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Abstract

For some time now physicists have understood the general nature of the interactions in
metallic crystals that lead to the development of modulated (incommensurate) structures.
These structures result through interaction between displacement modes in the crystal and
electrons with energies near the Fermi level. They are described as charge density wave
structures. Until recently no corresponding explanation has been available for insulating
crystals, and in particular minerals, which show comparable long-range modulation effects.
Important mineralogical examples include the plagioclase feldspars, mullite and nepheline.

Theoretical study has now shown that certain basic symmetry principles are common to
all incommensurate structures and that, in insulating crystals, the interactions producing
long range modulation may comprise two phydically distinct ordering schemes, or the
combination of an ordering scheme with a system of lattice displacements of correct
symmetry.

The objects of this paper are twofold. First, the symmetry principles which apply to
modulated structures will be defined. Second, the nature of the physical interactions
(resonance) in modulated structures will be discussed in terms of a simple example. The
combination of resonance theory with experimental data from both X-ray single crystal
difraction study and high resolution electron microscopy provides new insights on the real
stfucture of modulated mineral solutions. This insight is essential in modelling the
thermodynamics of such solid solution systems.

. Introduction
Recently physicists have been interested in ex-

plaining the origin of long period modulations in
certain metallic compounds, of which TaSe2 is a
good example (DiSalvo and Rice, 1979; McMillan,
l977a,b). In these materials charge density wave
modulations develop on cooling and are associated
with an interaction between electrons with energies
close to the Fermi level, and a system of local
lattice displacements. One of the most striking
features of these long period modulations is the fact
that the wavelength of the lattice distortions is
incommensurate with the primary lattice repeat
periods ofthe crystal. It is for this reason that such
structures may be described as incommensurate, a
term which may be used without specific reference
to their mode of origin. It is usual to find, in the case

rThis report and the four reports which follow were first
presented at the M.S.A. Symposium entitled, "Real Behavior in
Minerals: The Integration ofTheory and Technique," held at the
G.S.A. Annual Meeting in Cincinnati, on November 4, 1981.
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of these incommensurate charge density wave
structures that, at some lower temperature, a lock-
in transition occurs, at which point the period of the
distortion wave becomes commensurate. The im-
portant features of the interaction between a charge
density wave, and a system of local displacements,
or distortions, can be explained quite simply as
follows.

Frohlich (1954) and Peierls (1955) were the first to
show that a one-dimensional metallic system is
unstable against the development of a charge densi-
ty wave. This follows from the fact that, for such a
system, the Fermi surface comprises two planar
surfaces with separation 2 kp as indicated in Figure
1. If we now introduce a displacement wave on the
one-dimensional lattice with period such that it
spans the Fermi surfaces, a band gap will be intro-
duced in the electron energy level diagram leading
to an overall reduction in the energyof the electron
system, at least at low temperatures. Atomic dis-
placements in this model system necessarily occur
in quadrature with the charge density wave, i.e.,
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Atom displacemettts
Fig. l The upper, k-space, diagram illustrates the presence

of a band gap associated with the Fermi surface for a one-
dimensional metal system. Notice that occupied energy levels
(full line) have been substantially reduced in energy (E) just
below the Fermi level. In the lower diagram the corresponding
situation in real space is illustrated. This corresponds to a
modulation in charge density in the crystal with related
displacements of the positively charged atom cores.

they are related to grad p, where p is the charge
density. The lowering of the electron energy levels
at the Fermi surface is illustrated in Figure I
together with a schematic model of the charge
density wave and its associated displacement wave.

Given this accepted mechanism for the develop-
ment of charge density waves it will be apparent
that the wavelength of the associated atomic dis-
placements need be related only to the position of
the Fermi surface and hence may certainly be
incommensurate.

