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Calculation of the elastic constants and high-pressure properties of diopside, CaMgSizOol
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Abstract

A computational model has been developed which describes the structure of the
pyroxene mineral diopside, CaMgSizOo, at the atomic level. The best model for the one-
dimensional silicate chains permits all bond angles and the bond distances along the chain
to vary. The crystal energy of the model is calculated from Coulomb, near-neighbor
repulsion, bond-angle bending, and bond stretching terms. Minimizing this energy with
respect to 16 structural variables, including the lattice parameters, yields a structure which
reproduces the observed one reasonably well. Elastic constants were calculated which also
agree well with experiment. Calculations for the model have been repeated at a simulated
pressure of50 kbar, and pressure derivatives ofthe elastic constants have been obtained.
Calculated pressure derivatives ofthe lattice parameters, bond distances, and bond angles
are in rough agreement with those observed experimentally. Two other models, with more
constraints on the silicate chains, did not reproduce the elastic constants satisfactorily.

Introduction

The development of computational models for struc-
tures of minerals at the atomic level is an important step
toward the goal ofpredicting the high-pressure properties
of mantle materials. Properties of interest include crystal
structures, elastic constants, rates of defect formation,
and diffusion constants of these substances. Much effort
has been directed recently to the modeling of the orthosi-
licate Mg2SiOa in its olivine and spinel forms (Myamoto
and Takeda, 1980; Catti, 1981, 1982; Matsui and Matsu-
moto, 1982; Price and Parker, 1984; Matsui and Busing,
1984). The orthosilicates are relatively simple in that they
are composed of isolated SiOa groups coordinated to the
various cations. In the present paper we extend this work
to diopside, CaMgSi2O6, a representative of the some-
what more complicated pyroxene minerals, in which the
silicate groups form one-dimensional infinite chains. Py-
roxenes are important mantle materials which occur as
stable phases in many types of igneous rock.

A computational model of a crystal consists of a
description of the structure, expressions for calculating
the energy of this structure, and a way of minimizing the
calculated energy by adjusting the structural variables.
Recently Busing and Matsui (1984) have described ways
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of simulating the application of external forces to these
models. Such forces can be hydrostatic pressure, normal
or shearing stresses, or various combinations of these.
The elastic constants at any pressure can thus be calculat-
ed. In previous work (Matsui and Busing, 1984) we have
emphasized that for a model to be realistic the energy
parameters should be selected to reproduce not only the
crystal structures but also the elastic constants of the
materials of interest. The purpose of this paper is to
describe the development of models for diopside based on
our earlier model for the olivine forsterite. We will show
that our final model reproduces the structure and elastic
constants of the mineral reasonably well. We will use this
model to calculate the structural changes at high pressure
and to predict the pressure derivatives of the elastic
constants.

Other efforts to model the pyroxene minerals have been
reported recently (Catlow et al., 1982; Parker, 1983).
However, these authors used fully ionic descriptions,
somewhat different from those which we will present.

Crystal structure of dioPside

The atomic arrangement in diopside was first deter-
mined by Warren and Bragg (1928), and recently careful
refinements have been made from X-ray (Levien and
Prewitt. 1981) and neutron-diffraction studies (Rossi et
al.. 1982). The structure is illustrated in Figure 1.

The crystal is monoclinic with space group CZlc and
four CaMgSi2O6 units per cell. The Ca and Mg ions each
occupy sites on 2-fold axes parallel to b (perpendicular to
the page in the figure). One kind of Si atom and three
kinds of O atoms are located in general positions. The O
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for the Ca and Mg ions. The silicate chain is permitted to
translate with two degrees of freedom in the x and z
directions, but one of the two rotation angles of the SiOa
groups is related to the lattice parameter c in order to
maintain the c-glide symmetry. The model thus has a total
of nine structural variables.

As we shall describe below, this RT model proved to be
much too stif, especially along the c-axis, the direction of
the chains.

Table l. Observed and calculated lattice parameters,
interatomic distances, and bond angles for diopside at

atmospheric pressure

Pararcter obs* Calc t *  Ca lc -obs

Fig. l. The crystal structure of diopside. Pairs of one-
dimensional silicate chains overlap each other in this view down
the b axis.

atoms are arranged about the Si atoms to form tetrahedral
SiOa groups, and these are linked to each other through
the 03 atoms to form one-dimensional chains parallel to
the c-axis. Each tetrahedral group is related to its neigh-
bors in the chain by the c-glide plane, which is parallel to
the page in the figure.

