configurations with three species-2 (Mg) atoms.
Physically, the assignments 4er > 0 and 4* > 0 can be
rationalized in terms of the empirical crystal chemical
generalization that it requires more energy to put an
oversized ion in an undersized site than vice versa: i.e..
configurations with three Mg atoms are regarded as Mg-
rich environments characterized by relatively small sites
and configurations with three Ca atoms are regarded as
Mg-poor environments characterized by relatively large
sites (We note that this rationale makes more sense for
Qo than for S"., because intrasublattice interactions
involve edge sharing M-O6 octahedra whereas intersub-
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!)  ai"r=8i.o = 
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, !1 . ._o .  
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Fig. 5. The solid line (with open symbols) indicates the
symmetric diagram calculated with R. = 2 and 4., = 6i." = 0.
The dashed line (with closed symbols) gives the asymmetric
diagram for R" = 2, 4". : 4o = -ei.J4. Note the effect of Q",
and fi." on T3 and T3'.

o.o

Substituting -R"€i". : €i6, sep&rating the integral into
low- and high-temperature parts, and solving for AEtol we
obtain

Er=o=3e ;g1  -AE to l

Er:-= (3/2)(e;"'+ ei.)

A-E1on, = Er=-- Er=o = 
f* ,,0,
J o

^'!.: G#tl:

(r4a)

(r4b)

(l4c)

c"dr + 
L 

*.r] (r5) 6

The first integral in Equation (15) gives the energy
associated with loss of LRO and low-temperature SRO in
the system. The second gives the energy required to
remove SRO above 7", and it is this residual configura-
tional energy above T" (included in the tetrahedron case
but assumed to be zero in the Bragg-Williams case) which
accounts for the more negative AIfSor calculated in the
tetrahedron-approximation.

Comparison with experiment II
(phase diagrams)

Phase diagram symmetry

Figure 5 (solid curve) is the calculated phase diagram
for R" : 2. This diagram is symmetric about the composi-
tion X = 0.5 because we have made e1ip1 a function of
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Fig. 6. Comparison of calculated diagrams with the
experimental diagram of Goldsmith and Heard (1961). The
experimental diagram is given by the solid line through open
symbols. The dashed curve through closed dots gives the
tetrahedron approximation for R, : 6 and Q., = 4,u : 0. The
dashed line through open dots is the tetrahedron approximation
for R. = 6, 4., = ei"t2, and 4." = 0. Note that we have taken ?.
: ll25'C and that the projected value for T.on"ol,t. is far above
T".

lattice interactions are between corner sharing octahe-
dra.) In Figure 5 (dashed curve) we plot our calculated
diagram for ei". = -213, ei1, = 413, and qer : A* : 1/6 (in
reduced units). Note that the resulting asymmetry is in
qualitative agreement with the experimental diagram,
with respect to the inequality T3 < T3t.

Calcite-dolomite 0 < X < 0.5

In Figure 6 we compare our calculated diagrams for
R" = 6, 4". : 4.. = 0 and R" : 6, \., = ei"rl2 and firu =
0.0 (in reduced units) with the experimental diagram of
Goldsmith and Heard (1961). We regard the calculated
diagram as being in qualitative to semi-quantitative agree-
ment with the experimental one and find that including
S", improves this agreement somewhat. We note, howev-
er, that such a large value of 4". (4". : sier/2) seems
rather artificial. It should also be noted that we achieve a
level of quantitative agreement which is comparable to,
or better than, the Navrotsky and Loucks (1977) calcula-
tion; however, we generate the full asymmetric diagram
with only three energy parameters (as opposed to four),
and we calculate many more order parameters. We regard
the reduction in energy parameters as unimportant here
because it is also possible to construct an asymmetric
Bragg-Williams approximation with only three parame-
ters; however, the calculation of SRO parameters clearly
distinguishes the tetrahedron-approximation as a more
complete and physically rigorous theoretical treatment
than the Navrotsky and Loucks model.