The development of charge density waves in a
single crystal may be studied by a number of
physical techniques. The simplest way to demon-
strate the existence of such an incommensurate
structure is to use diffraction techniques which may
employ X-rays, electrons or neutrons. In the core-
sponding single crystal diffraction patterns addition-
al ditrraction effects are associated with the dis-
placement wave, and additional maxima of intensity
occur other than at the normal reciprocal lattice

points throughout reciprocal space. The incommen-
surate character of the modulations may be deter-
mined directly by measurement since the additional
scattering occurs displaced from the Bragg posi-
tions by vectors which are irrational in relation to
the basic reciprocal lattice repeats.

The presence of a transformation involving the
appearance of a charge density wave may also be
detected directly by making electrical conductivity
measurements on the single crystal sample as a
function of changing temperature across the transi-
tion. The introduction of the band gap associated
with the development of the charge density wave
system is associated with a dramatic decrease in the
conductivity of the crystal. Direct electron-optical
observation of charge density wave structures is
also possible, and has recently been described
(Chen et al., l98l).

It appears from diffraction evidence that charge
density waves are but one of a number of possible
interactions in crystalline solids which yield long
period structures that are incommensurate. Diffrac-
tion studies on the plagioclase feldspars (Bown and
Gay, 1958), on nepheline (McConnell, 1962, 198 1a),
and on mullite (Agrell and Smith, 1960) all combine
to show that additional diffraction maxima, which
cannot be indexed rationally, and hence must be
described as incommensurate, are a common fea-
ture of many mineral systems (McConnell, 1981b).
In considering the possible origin of such incom-
mensurate and modulated structures in minerals
one is driven to consider the possibility of other
kinds of interaction in the single crystals concerned
since these materials are insulators, and the role of
the Fermi surface and possible charge density wave
modulations are quite inapplicable. In what follows
an attempt will be made to demonstrate that the
general theory on which the incommensurate
charge density wave structures have already been
explained may be expanded to include many other
types ofinteraction in a single crystal, in particular
in relation to several different ordering schemes.

In order to make this connection among incom-
mensurate structures associated with a wide range
of possible interactions, it will be necessary to
discuss such interactions in very general terms,
which in practice means in terms of fundamental
symmetry rules (Heine and McConnell, 1981).

The advantage of approaching the problem of the
origin of incommensurate mineral structures from
this point ofview is that the general theory can then
be tested by direct reference to symmetry and
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structural data for a number of mineral systems.
Apart from its current success in relation to the
explanation of modulated mineral structures, the
new general theory on the origin of incommensurate
structures (McConnell, 1978a1' Heine and McCon-
nell, 1981) has been used to show that effects as
diverse as Jahn-Teller distortions may be subsumed
under the theory as now developed for insulators
(McConnell and Heine, 1982).

The function of the following section of the paper
is to develop the symmetry arguments necessary to
the understanding of the origin of interactions, and
resulting incommensurate structures, in insulating
compounds including minerals.

Symmetry analysis of interactions between difrerent
transformation modes in single crystals

It is possible to develop the theory of interaction
between different transformation modes in a single
crystal in terms of symmetry arguments alone. Here
it will be more meaningful to illustrate the operation
of these symmetry rules by considering the example
of ordering in a single crystal. The arguments that
we employ in this case may equally well be used for
other types of transformation mode in a single
crystal, including displacive or soft mode transi-
tions. Furthermore, the arguments may be applied
to interaction between modes of entirely different
physical origin.

Our analysis begins with a consideration of the
possible interaction between different possible or-
dering schemes associated with the reciprocal vec-
tor 000 for the single crystal. For convenience we
choose the space group Pmm2 and deal only with
the possibilities of ordering an equal number of A
and B atoms on a single general equivalent position
(multiplicity four) in this space group. We assume
that A and B atoms are initially completely disor-
dered, i.e., we presuppose a high temperature re-
gime. The group representations of the vector 000
are simply the representations of the point group
mm2 and these have been set out in Figure 2
together with the three possible ordering schemes
for the crystal based on this point group. It is
important here to note that the representations of
the point goup for the vector 000 imply that, if we
choose a particular ordering scheme from this list of
representations, this ordering scheme must apply
throughout the entire crystal, i.e., every unit cell is
identically ordered.