These silicate chains are stacked together to form
layers parallel to the b, c plane. The silicate layers are
held together by intermediate layers of cations. Each Mg
ion is octahedrally coordinated to six O atoms of the
silicate chains, and each Ca is coordinated less regularly
to eight O atoms. Table I lists the lattice parameters and
some interatomic distances and bond angles for the
observed structure.

Three models for diopside

Three kinds of models were tried for diopside with
different constraints on the silicate chains. Two of these
were eventually abandoned, because, although they pre-
dicted the crystal structure reasonably well, they could
not be made to reproduce the observed elastic compli-
ance constants. We will describe all three of these mod-
els, but we will present detailed results only for the most
successful one. All calculations were made with comput-
er program WMIN (Busine, 1981).

Because we had obtained good results in modeling
forsterite with rigid SiOa groups (Matsui and Busing,
1984), we chose a similar model for our first attempt to fit
diopside. The silicate chains were assumed to be com-
posed of rigid SiOa moieties sharing common 03 atoms.
The only flexibility in the chain arises from the variable
Si-O3-Si angles. We designate this as rhe RT (rigid
tetrahedra) model.

Structural variables for the RT model include the four
lattice parameters, 4, b, c, and B, and two y-coordinates

i l e v i en  and  P re r i t t  ( 1981 ) .  D i s t ances  a re  i n  A ,  and
angles are in degrees.

**Calculated values are fon the CS nodel .
?Notat ion is  that  of  Burnham et  a] .  (1967) as used
by Levien and Prevr i t t  (1981):-

t tParentheses indlcate quant i t ies which were not  var ied.

Lat t i  ce

a
b

v
In t ra -cha in  d is tances

s i  -0 (  l c r  ) t
s i -0 (2cr )
s i - 0 ( 3 c l )
s i -0 (3c2)
<s'i -0>
si -si

0 (  l c l  ) -0 (2c l  )
0 ( l c l ) - 0 ( 3 c 1 )
0 ( l c r ) - 0 ( 3 c 2 )
0(2c1 ) -0 (3c1  )
0 (2c l  ) -0 (3c2)
o(3c l  ) -0 (3c2)
<0-0>

In t ra -cha in  ang les
0 ( l c l ) - s i - 0 ( 2 c r )
0 ( lc1) -s i -0 (3cr )
o ( r c l ) - s i - 0 ( 3 c 2 )
0 ( 2 c l ) - s i - 0 ( 3 c 1 )
0 ( 2 c 1 ) - s i - 0 ( 3 c 2 )
0 ( 3 c 1 ) - s i - 0 ( 3 c 2 )
s i - 0 ( 3 ) - s i

Mg oc tahedron d is tances

M(  1  )  - 0 (  1A r ,  B r  )
M ( 1 ) - 0 ( 1 A 2 , 8 2 )
i l ( 1 ) - 0 ( 2 c 1 , D l )
<tt( 1 ) -0>
M ( 1  ) - M (  I  )
0 ( l A 1 ) - 0 ( 1 B l )
o ( 2 c 1 ) - 0 ( 2 D l )
0 ( 1 A 1 ) - 0 ( 2 c r )
0 ( 1 A l ) - 0 ( l A 2 )
0 (  1A2 ) -0 (2c l )
0 (  1A2 ) -0 (2D1  )
0 ( l A 1 ) - 0 ( 1 8 2 )
<0-0>

Ca polyhedron distances

r , { ( 2 ) -0 (1A l ,B1 )
M(2)-0(2c2,02)
r ' r ( 2 ) -0 (3c1 ,D1 )
r , r ( 2 ) -0 (3c2 ,02 )
<!r(2 )  -0>