A smaller value for R" gives improved agreement for
Arlliol but worse agreement for {Xt,T*; so that we regard
the value of R€ : 6 as a reasonable compromise. Quanti-
tative agreement could be improved by including compo-

sition and/or temperature dependence in R" but if, for
example, we include only composition dependence, then
R" must decrease by a factor of three to four between X :
0.5 and X = 0.4 which is quite dramatic. An alternative
approach would be to use a larger cluster approximation,
implying a lower Afl3"r, and include a greater number of
many-body parameters.

Dolomite-magnesite 0.5 < X < I

In all calculated diagrams Tconsotrte : Tt' I 7., in
conflict with experimental results for the Mg-rich side of
the diagram. This occurs because we consider only the
transition involving formation of the dolomite-structure
ordered phase and therefore generate only one minimum
in O.o1r(T,p,Tll1,Tll l2, . . .). Thus, we have only one )r-
curve, the metastable extensions of which must become
ordering spinodals below T3 and T3' Gig. l). Since
spinodal curves must pass through Tconsolute, and since we
have only one such curve associated with instability of
the disordered phase, the calculated value of T"o.,orut"
must lie on the curve )r and must, therefore, eeual T3'. In
order to relax this restriction, we require another configu-
rational degree of freedom-such as a third component or
another ordering possibility.

Our speculations on possible sources for another de-
gree offreedom center on the CO3 groups, as they are the
structural element we ignored in formulating the model.
Slight decarbonation of Mg-rich solutions leading to a
defect structure in which, for example, an O: ion re-
places a CO3 group would provide a third component. We
know of no experimental evidence to suggest this, but
stoichiometry could, at least in principle, be tested by
qqantitative analysis. A more likely explanation is that
another phase transition occurs, in which CO3 groups
become orientationally disordered at high temperatures.
A transition of this type has been shown to occur in
NaNO3, which is structurally analogous to CaCO3 (Rao er
al.,1975; Paul and Pryor, 1971); and it has been suggested
(Mirwald, 1979; Salje and Viswanathan, 1976) that the
CaCO3-I to CaCO3-IV transition is also of this type.
Thus, it seems plausible that a similar transition might
occur in Mg-rich solutions. The CO3 groups may be
regarded as occupying all octahedral interstices in the
distorted-fcc cation lattice; and, thus, to include CO3
group orientation in the model would require at least a
tetrahedron-octahedron approximation, which implies,
nominally, 28 basic cluster variables as opposed to 2a for
the tetrahedron-approximation. Note that the octahedron
approximation, which would seem the most natural
choice, fails to converge to the ordered phase (Kurata et
al.,1953).

Conclusions

Our results support the general conclusion that phase
diagrams resembling Figure I occur when the sum of
intersublattice interaction parameters is negative but the
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sum of intrasublattice parameters is positive, at least for
convergent ordering systems. With R" = 6, we achieve
semiquantitative agreement with thermochemical data for
the stabilization energy of dolomite, A.[fioq and demon-
strate that including SRO in the theory improves agree-
ment for this quantity relative to a Bragg-Williams ap-
proximation. The tetrahedron-approximation predicts
substantial SRO in disordered dolomites (above T") and
therefore a \-type specific heat curve with a significant
high-temperature tail. We obtain qualitative to semiquan-
titative agreement between theoretical and experimental
diagrams for the segment 0 < X < 0.5 and find that
including the many-body parameter 6i", improves the
agreement somewhat. We suggest that including compo-
sition and/or temperature dependence in R" would pro-
duce better quantitative results but note that rather
dramatic dependence is required to achieve full quanita-
tive agreement.

For the segment 0.5 < X < I we fail to achieve even
qualitative agreement with experiment, with respect to
the relative positions of 73' and ?consolutel and we note
that this inadequacy of our model could be remedied by
including either another component or another phase
transition. We speculate that a transition based on rota-
tional disordering of CO3 groups might provide the addi-
tional degree offreedom we require.
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