We may now ask how, if at all, the different

ordering schemes associated with the vector 000
may interact with each other. The answer here is
simply that they may not interact in any way since
they are orthogonal. In group theoretical language
the direct product of any chosen pair of representa-
tions fails to yield the identity representation and
consequently they are forbidden to interact.2 This
condition follows from the fact that the Hamiltonian
for the system must have the full symmetry of the
single crystal.

At this point we may note that the orthogonality
condition will also apply to representations for
vectors at the Brillouin zone boundary such as the
vectors Vz00 andDVz.In these cases we may set up
a group representation table and list the possible
space groups under which ordering of our A and B
atoms may occur. Again we must reach the conclu-
sion that there can be no interaction between difer-
ent ordering schemes. We note here that care must
be exercised in the case of non-symmorphic space
groups when dealing with the representations for
symmetry points on the Brillouin zone boundary.
The presence of a screw axis or glide plane in such
cases requires that certain of the representations
become degenerate with each other (Bradley and
Cracknell, 1972, p. 16l).

Having failed to establish the possibility of inter-
action between diferent ordering schemes in the
single crystal for the symmetry points (points of
high symmetry such as 000, t/z0[, VzVzlz etc.), we
now turn to considering ordering on the basis of
other vectors in the Brillouin zone. If we choose to
use a vector displaced somewhat from the position
000, and label it ki, in general we will have to
include with this vector the vector -k;, hence defin-
ing a two-dimensional representation (ErJ similar to
that written out in Figure 3. The representations
associated with +ki are complex conjugates and we
may combine them to yield real terms: 2, ZCos

-iiili, 

"onaition 
is imposed by the physics of the problem

since it is inevitable that the energy ofthe system, and particular-
ly the energy ofinteraction in the present case, must be invariant
under the operation of the symmetry elements. In the matrix
elements which define this energy of interaction we are required
to integrate over the product of the functions which define the
two ordering states. It follows that this integral will be identically
equal to zero if this product function or a component of this
product function is not invariant under the symmetry operations.
In the case of the product of two functions an invariant can only
result where both functions transform according to the same
irreducible representation ofthe group. This theorem and several
examples of its application are discussed in detail by Cotton
(r97r, p.9E-lM).
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Pm,

Pnr,

Fig. 2. Group representation table for the vector 000 of the
space group Pmm2. We consider here the role of the four
irreducible representations in relation to possible ordering
schemes for two A atoms and two B atoms on the fourfold
general equivalent positions in this space group. The first
representation is fully symmetrical and we associate it with the
average situation. Thus the four symbols in the first diagram on
the left alt have equal weights (A+B)12 in a distribution which is
invariant under all the symmetry elements of the group. The
other three irreducible representations and their associated
diagrams illustrate possible ordering schemes. The weightings
are now +1A-B)12 and the sign of this function is chosen locally
on the basis of the relevant irreducible representation. Open and
filled circles may be identified with the characters + I and - I
respectively. Note that a completely ordered state for A and B
atoms must be described in terms of the fully symmetrical
representation and one of the three remaining irreducible
representations.

ki't. . . etc., at the same time noting that a single
discrete character (cosine term) is multiplied on the
complete contents of a unit cell on translation t.
This operation, involving discrete translation and
subsequent multiplication by a single character,
must not be confused with the operation of multipli-
cation by a continuous (cosine) function since that
is not what the translation group representations
imply. The formula for defining ordered states
based on vectors +ki will now be apparent and
amounts simply to an initial choice of ordering
scheme from the point $oup table for 000, and then
operation with the representation of the chosen
vectors *ki. By choosing all possible values of k1, in
this way we may define an effectively continuous
ordering band in the single crystal for each one of

the permitted representations, i.e., ordering
schemes, for 000. In general these bands can be
drawn out to show the energy associated with
individual representations ki (McConnell, 1978b).