9.60 -0.  15
9 .43  0 .51
5 .28  0 .03

106 .2  0 .3
458 .5  19 .4

(1 .60 ) t r
( 1 . 5 e )
1 .68  0 .01
1.67 -0.02
1 .63  0 .01
3 .15  0 .04

9 . 7 5
8 .92
5 .25

105 .9
439 .1

1 . 6 0
1 .  59
r . o /
1 . 6 9
1 . 6 4
3 . l l

2 . 7 4
2 .68
2 .69
? .66
2 .58
2 .64
2 .67

1 1 8 . 2
1 1 0 . 3
109 .9
109. 7
I03 .6
104 .0
135 .8

a .  L c
2 .06
2 .05
2 .08
3 .  10

2 . 7 8
? .98
3 .02
3 .05
2 .88
? . 9 7
2 .87
2 .94

2 .36
2 . 3 5
2 .55
2 . 7 2
2 .50

2 . 7 5
2 .67
2 .64
2 .69
2 .57
2 .66
z.  oo

r  1 9 . 3
108.8
107 .6
I  10 .9
104. I
105 .0
140 .3

2 .24
2 .0?
2 .09
2 . t 2
3 .23

2 . 7 6
2 .79
3 .34
3 . 1 2
2 .93
2.98
2 .79
2 .99

2 .43
2 .32
2 .70
2 . 7 7
2 .55

0 .01
-0 .01
-0.05
0 .03

-0 .01
0 .02

-0.01

1 1
-  I . 5
-2 .3
1 . 2
n (
1 . 0
4 . 5

0 . 1 2
-0 .04
0 .04
0 .04
0 . 1 3

-0 .02
-0 .19
0 .32
0 .07
0 .05
0 .02

-0 .02
0 .05

0 .07
-0.03
0 . 1 4
0 .05
0 .05
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At this point we felt that the Si-O bond lengths should
be rather insensitive to external forces, an idea supported
by the results of high pressure studies of forsterite by
Hazen (1976) and by similar work on diopside by Levien
and Prewitt (1981). We, therefore, developed a model for
the silicate chains in which all Si-O distances remain
constant, but all bond angles are variable. The constraints
required to maintain the c-glide symmetry of this model
are complicated but possible within the framework of
program WMIN. The resulting chain has eight degrees of
freedom, and, with the four lattice parameters and two
cation coordinates, produces a model with 14 structural
variables. We will call this the VA (variable angle) model.

Although the agreement between the observed and
calculated elastic constants for the VA model is much
better than that for the RT model, it is still not completely
satisfactory.

Our final model uses a less complicated description of
the silicate chains in which the Si-O3 bridging distances
are also assumed to be variable. Parameters of the chain
include three translations each for the Si and 03 atoms.
Atoms Ol and 02 rotate about Si, each with two degrees
of freedom, so that the Si-Ol and Si-O2 distances remain
constant. The structural variables then include these l0
for the silicate chain, two cation coordinates, and the four
lattice parameters, for a total of 16 variables. This will be
known as the CS (chain stretching) model.

In retrospect we realize that the structure would proba-
bly be better described by a model with all Si-O distances
variable, but we did not have time to treat a fourth model
during the period of this collaboration.

Potential energy expressions

For each of the models, the nonbonded interaction
energy was computed from the potential function

V(ri:) : 9i9ir1i-r + f(Bi + Bj)

exp[(Ai + A - r;i)/(Bi + \)J, (l)

where the first term represents the Coulomb energy for
pairs of atoms or ions with charges q; and q, and the
second term expresses the near-neighbor repulsion in a
form suggested by Gilbert (1968). Here f is a standard
force of I kcal mol-r A-t, A' and ̂ A1 are related to the
atomic radii, and B; and B.; are softness parameters of the
atoms involved. In calculating the energy of the model,
terms computed from (l) are included for all nonbonded
contacts except those between geminal atoms of the
silicate chain (i.e., two atoms bonded to the same atom).

The same repulsion parameters A and B were used for
all three models, and these are listed in Table 2. The
values for Mg and O were taken from our work on
forsterite (Matsui and Busing, 1984), and parameters for
Ca were derived similarly from the structure of the
synthetic olivine yCa2SiO4 (Czaya, 1971). Repulsion
terms for Si atoms are omitted, as these atoms have no
nonbonded near neighbors.
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Charges q(Mg) and q(Ca) on the cations are fixed at *2
proton units. Partial charges q(Ol) and q(O2) are con-
strained to be equal, but q(O3) for the bridging oxygen
atom is treated separately. Finally q(Si) is constrained to
make the structure have a net charge of zero. The oxygen
charges were adjusted separately for each of the three
models, and those for the CS model are given in Table 2.

A bond-angle bending potential of the form

V(a) : (k"12)(a - ai2 (2)

is included for the Si-O3-Si angle in all three models.
Here a is the calculated angle; and the unstrained value,
cs, and the force constant, ko, are energy parameters to
be determined. The VA and CS models also include
energy terms of the same form for the O-Si-O angles. The
same value of ko is assumed for all O-Si-O angles, but
three separate values of aa were assigned to angles 01-
Si-O2, O3-Si-O3, and O3-Si-Ol or O3-Si-O2.

