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Abstract

Computational quantum chemistry is a powerful method developed by the chemist to
elucidate bond length and angle variations, electron density distributions, spectra, reac-
tions and energetics of small molecules. Because little difference exists between the shapes
and sizes of SiOSi groups in gas phase siloxane molecules and solid silicates, the method
has been employed to generate potential energy surfaces and deformation maps for a
variety of molecules especially designed to model the bonding properties of complex
silicate minerals. The use of computational quantum chemistry in studying the chemical
bonding in these minerals is motivated by a need to understand the physical laws that
govern their structures and stabilities beyond that afforded by Pauling's rules. Jhe ability of
this ab initio method to mimic a priori bond length and angle variations, charge
density distributions and force constants of silicates and other solids indicates that these
observables are governed in large part by the local atomic arrangement.

A survey of these computations shows that the quantum mechanically derived SiO bond
lengths for hydroxyacid molecules and 4- and 6-coordinate Si are in good agreement with
those in comparable silicates. Also, theoretical and experimental deformation maps of
these bonds show modest accumulations of charge density between Si and O in conformity
with the partial covalent character of the SiO bond. Potential energy curyes generated for
the molecules H6Si2O7, H6SiAlO+-, H6SiBO+- and H6SiBeO?- yield equilibrium bridg-
ing bond lengths and angles in close agreement with those in silicates with SiOT
(T:Si,Al,B,Be) groups. The relatively narrow range of angles exhibited by the SiOB and
SiOBe groups and the wide range of angles exhibited by SiOSi and SiOAI groups conform
with the shape of each curve. Bond lengths calculated for hydroxyacid molecules
containing first and second period metal atoms are linearly correlated with coordination
number as observed in studies of crystal radii. By reproducing the bond strength versus
bond length trends and the correlation between bond strength sum and bond length, the
calculations have provided a quantum mechanical underpinning of Pauling's electrostatic
valence rule. The assertion that the electrostatic bond strength, s, can be equated with
bond number is corroborated by a strong correlation between s and bond overlap
population. In addition to providing a good account ofbond length and angle variations in
silicates, thiosilicates and aminosilicates, the calculations have also afforded valuable
insights into the compressibilities, the polymorphism and the glass forming tendencies of
silica. The achievements of the calculations examined in this survey indicate that
computational quantum chemistry is destined to become an important tool in mineralogy
for identifying systematic relationships between structural and physical properties and for
furnishing new insights into the many types of reactions involving minerals.

Introduction

Since the development in the early sixties of
modern single crystal diffractometers, gas phase
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electron diffraction apparatus and high speed digital
computers, the structures of a large number of
silicates and gas phase and molecular crystal silox-
anes have appeared in the literature, providing a
wealth of accurate bond length and angle data. One
of the most important results afforded by these data
has been the discovery that very little difference
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exists between the size and shape of a disiloxy
(SiOSi) group in a solid silicate and in a siloxane
molecule (Table 1). For example, the disiloxy group
in the silicate a-qtartz has an angle of 144' and a
SiO bond length of 1.61A which is in close agree-
ment with an angle of 144" and a bond length of
1.63A in the gas phase molecule disiloxane
(H3Si)2O (Almenningen, Bastiansen, Ewing, Hed-
berg and Traetteberg, 1963; Gibbs, Hamil, Louis-
nathan, Bartell and Yow, 1972; Tossell and Gibbs,
1978; Barrow, Ebsworth and Harding,1979; Gibbs,
Meagher, Newton and Swanson, 1981). Despite the
intermolecular forces, crystallization of this gas
phase molecule into a molecular solid has virtually
no effect on the shape ofthe group (Table 1). Thus,
as observed by Barrow et al. (1979), the packing of
the molecule in the solid seems to conform with the
shape of the group in the free molecule rather than
vice versa. Also, Table I shows that the shape of
the group is virtually the same, on the average, as
that in solid siloxanes, silicates and silica glass.
Thus, the forces that control the size and shape of
the disiloxy group in disiloxane and in o-quartz as
well as other silicates seem to be nearly the same,
notwithstanding the absence in the gas phase mole-
cule of the long range Madelung potential peculiar
to a solid. Thus, on the one hand. a mineral like a-
quartz can be portrayed as a molecule of megascop-
ic dimensions held together by essentially the same
forces that hold the SiOSi group together in the
molecule. On the other hand, disiloxane can be
portrayed as a tiny hydrogenated SiOSi moiety of
the a-quartz structure. Because of the relatively
small size of the molecule, computational quantum
chemistry can be used to evaluate its wave func-
tions and to probe the properties of its disiloxy
group (Newton and Gibbs, 1979, 1980; Newton,
1981; Sauer and Zurawski, 1979; Meier and Ha,
1980; Oberhammer and Boggs, 1980; Ernst, Allred,