We now turn to considering the possibility of
interaction between different ordering schemes,
i.e., different bands, at points k; other than the
primary symmetry points in the Brillouin zone.
Here we must determine and use the symmetry of
the chosen vector ki, i.e. the symmetry group of ki,
and establish its representations. Determination of
the symmetry group of the chosen vector k1 pro-
ceeds exactly as though the chosen vector were in
direct space. Thus in reciprocal space we must
mark in the relevant symmetry elements as has
been done in Figure 4. In this reciprocal plot the
chosen position for the little vector k; has symmetry
E and mx oriy.It follows that the vector k; has only
two irreducible representations, one even and one
odd under the mirror plane mx, as indicated in the
inset in Figure 4. It should be apparent now that,
while there were four independent ordering bands
at ki based on the four different irreducible repre-
sentations of the point group mm2 (000), these four
representations at ki become equivalent in pairs.
Thus ordering bands based on P2 and Pm" areboth

Er { l "ik.t "ik.2t 
eik.3t 

"ik.4t
"- ik . t  

e- ik .zt  6- i t .3r  s-rh.4t

Fig. 3. Schematic representation of the development of a
modulated structure based on one of the irreducible
representations of the vector 000 as defined in Fig. 2. Note that
the modulated structure is derived by selecting a basis function
associated with a single lattice point. This function is modified,
after translation by a lattice vector (t), by multiplication by the
charac ter  (2Cos k ' t )  o f  the  chosen two-d imens iona l
representation (Er) of the translation group of the crystal.

mY2,mxE

P2

t t , l
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odd under the mirror plane m*.It follows directly
that interaction between these two ordering
schemes is possible at k1 where this was quite
impossible at the original point 000. This condition,
under which independent ordering bands in a single
crystal may interact, has been described as a struc-
tural resonance (McConnell, 1978a). Reduction of
the energy due to the interaction in resonance
means that it may be more favorable for the crystal
to order by utilizing both ordering schemes than to
order singly at the symmetry point 000 on either
(Heine and McConnell, 1981). In effect the reso-
nance between two ordering schemes produces a
local free energy minimum away from the symme-
try point. Clearly there is no dfficulty in accepting,
in this case, as in the case of the charge density
wave systems, that the minimum of free energy in
the lowest band may occur at an incommensurate
value of k1. Further it is to be expected that, since
the position of this minimum is dependent on the
interaction of two ordering schemes, it may move

as a function of temperature, pressure and chemical
composition.

Finally we note here that if a resonance interac-
tion is postulated it may be tested directly from a
knowledge of the symmetry changes which must be
associated with the proposed structural changes. In
many cases at least one cif the two ordering schemes
is likely to be known. These symmetry data may be
used to determine the group of the vector k; and the
relevant representation. This symmetry may then
be used to explore the possibilities for the second
transformation mode present in the structural reso-
nance which has the same symmetry and represen-
tation.

In the section which immediately follows an
attempt will be made to demonstrate the physical
significance of this resonance theory using NaNO2
as an example. NaNO2 is a simple chemical com-
pound which has a ferroelectric transition at ap-
proximately 163'C. At the same temperature a
thermodynamically stable resonance structure de-
velops which is incommensurate. In this case it is
possible to use symmetry criteria alone to deter-
mine uniquely the second transformation mode
present in the resonance structure. It is also possi-
ble to demonstrate in this case why there should be
a substantial reduction in the free energy of the
system due to the combined effects of the two
transformation modes which are present in the
resonance, i.e., it is possible to explore the purely
physical origin of the resonance structure in
NaNO2.