For the CS model it is also necessary to include a bond
stretching term

v(d) = (kdlz)(d - di2 (3)

for the variable Si-O3 distances. Here d is the calculated
bond distance; and the unstrained value, ds, and the force
constant, k6, are energy parameters of the model.

Determining the energy parameters

The general procedure used for determining the energy
parameters of a model was to fix the repulsion parameters
A and B and the cation charges q(Ca) and q(Mg) as
described above. Certain other quantities were set arbi-
trarily at trial values. The remaining parameters were
then adjusted by the least-squares procedure of program
WMIN, based on the observed crystal structure. Using
the resulting values for the energy parameters, the energy
of the model was then minimized with respect to the
structural variables. A reasonable fit to the observed
structure was usually obtained. Normal stresses on the
model were then simulated, as described by Busing and
Matsui (1984), and certain of the elastic constants s1 were
determined and compared with the observed values. The
entire procedure was repeated several times with modi-
fied values of the trial parameters, finally using interpola-
tion to select values which give the best agreement for
both the structure and the elastic constants.

When this procedure was used for the RT mode,
reasonably good agreement was obtained for the crystal
structure, but the calculated compliance constants were
always too small, indicating that the models are too stiff.
This was especially true of s33, which measures compli-
ance along the chain. We found it impossible to increase
s33 above 26Vo of its observed value.

The VA model is considerably better in this regard,
producing reasonable structures and a calculated value of
s33 as large as 79Vo of the observed value. The overall
agreement of the observed and calculated elastic con-
stants for this model was still not very good, however.
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Table 2. Potential energy parameters used for the CS model

_La!'amter Value* Parameter Valuer
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polation was used to obtain compliance constants at zero
stress. No change in the crystal symmetry is produced by
these stresses.

In order to compute the remaining tensor elements,
shear stresses oa and 06 of 2.5 kbar and 5 kbar were
applied. These stresses cause the crystal to become
triclinic, and it is necessary to reduce the symmetry to
Cl. The number of structural variables then increases
from 16 to 32. Compliance constants at zero stress were
obtained by parabolic extrapolation.

The precision of these numerical calculations can readi-
ly be checked, because each off-diagonal tensor element
s1 (i I j) is calculated in two ways, from stresses oi and q.
These checks show that the present results are good to
about three significant figures.

Although it is the compliance constants si.i which are
computed by this method, we will follow the customary
usage and report the stiffness coefficients cij obtained by
inverting the matrix. These calculated quantities are
given in Table 3 together with the observed values of
Levien et al. (1979). In general the agreement is quite
good, considerably better for example than the results
reported for enstatite (Parker, 1983, p.74).

Effects of pressure

Because the properties of pyroxene minerals at high
pressures are of great interest, we applied a simulated
hydrostatic pressure of 50 kbar to the CS model for
diopside. This was done by using the techniques de-
scribed by Busing and Matsui (1984), and the energy of
the model was minimized to obtain the modified struc-
ture, slightly diferent from the structure calculated for
zero pressure. Additional normal and shear stresses were
then applied to the model and the compliance constants at

Table 3. Observed and calculated elastic constants and bulk
modulus K for diopsio;nlllr:l"tr calculated pressure

Cal  cn
Calc -obs  ac t j /aP

A(Ms)
A(ca  )
A(0  )

B (l,lS )
B (ca  )
B ( 0 )

q ( l {s ,Ca )
q ( s i  )
q ( 0 1 , 2 )
q ( 0 3 )

1 .552
1 .833
1 .791

0.0538
0 .07  I  I
0.2500

2.000
1 .425

- l  .260
-0.905

a^ (s i  -03-s i  )
o l  (  03-s i  -01 ,2 )
q l  (03-s i  -03 )
q;(01-s i  -02)

k (s i  -03-s i  )
kq(0-s i  -0 )

do (s i  -03 )

kd (s i  -03 )

r69.00
109. 18
101 .47
t17.47

0.0220
0.0730

1. 786

724.0

*Lengths are ln A,  charges in e lectronsr angles ln degree! ,
and force constants ln kcal  mol-r  deg-z o.  kcal  mol- l  A-?.

The chain-stretching model

The difficulties with the RT and VA models were
eliminated by the use of the CS model, which has more
degrees offreedom and more energy parameters than the
earlier models, and the remainder of this paper will be
concerned with this model. Listed in Table 2 are its final
energy parameters, which were determined in the follow-
ing way.