Table l: Comparison of experimental bond lengths, R(SiO), and
angles for the SiOSi groups in gas phase and solid state molecular

crystal siloxanes and silicates.

R ( s i o ) A  / s i o s i ( ' )  R e f e r e n c e

( H a s i ) r 0  ( g a s )  1 . 6 3

( H 3 s i ) 2 0  ( s o l i d )  1 . 6 3

S i l o x a n e s ( s o l i d ) a  1 . 6 3

S i l i c a t e s ( s o l i d ) a  I . 6 3

S i l i c a  g l a s s a  I . 6 2

Ratner, Newton, Gibbs, Moskowitz and Topiol,
1981). Moreover, because the bonding in the mole-
cule appears to be similar to that in o-quartz, we
might expect that molecular orbital (MO) calcula-
tions on small molecules with SiOSi groups can be
applied to the groups in o-quartz thereby improving
our understanding of the length and stiffness of its
SiO bond, the energetics and compliance of its
SiOSi angle, its isothermal bulk modulus, and its
electron density distribution (Newton and Gibbs,
1980; Newton, O'Keeffe and Gibbs, 1980; Gibbs et
al., l98l).

Since 1979 computational quantum chemistry has
been used to generate potential energy surfaces for
a variety of siloxane and silicate molecules especial-
ly designed to model the bonding in a number of
solid silicates. The equilibrium geometries and en-
ergetics provided by these surfaces are in accord
with the experimental geometries and force con-
stants recorded for a number of solid state silicates,
thiosilicates and aminosilicates (Newton and Gibbs,
1979, 1980; Meagher, Swanson and Gibbs, 1980;
Swanson, Meagher and Gibbs, 1980; Downs and
Gibbs, 1981; Geisinger and Gibbs, 1981a; Naka-
jima, Swanson and Gibbs, 1980). In addition, defor-
mation electron density maps generated for the SiO
bonds in molecules with one-, four- and six-coordi-
nate Si are in qualitative agreement with experimen-
tal deformation distributions recently obtained for a
number of silicates (Hill, Newton and Gibbs, 1981;
Downs, Hill, Newton, Tossell and Gibbs, 1982;
Stewart, in prep.; Newton and Gibbs, in prep.).
Additional calculations have been completed in
collaboration with Dr. R. J. Hill, CSIRO, Division
of Mineral Chemistry, Port Melbourne, Australia,
Professor E. P. Meagher of the Department of
Geological Sciences at the University of British
Columbia, Dr. M. D. Newton of the Chemistry
Department at the Brookhaven National Labora-
tory, Professor Michael O'Keeffe of the Depart-
ment of Chemistry at Aizona State University,
Professor J. A. Tossell of the Department of Chem-
istry, University of Maryland (Gupta, Swanson,
Tossell and Gibbs, 1980), and with my talented and
bright students B. C. Chakoumakos, J. W. Downs,
K. L. Geisinger, R. C. Peterson and D. K. Swanson
(Chakoumakos, 1981; Chakoumakos and Gibbs,
1981a; Downs, 1980; Swanson, 1980; Peterson,
1980). The objective of this report is to examine,
compare and summarize the results of these many
calculations.