The nature of the physical interaction in a
structural resonance: the incommensurate structure

of NaNO2

It is possible to demonstrate in a particularly
simple and convincing manner that the resonance
structure observed in NaNO2 close to 163'C in-
volves a favorable interaction between two trans-
formation modes in the single crystal. At high
temperature (well above 163'C) the compound
NaNO2 has disordered NO2 groups, is thus paraelec-
tric, and belongs to the centered space group
Immm. Well below 163'C the individual NO2
groups, which lie in the plane (100), order with
dipole vectors parallel to the b crystallographic
axis, and the structure then belongs to the space
groap Im2m which lacks a center of symmetry, as is
necessary in the case of a simple ferroelectric
compound. In a very small temperature interval
around 163'C, and prior to the paraelectric-ferro-
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Fig. 4. The use of symmetry in reciprocal space to define the
symmetry group of the vector ki. Note that at points of high
symmetry in the Brillouin zone such as 000 the group of the
corresponding vector is of order four. At the point chosen in the
diagram for the vector k1 the symmetry elements comprise only
the identity.E arrd the mirror plane rz*. This means that the group
of k; is of order two and that modulated structures based on the
four diferent space groups associated with the vector 000 must
become equivalent in pairs at k; as indicated by the dashed boxes
in the final table.

Group ki; E m,

mx

hnm2

P2

Pm

Pm



McCONNELL: RESONANCE AND LONG-RANGE INTERACTIONS IN MODULATED STRUCTURES

electric transition in NaNO2, an incommensurate
structure develops. The incommensurate wave vec-
tor (k1 of our previous discussion) is situated close
to 000 and along the a* direction. Experimental
study (Bohm, 1978) shows that the vector changes
with temperature alohg a* in the temperature inter-
val over which the incommensurate structure ex-
ists. We now apply the symmetry theory of the
previous section to determine the symmetry (little
group) of the vector ki and its appropriate irreduc-
ible representations.

In the case of the incommensurate structure in
NaNO2 the symmetry analysis is particularly
straightforward since it is known, a priori, that the
low temperature transformatiort relates to a simple
ferroelectric mode associated with the change in
space group symmetry to ImZm. This is a change
associated with the vector 000. The group represen-
tation table for 000 in this case is simply the
representation table for the point group mmm,
which is shown in Table 1 In this table the space
gf,oups associated with seven different transforma-
tion modes have been indicated in parentheses, and
the representation for the observed derivative space
group Im2m has been underlined. In order to deter-
mine the symmetry appropriate to the space group
ImZm at the position of the vector k1 for the
incommensurate structure, we now select from the
eight symmetry elements of the full point group
those which are contained in the group of the vector
k1 (at Aa*). The reduced symmetry for the vector k;
comprises only the elements E, Cz*, m, and m*
These four symmetry elements therefore form the
little group of lq and we may immediately define its
representations which include also the representa-

tion for the space grotp Im2m at k1. This one-
dimensional representation is even for both the
identity E and the mirror plane parallel to (001)
(m.). h is odd for the elements comprising the diad
parallel to x (C2), and the mirror plane parallel to
(010) (rn"). The task of determining the second
space group in the full representation table for the
point group mmm which has the same representa-
tion for the chosen vector k; is now straightforward.
This second space group must have the same re-
duced representation as the space group Im2m in
the group of ki. It may be determined uniquely by
simple inspection of the full point-group representa-
tion table for mmm, Table 1. Having doubly under-
lined the elements of symmetry associated with k; in
the representation of Im2m it will be apparent that
precisely the same characters for all four of these
elements occur in the representation of the space
group l2lm., which is a centrosymmetric space
group in the monoclinic system. What we have just
done, from inspection of the character table, is to
prove that for the vector ki, the space groups Im2m
and l2lm. share exactly the same irreducible repre-
sentation. Their associated bands may therefore
interact to produce a resonance structure. It is of
course also necessary that this is possible energeti-
cally, a condition which group theory alone does
not permit us to comment on. However, since an
incommensurate structure is observed in practice, it
follows that the necessary energetic conditions
must also be fulfilled, at least in the narrow tem-
perature interval where the incommensurate struc-
ture is observed.