The repulsion parameters and cation charges were
again fixed at values derived earlier. The unstrained
angles cs(O-Si-O) were arbitrarily fixed at the values
given in the table. Several sets oftrial values were chosen
for lq(Si-O3), k"(O-Si-O), and k,(Si-O3-Si). For each
such trial, parameters dg(Si-O3), ao(Si-O3-Si), q(OL,2),
and q(O3) were determined by least squares, the structure
was adjusted to minimum energy, and the elastic compli-
ance constants were computed. Linear interpolation was
then used to select trial parameters which would best
reproduce str, szz, and s33, and the remaining parameters
were again determined by least squares.

Minimizing the energy of this model produces the
calculated structure with lattice parameters, interatomic
distances, and bond angles as listed in Table l The
agreement with the observed structure is fairly good.
Although the calculated b is 5.7% too large, the other
lattice parameters are of by less than 1.5%o, and the p
angle is correct to 0.3'. Interatomic distances within the
silicate chains are well reproduced, the largest discrepan-
cy being 0.054, but the Si-O3-Si angle is ialculated 4.5"
too large.

In the Mg and Ca coordination shells the largest
discrepancy in O . . O distances is 0.32A, indicating
that the calculated translation of the silicate chains with
respect to each other is not quite correct, but this is also
partly a result of the increased b parameter.

Elastic compliance constants were calculated, as de-
scribed by Busing and Matsui (1984), by applying normal
stresses 01, 02, ?td 03, oDd shear stresses 05 of + l0 kbar
to the model and readjusting the structure. Linear inter-

rLevlen et  a l .  (1979),  [ban.
*Dlmnsl66'Tffi.
t obse ryed  va ]ue  l s  4 .8  ( Lev len  e t  a ] . . 1979 ) .

obsr calc
l i  c t j  c t J

1 l
22
33
44
55
66

L2
l3
23
15
25
35
46

K

? .23
1 . 7 1
2 .35
0 .74
0.67
0.56

0 .81
0 .57
0 . r7
0.07
0 .43
0 .073

1 .08

2 .  l 0
1 .66
2.42
0.80
0.70
0.58

0.64
0.87
0 .12
o.26
0 . 1 1
0.49
0.092

1.05 -0.03

5 .0
7 . 5
4 .7
2 . 5
1 ?

2 .4

5 .9
4 .5
4 . 1

- 1 . 0
-1 .6
-0 .7
1 . 0

6 .2 t

-0.  l3
-0.05
0 .07
0.06
0.03

-0.08

-0.  l3
0.06
0.  l5
0.09
0.04
0.06
0 .019
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Table 4. Observed and calculated pressure derivatives of the
lattice parameters, interatomic distances, and bond lengths in

diopside

value of 6.2, lending some credibility to our calculated
derivatives.

Levien and Prewitt (1981) have reported the results of
careful structure refinements based on X-ray data taken
at five pressures from one atmosphere to 53 kbar. Al-
though there are some discrepancies between our calcu-
lated structure and their observations, we would expect
the calculated pressure derivatives ofthe various parame-
ters to be comparable to those observed. Since the
parameters tabulated by Levien and Prewitt show some
scatter, we have obtained observed pressure derivatives
by fitting a straight line to each of their quantities as a
function of pressure. We used the method of least
squares, weighting each observation according to its
reported standard error. The resulting derivatives are
reported in Table 4 with standard errors based on either
the reported standard erors or the error offit, whichever
is larger.

Also tabulated are the derivatives calculated numeri-
cally from the CS model. These were obtained simply
from the differences in the parameters calculated at zero
pressure and at 50 kbar. The observed and calculated
derivatives agree roughly, although, in general, the agree-
ment is not so good as would be expected from the
standard errors. Again, the agreement is better for dis-
tances and angles within a silicate chain than for distances
from one chain to another. In any case, we regard this
rough agreement as further indication that our model is
approximately correct and that it is a reasonable starting
point for further improvements.
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Parameter,  p
0bs*
ep /aP

Ca' lc
op l  aP

Lat t i  ce

o

R

v

Intra-chai  n d l  s tances

s l  - 0 (  l c l  ) * i
s i -0 (2c r )
s i - 0 (3c r )
s i - 0 (3c2 )
<si  -0>
si  -s i

di  stances

- 2 . s 7  ( 7  |-2.e4(4)
- 1 . 3 2 ( 3 )