This paper is divided into five sections. In the

L 4 4  A l n e n n i n g e n  e t  a l .  ( 1 9 6 3 )

L42 Barrou ec aL (1979)

t 4 0  N e w t o n  a n d  C i b b s  ( 1 9 8 0 )

t 4 5  c e i s i n g e r  a n d  c i b b s  ( 1 9 8 1 b )

L 5 2  D a  S i l v a  e t  a 1 .  ( 1 9 7 5 )
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A v e r a g e d  v a l u e s ,
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first section. the essentials of molecular orbital
theory will be examined as it is used to estimate the
total energy of a closed-shell molecule, to construct
molecular potential energy surfaces, and to opti-
mize molecular geometries. This will be followed by
a discussion of Gaussian-type basis functions and
their use in simplifying the two-electron integrals.
Mulliken's recipe for calculating bond overlap pop-
ulations will then be reviewed and related to the
total electron density of the molecule. In the second
section, molecular-orbital-generated geometries
and deformation maps of the SiO bonds in silicate
molecules with four- and six-coordinate Si will be
compared to experimental bond lengths and defor-
mation maps reported for solid silicates. Next, the
contribution of the d-type polarization functions of
Si to the wavefunctions of the molecules will be
discussed. The third section of the report examines
the geometry and force constants of the disiloxy
group in the silica polymorphs in terms of a poten-
tial energy surface generated for the group in the
disilicic acid molecule. It also compares static de-
formation maps of the SiOSi groups in a-quartz,
disiloxane and silicon monoxide. The fourth section
discusses the bridging bond lengths and angles
reported for a number of silicates in terms of
potential energy curves calculated on molecules
with SiOSi, SiOAl, SiOB and SiOBe groups. The
stiffness of the bridging angle in the thiosilicates and
their limited assortment of tetrahedral topologies
compared to those of silicates will next be discussed
in terms of a potential energy curve generated for
the disilathia (SiSSi) group. Then multiple linear
regression methods will be employed to estimate
the dependence of SiO and AIO bond length varia-
tions on the bond strength sum and the fractional s-
character ofthe bridging oxygen. In the fifth section
of the report, bond strength versus bond length
curves generated with molecular orbital theory for
hydroxyacid molecules containing first and second
row atoms will be compared to empirical ones
reported by Brown and Shannon (1973), and the
electrostatic strengths of the bonds in the molecules
will be correlated with the Mulliken bond overlap
populations provided by the calculations.

Computational quantum chemistry

The molecular orbital method

In the last decade, computational quantum chem-
istry (Pople,1973) has become an important tool for
determining the structure and electron density dis-

tributions of a molecule and for providing insight
into why molecules have their characteristic sizes,
shapes and topologies. In addition, the method is
amenable to simple interpretative algorithms that
allow the information content of the total wavefunc-
tion to be distilled into a relatively small number of
chemically informative quantities such as orbital
and bond-overlap populations, atomic charges and
deformation densities (Newton, 1981).

In the theory of molecular orbitals, the total wave
function of a closed-shell molecule, ry', is approxi-
mated by an antisymmetrized product of one-elec-
tron wavefunctions or molecular orbitals, @i,

1 n
v & f f iAn 0,  ( l ).  Y n !  

i = t . a

where n is the total number of electrons in the
molecule and Aiis the antisymmetrization operator.
If r/ is normalized, then the total energy of the
molecule, E-o1, is the expectation value of the
Schrodinger Hamiltonian

Emor :  |  *u* r ,  (z )
J

where I/ is the many-electron Hamiltonian operator
which, if the nuclear kinetic energy terms are
neglected, is the sum ofthe kinetic energy operators
for the electrons together with the various Coulom-
bic contributions to the potential energy. Minimiza-
tion of the energy using the method of undeter-
mined Lagrangian multipliers results in the effective
one-electron Hartree-Fock equation:

FQi: ei6t , (3)

where F is the effective one-electron Hartree-Fock
Hamiltonian operator for an electron in the environ-
ment of the molecule, and e1 is the one-electron
energy.

Since atoms are the building blocks for mole-
cules, equation (3) may be solved approximately by
constructing each molecular orbital as a linear com-
bination of m atomic orbital (AO) basis functions,
1,, each centered on the atoms of the molecule,

m

0t  -  )  x ,C^,
v : l

where C,iare the appropriate linear weighting coef-
ficients.