At this point we have established unequivocally
that a resonance interaction in NaNOz is possible

Table I . Group table showing the origin of the structural resonance in NaNO2 for wave vectors at 000 +Aa* (underlined)
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Fig. 5. Diagram illustrating the effect of introducing an anti-
phase boundary into the ferroelectric sequence in NaNO2. In the
upper set of diagrams the development of the normal ImLm
structure is illustrated. In the lower sequence the introduction of
a layer of structure with reversed polarity is shown to lead to
ofset of the layers parallel to D in the final diagram. This shift
accommodates the structural misfit.

between a ferroelectric transformation mode
(Im2m), and what is effectively a shear transforma-
tion mode associated with the monoclinic structure
(I2lm.). We now approach the problem of demon-
strating that these two structures may with advan-
tage be combined to produce a resonance and hence
reduce the free energy of the system. In order to
demonstrate that the ferroelectric and shear modes
of transformation can be combined with advantage,
we proceed by considering a simple ferroelectric
sequence and introduce a single antiphase boundary
parallel to (100). This involves the rotation of a NO2
group about the c axis and across the antiphase
boundary and we now model this juxtaposition of
NO2 groups across the antiphase boundary. The
characteristics of the normal structural sequence of
ordered NO2 groups, and the situation across the
antiphase boundary, are combined in Figure 5. It is

kaa'

clearly necessary in modelling the antiphase bound-
ary to introduce a shear parallel to the b axis. This
shear is exactly that which is implied by the trans-
formation mode l2lm,. It will now be clear that
there is a particular advantage in including a section
of sheared structure in a simple antiferroelectric
domain sequence. A very schematic model of the
way in which the two transformation modes in the
incommensurate structure of NaNO2 are thus com-
bined is provided in Figure 6. This diagram should
not be interpreted too literally. It is primarily a
thinking device which illustrates the basic symme-
try aspects of the resonance structure. In the com-
plete structural sequence within the resonance
structure the component transformation modes
have here been combined in quadrature, i.e., the
shear mode is in phase with the gradient of the
ferroelectric mode, a point which was also made
earlier with regard to the phase relationships be-
tween the charge density wave and associated dis-
placements. This in-quadrature characteristic of the
resonance structure has also been discussed in
relation to the structure factor for the component
transformation modes (McConnell, 1978a). Since
the ferroelectric transformation mode is non-cen-
trosymmetric, the character associated with the
center of symmetry in the representation table (/) is
- 1, implying an anticenter. The shear transforma-
tion mode, however, is centrosymmetric with char-
acter + 1 in the Table. It follows that their respec-
tive difference structure factors are necessarily also
in quadrature. Thus if the difference structure factor
associated with the ferroelectric mode is defined as
purely imaginary, then the structure factor associat-
ed with the shear mode is necessarily totally real.
Further discussion of this point is contained in
McConnell (1978a), where the origin of the reso-
nance structure itself is discussed in terms of the

;
{ . :-l- - - i--*2,

E frz2nmY

1 -1 -1 1
Fig. 6. Schematic diagram illustrating the sequence of structure types (Im2m and lLlm,) in the modulated structure of NaNO2.

Note that the irreducible representation given is applicable to both components of the modulation.
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choice which necessarily exists in combining the
two component transformation modes in quadra-
ttf,re, i.e., as (a + ib). The physical nature of this
choice of phase is clearly demonstrated in the case
of NaNO2 where, at a chosen antiphase boundary,
shear in one sense is acceptable and in the other is
not, and two different energy states are clearly
involved.

While it is possible to make a complete analysis
both in symmetry and in purely physical terms, for
the resonance structure in NaNO2, a similar com-
plete analysis is not yet possible in the cases of
some of the very complex resonance structures
which are observed in minerals. Future structural
work must aim, for example, at determining the
exact advantages, in energy terms, of combining Al/
Si ordering with Na/Ca ordering in the resonance
structure in the intermediate plagioclase feldspars
(McConnell , 1978a); or of combining K/n ordering
with a system of atom displacements in the case of
nepheline (McConnell, 1981a). A detailed analysis
of the specific implications of the new resonance
theory in the context of structure analysis is in
preparation.