-10 .2  (  5  )-347 (7)

- 0 . 2 1 ( 8 )
-0 .07  (  4  )
- 0 .10 (8 )
-0 .17  (8 )
- 0 . 1 4 (  3 )
-0.64( l  )
- 0 . 2e  (  13  )
- 0 . 1 3 ( 1 r )
- 0 .05  (  22  )
- 0 . l s ( 4 )
-0 .03 (6 )
-0 .53 (2 )
-0 .  18 (4 )

-0 .83  (  r 0  )
- 0 .42 (17 )
-0 .77  (  6  )
-0.66( 6 )
-r.12(2)

- r . 0 6 ( 1 4 )
-0 .44  (  12  )
- 1 . 5 4 ( 5 )
-0 .73  (  5  )
- 0 .97  (  4  )
- 1 .10 (  20 )
-0 .60  (  18  )
- 0 .  e2 (4 )

- J . U ,
- 3 .  18
-1 .  25

-14 .  r
-373

( 0 )
(o )
- 0 .20
-0.  l8
-0 .09
-0.72

-0.09
-0.05
-0.12
-0 .  l l
-0.04
-0 .52
-0.  16

0 ( l c r ) - 0 ( 2 c l )
o ( lc l  ) -o (3c l  )
0 ( l c r ) - 0 ( 3 c 2 )
0 ( 2 c l ) - 0 ( 3 c l )
0 (2c l ) -0 (3c2)
0(3c l ) -0 (3c2)
<0-0>

In t ra -cha in  ang les
0 ( l c 1 ) - s i - 0 ( 2 c l )  - 5 ( 4 )
0 ( l c r ) - s ' i - 0 ( 3 c 1 )  s ( 6 )
0 ( r c l ) - s ' i - 0 ( 3 c 2 )  1 3 ( 7 )
0 ( 2 c l ) - s i - 0 ( 3 c r )  - 3 ( 3 )
0 ( 2 c 1 ) - s i - 0 ( 3 c 2 )  8 ( 5 )
0(3cr ) -s i -0 (3c2)  - le (2 )
s i -0 (3) -s i  -3s(3)

-6
6
z
5
6

-12
-36

Mg

r , r (  1)  -0(  lAt ,Br )
t ' t (  I  ) -0 (  1A2,82 )
M ( 1 ) - 0 ( 2 c 1 , D l )
<r't( I )-0>
M ( l  ) - M (  r  )

0 (  1A1  )  - 0 (  rB l  )
0 (2c1  ) - 0 (  2D l  )
0 ( l A l ) - 0 ( 2 c l )
0 ( l A l ) - 0 ( r A 2 )
0 (  lA2 ) -0 (  2c r  )
0 ( 1 A 2 ) - 0 ( 2 0 1 )
0 ( 1 A l ) - 0 ( 1 8 2 )
<0-0>

Ca polyhedron distances

M ( 2 ) - 0 ( 1 A 1 , B r )
?4(21 -O(2c?,D2)
r , r ( 2 ) -0 (3c1 ,D1 )
M(2 ) -0 (  3c2 ,D2 )
<M(2 ) -0>

- 0 . 5 7 ( 6 )
-0 .35 (  19 )
- 0 . 4 3 ( r 1 )
- 2 . 1 7  (  1 0 )
-0.89 (  7 )

- 1 .67
-0.  17
-0 .79
-0 .87
-  1 . 5 5
-1 .49
-0 .83
-2 .22
- 1 .  l 9
-0.86
-0 .83

- L . Z J

- 0 .70
-0 .  l 7
-0 .41
-2 .01
-0.82

rFron a least-squares f i t  to the data of  Levien and
Prew i t t  ( 1981 ) .  Un i t s  a re  A  Mba r -1 ,  13  p5sp -1 ,  o r  deg
Mbar- I .  The f igures in parentheses are the standard
e r ro r s  o f  t he  l eas t  s i gn i f i can t  d i g i t  g i ven .

t* l {otat ion is  that  of  Burnharn et  a] .  (1967)
as used by Levien and erewifJi9-af ).

high pressure were obtained. These were converted to
stiffness coefficients, and the derivatives Acij/AP, which
were calculated numerically, are listed in Table 3. Al-
though the experimental values ofthese individual deriva-
tives have not been reported, Levien et al. (1979) did
observe aKlaP, the pressure derivative of the bulk modu-
lus, to be 4.8, in rough agreement with our calculated
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