If we substitute Eq. (4) into equation (3), multiply
on the left by X* and integrate, we obtain the

(4)
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l r lF*,: Ht", + ) p^.1 etvt\o) - |{rxlre:)l nl
) ,oL l

where

r  |  |  z l
H*u: I  x,(r t  l - ;v? -  > 3l  x,( l )drr ,  (8)

j  
I  

t  
A  r t o j

pxo :25c^ ,c r ,  (9 )

Roothaan equations for a closed-shell molecule (see
Roothaan (1951), Parr (1964), Pople and Beveridge
(1970) and Dewar (1969) for a more rigorous and
informative derivation) :

m

2  ( F * , - e i S r , ) c , i : 0 ,  ( 5 )
v : I

where ei are the orbital energies, S' are the overlap
integrals,

s: f  .-pv I x"(1)x"(1)drr, (6)
J

where dr1 is the volume element of electron I and

and

t l

Qtvllto) : | | xr(l)x"(1)llrpy-1,(2)y,(2)drirz (10)
J J

Subscripts lL, v, )t and o refer to basis functions, the
symbols Xp(l) and x1(2) imply, for example, that
electrons I and 2 are in atomic orbitals 1, and 1;r,
respectively, V2 is the Laplacian operator, Ze is the
charge on the nucleus A and r* is the separation
between particles p and q. The two-electron inte-
grals defined in Eq. (10) represent electron interac-
tions between orbital products XrX, (1) and 111. (2),
f1r, represents the kinetic energy and the potential
energy of attraction to the nuclear field of the
orbital product X,X, (1) and P1o is the density
matrix element involving the coefficient products of
the AO's N1 and Xo summed over each of the
occupied molecular orbitals, fi.

Since each element of the Fock Matrix, Fr,, is
dependent upon P1o, equation (5) cannot be solved
directly. In the absence of such a solution, an
iterative procedure is usually adopted. For exam-
ple, a minimum basis Huckel-type calculation will
be performed to provide an initial set of density
matrix elements and then the appropriate atomic

integrals are accurately evaluated. With these re-
sults, the F' elements of the Fock matrix and the
S' elements of the overlap matrix are constructed
to formulate an m x m determinantal equation

lFp, - e;Sr,l : 0 , ( l  1 )

which may be solved for m values of e;. Each new
value of e; is then substituted in succession into
equation (5) to give m new sets of coefficients, one
set for each e1. The coefficients of the occupied
MO's are next normalized and used to generate a
new density matrix which in turn is used to compute
a new Fock matrix and a new secular determinant
whose non-trivial solutions yield an improved set of
si values. The procedure is repeated over and over
again, each time starting with the results of the
previous calculation until the elements of the densi-
ty matrix converge to a final set of steady values
that do not differ by some threshold value (- 10-6)
and self-consistency is obtained. This gives the
"best set" of MO's from which the molecule's total
energy can be estimated. When the MO's are writ-
ten in LCAO form (Eq. 4), then the total SCF (self
consistent field) electronic energy can be written as
(Pople,1953):

Pp,(Hp, + Fp,) (r2)

Finally, an estimate of the molecule's total ener-
gy is found by adding the repulsion energy,
2azsZaZslras, between the clamped nuclei of the
molecule to equation 12.

Gaussian expansions of Slater type atomic
orbitals

In the types of calculations described in this
report, the expansion in equation (4) generally
involves at least one basis function for each AO up
to and including the valence shell on each atom in
the molecule. Such a basis set is called a minimum
basis set. For example, the minimum basis set for
the molecule H6Si2O7 would be the hydrogen ls
atomic function plus the silicon ls , 2s , 2p, 3s and 3p
functions and the oxygen ls, 2s and 2p functions.
As the size of the basis set is increased. the model-
ing of each molecular orbital improves and the SCF
total energy becomes progressively lower. In the
Hartree-Fock limit, where in principle an infinite
number of basis set functions is required, the mod-
eling of the MO's can neither be improved nor can
the SCF energy be lowered further. Because the