Thermodynamic aspects of the origin of
incommensurate phases

It is convenient in discussing the stability rela-
tionships of incommensurate phases, and the ther-
modynamics of the transformations in which they
appear, to use an approach originally developed by
Landau (Landau and Lifshitz, 1968). This has re-
cently been revised and considerably simplified by
Birman (1966). The I andau treatment of phase
transformations is based on a group theoretical
approach which assumes that the free energy func-
tion for the transforming phase close to the transi-
tion temperature may be expanded in a power series
of 4, and order parameter which describes the
amplitude of a structural change which occurs at
and below the transformation tempelature.

G(PTr): Go * aq + Aif * B?3 * Cno . . . (1)

This structural change, in Landau theory, is neces-
sarily associated with the appearance at the trans-
formation temperature of a state of lower symme-
try, i.e., a subgroup irreducible representation of
the high symmetry group which existed above the
transformation temperature. Landau was particu-
larly concerned with defining the conditions neces-
sary for a second order phase transformation. A
second order phase transformation requires that the
order parameter 4 increases smoothly from zero as

temperature falls below the transformation tem-
perature. For this to be true it is necessary that no
invariants occur in the linear or third order terms in
the free energy expansion (1). The presence or
absence of invariants in any of the terms of the free
energy expansion may be demonstrated by deriving
space group reduction coefficients as shown by
Birman (1962, 1966). Thus in order to prove that
there is no invariant of third order present in the
expansion (l) it is only necessary to show that the
symmetrized cube [Rh of the chosen subgroup
irreducible representation does not contain the
identity representation of the high symmetry group.
A second condition necessary for a second order
transformation in Landau theory requires that the
antisymmetrized square {R}z of the chosen sub-
group representation should not contain the repre-
sentation of a polar vector. Finally, since the sub-
group irreducible representation cannot in any case
provide a linear invariant in (1), the relevant free
energy expansion appropriate to a second order
transformation may be written, up to terms of
fourth order, as:

G(PTr):  Go * Arf  + Ctf  . .  (2)

We now consider the importance of the coeffi-
cient A in the second order term of the Landau
expansion (2). Above the transformation tempera-
ture 7" the crystal has high symmetry which en-
sures that the equilibrium value of 4 is identically
zero. This is possible only if the coefficient A for the
quadratic term in the expansion of the free energy
(2) is positive. For a transformation involving a
change in symmetry the coefficient A must become
negative below the transformation temperature.
Hence the condition for the transformation is sim-
ply that A goes to zero at the transformation
temperature T". Here we may assume that C, the
coefficient of the fourth order term. remains con-
stant and positive both above and below the trans-
formation temperature. The nature of the free ener-
gy plot as a function of the order parameter 4 is
shown. both above and below the transformation
temperature, in Figure 7. Here we may assume that
A varies with temperature as:

A(7) : a(T - T") (3)

where a is a constant and hence

r f  : a l 2 C ( T " - T ) .  ( 4 )

We may now consider the application of Landau
theory to transformations involving the appearance
of certain incommensurate phases (Heine and
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McConnell, 1981). The space group irreducible rep-
resentation associated with the development of
these incommensurate phases is the two-dimension-
al, physically irreducible, representation that is
based, as discussed earlier, on the representations
for *k1 and -k1. This two-dimensional representa-
tion we will refer to hereafter simply as E1. From
the point of view of Landau theory we must first
establish the translation group reduction coeffi-
cients for the power series expansion of the free
energy in terms of this representation .E1. Calcula-
tion shows that, for even order terms in the expan-
sion, translation group invariants occur; for exam-
ple, the second order term in the expansion
contains both the identity representation of the
translation group and the representation E2r thus:

[Eu]z: A1 * E2y

Odd order terms in the expansion do not contain the
identity representation provided that the incom-
mensurate wavelength is really irrational. The sym-
metrized cube of the representation E, for example,
contains only Es and the representation .E31. Thus
no third order invariant can exist since the incom-
mensurate wavelength is certainly not equal to
three times the lattice repeat;

[Erlr : Ey ]- E3y .