Ie":i)
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number of terms in each LCAO must necessarily be
finite for a large molecule like H6Si2O7, it is impor-
tant that rapidly convergent basis functions be used
in the calculations. As Slater-type orbitals (STO)
seem to best satisfy this requirement, @; in equation
(4) is often expanded as a finite sum of STO's
(functions with exponential dependence exp(-(r)).
But, on the other hand, the two-electron integrals in
equation (7) arc extremely dfficult and time con-
suming to evaluate when STO's are used as basis
functions. This is particularly true when these inte-
grals range over three or four atomic centers. A
simplification found to alleviate this difficulty is to
expand each STO as a sum of least-squares fitted
primitive Gaussian functions (functions with expo-
nential dependence exp(-of)). Since the product
of two Gaussian functions is itself a Gaussian
function on line between the two functions (Boys,
1950; Shavitt, 1963), each four-centered integral,
for example, may be replaced by a representative
two-centered integral which may be rapidly evaluat-
ed with the computer. Thus, it is common practice
in molecular orbital calculations to use a least-
squares fitted combination of Gaussian functions
(usually up to six) to mimic each Slater-type orbital,
thereby speeding up the time of the calculation
considerably (Hehre, Stewart and Pople, 1969;
Binkley, Whiteside, Hariharan, Seeger, Hehre,
Lathan, Newton, Ditchfield and Pople, 1978). As
might be expected, the larger the number of primi-
tive Gaussians used in the linear combination, the
better we can mimic each STO, but, as might also
be expected, the larger the expense ofthe increased
computer storage. Thus, a trade-off must be made
between the two, depending on the available funds,
the quality ofthe trends sought, and the size ofthe
molecule.

In this report, STO-3G and STO-3G* basis sets
were employed to calculate the bond lengths and
angles of the molecules studied. In the case of the
STO-3G basis set, each occupied atomic orbital is
represented by a single STO basis function which in
turn is approximated by a sum of three primitive
Gaussian functions. Hence, the abbreviation, STO-
3G is used. On the other hand, when a manifold of
five 3d-type polarization functions (each approxi-
mated by an individual primitive Gaussian function)
is added to the STO-3G basis set of Si, the resulting
basis is denoted as a STO-3G* basis (Collins,
Schleyer, Binkley and Pople, 1976). Thus, by con-
vention, the addition of a star to the abbreviation
implies that the basis has been augmented by d-type
wave functions.

The so-called "split valence" 66-31G* basis was
used to calculate the bond lengths and angles and
deformation density maps of the disiloxy group in
disiloxane and deformation maps of the SiO bonds
in the molecules H+SiO+ and HsSiO6. The K and L
shell electrons in this basis are each represented by
a minimal basis (represented by a combination of
six Gaussian functions each) while the valence
electrons are each represented by a double set of
AO's (approximated by a sum of three Gaussians
plus an additional Gaussian). The 3d AO's added to
the sp basis of Si serve as polarization functions and
appear to be necessary to mimic experimental de-
formation density distributions for the SiO bond
(Newton and Gibbs, 1979).

C alculat e d mole c ular prop ertie s

The atomic nuclei and electrons comprising the
atoms of a molecule strive to adopt a configuration
wherein the total energy of the resulting structure is
minimized.2 By applying the principles of computa-
tional quantum chemistry, the energy of this struc-
ture can be estimated regardless of the type of
bonding forces (ionic or covalent) that obtains be-
tween the constituent atoms. The optimized geome-
tries of the molecules described in this report were
found by minimizing the molecule's total energy by
systematically adjusting the bond lengths and an-
gles among the constituent atoms. In addition to
optimizing the geometry, the topography of the
resulting energy surface can provide considerable
insight into a molecule's force constants as well as
the expected variability of the molecule's bond
lengths and angles. Further, a meaningful explana-
tion ofthe bonding characteristics and charge distri-
butions of the molecule can be obtained from a
population analysis whereby the total number of
electrons in the molecule is partitioned into the
various atomic and bond contributions which are
used to estimate atomic charges, bond overlap
populations and deformation density distributions.

According to Mulliken (1955), the total molecular
orbital electron densitv.

n

p(r) : ) df(")dt("),
i : 1

( 13)

of a molecule can be expanded in terms of the AO

2 Strictly speaking, this is true only at 0'K, but the efects of
entropy, the TS term, are generally negligible compared to the
total binding energy at all temperatures of geologic interest.
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basis as

p(r): ) P,,x[(r)1,(r), (r4)
tL,v

which when integrated over all space yields the
total number of electrons:

(15)
l L , v

The bond overlap population between the p",v pair
of atomic orbitals is defined bv

n(pv) : 2Pp,Sp, , (16)

which when summed over all the p atomic orbitals
on center M and all the z atomic orbitals on center
N, is defined as the bond overlap population n(MN)
for the atom pair MN. As discussed by Mulliken
(1932,1935) in his original formulation, a positive or
negative value for n(MN) corresponds to net bond-
ing (attraction) or antibonding (repulsion) between
atoms M and N.

For the calculations presented in this report, the
Gaussian 76 computer program (Binkley et al.,
1978) was employed to calculate the Fock and
overlap matrix elements and to solve the appropri-
ate equations as discussed above to obtain the
linear coefficients for the best set of molecular
orbitals and an estimate of the total energy of the
molecule as well as other molecular properties
(Schaefer, 19771' Carsky and Urban, 1980).

The SiO bond

Tetrahedral silicate group

The most important structural moiety in many
silicates is the tetrahedral silicate group. The SiO
bond in this group is observed in silicates to range in
length from 1.55 to 1.76A with a mean value of
1.6264, while the SiO bond in the silanol (SiOH)
group in four-coordinate SiO3(OH)3- and
SiOr(OH)3- groups in hydrated silicates shows a
smaller range in lengths from 1.63 to 1.70A with a
somewhat larger mean value of 1.67A (Gibbs et al.,
1981).

The monosilicic acid molecule, Si(OH)a, is of
particular interest in that it is the simplest entity to
contain the silicate tetrahedral group. Although the
molecule occurs in almost all aqueous environ-
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n:  )  Pp,Sp,

ments on earth, it polymerizes spontaneously when
concentrated in amounts greater than about the
solubility of amorphous silica (-115 ppm SiO2 at
25'C) and hence has never been isolated for a
structural analysis (Iler, 1979). As computational
quantum chemistry has become a standard method
for determining molecular structure, Newton and
Gibbs (1980) and Gibbs et al. (1981) undertook
structural analyses of the molecule using molecular
orbital STO-3G and Pulay (1969) eradient methods.
Assuming that the topology of the molecule in-
volves a silicon atom bonded to four hydroxyl
groups, the structural analyses indicate the mole-
cule to possess Sl (:4) point symmetry with four
SiO bond lengths of 1.65A, four OSiO angl^es of
107.1", two of 114.2", four OH bonds of 0.98A and
four SiOH angles of 108.8" (Fig. l). Not only is this
geometry in close agreement with that of silicate
groups in the monosilicates (Fig. 2) and in hydrated
silicates, but also the fundamental breathing fre-
quency (8.14 m-t) calculated from the SiO stretch-
ing force constant (665 Nm-t) of the molecule
agrees with that observed (8.19 m-t) for tetrahedral
silicate groups in aqueous solution (Gibbs et al.,
1981) .

Fig. 1. A drawing of the molecular structure of monosilicic
acid, HaSiOa, as determined by molecular orbital methods. The
intermediate-sized sphere at the center of the molecule
represents a silicon atom, and the four large spheres disposed at
the corners of a tetrahedron and attached to Si represent oxygen
atoms. The small sphere attached to each oxygen atom
represents hydrogen. No significance is attached to the relative
sizes of the spheres. (After Gibbs et al., l9El.)
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orbitals, they also observed that the L4 X-ray
fluorescence spectra of solid and amorphous silica
could be reproduced only when the d-orbitals were
included in the basis set. However, in spite of their
success in rationalizing and reproducing the Lz,r X-
ray fluorescence spectra of silica, there has been a
rather protracted discussion in the literature regard-
ing the significance of these orbitals (Baur, 1971,
1977, 1978; Gilbert, Stevens, Schrenk, Yoshimine
and Bagus, 1973; Griscom, 1977). For example,
Gilbert et al. (1973) observed in a study of an
extended basis calculation for molecular SizO that
the five d-orbitals on Si make a relatively unimpor-
tant contribution to the wave functions of the linear
molecule and that the large population obtained in
the Collins et aI. (1972) calculations for H+SiO+ may
be an artifact of a poor basis set.