Generally similar conditions attach to higher even
and odd terms in the free energy expansion, imply-
ing that the incommensurate transformation should
be of second order.

Reduction of the complete space group irreduc-
ible representation based on the translation group
representation Ep involves taking the direct product
of the characters of the chosen irreducible represen-
tations for the group of the vector k; (Birman, 1962).
Here we note simply that if the two transformation
modes which interact to produce the incommensu-
rate structure have the same symmetry, i.e., belong
to the same irreducible representation of the group
of k;, then three quadratic invariants will appear,
two associated with the symmetrized square of each
of the chosen representations, and a third associat-
ed with their direct product.

If, therefore, we restrict attention solely to the
quadratic terms present in the Landau expansion
we mav write:

G: )p{A1rffi + 2Hkgk6k + Br.d?} . . (5)

Here ry' and @ are the order parameters associated
with the two chosen irreducible representations,
with quadratic coefficients A and B respectively

Fig. 7. Diagrams illustrating the behavior of the free energy
(G) in terms of the Landau quadratic coefficient (A), both above
and below the transition temperature, T..

and H is the coefficient of the interaction term.
Since it is quite unlikely that both of the coefficients
A and B will tend independently to zero at the same
temperature, we will assume that the main transfor-
mation is associated with the order parameter ry' and
the coefficient A. and that the coefficient B does not
vary markedly with temperature in the temperature
range of interest. Where this is so it is permissible to
rewrite the three second order terms as:

lAk + 2Hkdkldk + Bk(dkl,N21q4.. . . . . . (6)

On mixing the two chosen transformation modes in
the optimum ratio such that Qylfu: -Hr/Br we
derive a single coefficient of the main mode rfi.:

tAk - H?/Bkld

Fig. 8. The thermodynamics of incommensurate structures.
In the upper of the two diagrams the free energy curves
associated with a normal transition are shown, with a normal
transition temperature at ?". The stability range of an
incommensurate structure between temperatures 11 and ?2 is
shown in the lower diagram. Note that the entropy of the
incommensurate phase is lower than that of the normal
completely disordered phase.

(7)
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This compound coefficient implies that the transfor-
mation associated with the combined or resonance
ordering system will occur at higher temperature
than that based on the ordering scheme for ry' alone.
In short the interaction between the two transfor-
mation modes will lead to a reduction in free
energy, and stabilization of the associated reso-
nance structure, at a temperature somewhat above
that for the normal transformation based on ry'
alone.

Finally, it is of some interest to define the essen-
tial form of the free energy-temperature plots asso-
ciated with the development of an incommensurate
phase. In the first of the plots shown in Figure 8 it
has been assumed that there is a simple phase
transformation at 7" based on a single transforma-
tion mode. In the second of the two plots the
presence of a resonance structure must involve a
reduction of free energy in the immediate tempera-
ture range of the main transformation. It must also
have a lower entropy than the completely disor-
dered phase (AGIAT: -^t) in order to exist in this
temperature range. It is thus clear that resonance
stabilization involves a very substantial decrease in
the enthalpy of the system.

In the treatment presented above it has been
assumed, as in the simple case of NaNO2, that there
is one major transformation mode, and that the
second mode is important only in combination,
leading to the existence of a resonance structure
over a limited temperature range. It is apparent,
however, in several mineral systems, particularly
where one is dealing with incommensurate behav-
ior in solid solutions as in the case of mullite
(McConnell, 1981b) and the intermediate plagio-
clase feldspars (McConnell, 1978a), that both trans-
formation modes may be equally important. In this
case the incommensurate structure may be stable
over a very wide temperature range, and indeed
may be the only stable single-phase state possible
for the system at low temperatures.
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