In an effort to clarify the extent to which these
orbitals might contribute to the structure of the SiO
bond in H+SiO+, Newton and Gibbs (1980) complet-
ed STO-3G* and "split valence" s,p basis 66-3lG*
calculations for the molecule. As both calculations
yielded essentially the same 3d-orbital populations,
they suggested that the populations are qualitatively
significant and not an artifact of a poor basis as
indicated by Gilbert et ql. (1973). Optimization of
the SiO bond lengths of the molecule with a STO-
3G* basis, yielded an equilibrium bond length of
1.604, well within the range of recorded values in
the silicate tetrahedra of the monosilicates. Thus,
the STO-3G and STO-3G* calculations yield bond
lengths that bracket the observed SiO bond lengths
in these minerals, notwithstanding the neglect of a
Madelung potential in the calculations. Also, de-
spite the lack of constraints in the calculations, the
ratio of the charges on Si and O was found to be
almost exactly 2 to l, the expected ratio for a
silicate. As predicted by Pauling, the charge on Si is
reduced from +1.36 to *0.81 when the minimal
basis set for the molecule is augmented with the
manifold of five d-orbitals on Si.

Deformation density maps for four-coordinate Si

Hlll et sI. (1981) have calculated a deformation
density map through the OSiO group in HrSiO+ to
assess the net transfer of charge from Si and O into
the SiO bond for four coordinate Si' Calculated
using a 66-3lG* basis with d-type polarization func-
tions, the theoretical deformation density was ob-
tained by subtracting the superimposed densities of
the component atoms of the molecule (i'e., the

-583.37
r . 5 5  1 . 6 0 r . 65 r .70

R(sio)i
Fig. 2. The total energy, E1, of the monosilicic acid molecule

(S+ point symmetry) calculated as a function of its SiO bond
length, R(SiO). Data used to prepare this plot were taken from
Table I of Newton and Gibbs (1980). The histogram superim-
posed on the plot is a frequency distribution of the experimental
SiO bond lengths in the monosilicates. The average bond length
for this group- of minerals is 1.635A compared with a minimum
value of 1.65A. Er is given in atomic units (a.u.) where I a.u. :

6.275 x 102 kcal mole-r.

Si3d orbital population

More than forty years have passed since Pauling
(1939) made the controversial proposal that silicon
may utilize its relatively unstable 3d-orbitals in
forming double bonds with the oxygen atoms of a
silicate tetrahedral group. Assuming that each of
the bonds has an ionic character of49 percent and a
bond number of 1.55, he calculated a charge of
+0.96 (: 4 - 4 x 0.49 x 1.55) on Si in conformity
with his electroneutrality principle (Pauling, 1948,
1952). About ten years ago, Collins, Cruickshank
and Breeze (1972) completed calculations for the
molecules SiOX- and H4SiO4 with a minimal basis
plus d-type AO's on Si and concluded that the d-
orbitals may make a significant contribution to the
molecular wave functions. In addition to finding a
rather large number of electrons occupying these
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promolecule), from the molecular charge density,
each atom being located at its appropriate position.
The resulting map, displayed in Figure 3a, shows a
modest accumulation of electron density in the SiO
bond with the peak appreciably shifted from the
midpoint of the bond in the direction of the oxygen
atom as expected from electronegativity consider-
ations. The peak has a height of 0.32 eA-3 and is
situated 0.65A from the oxygen in close agreement
with the Bragg-slater atomic radius of the atom
(Slater, 1972).In contrast, the minimum in the total
electron density distribution along the bond (Bader,
Keeveny and Cade, 1967) indicates an oxide ion
radius of 0.954 compared with the somewhat larger
"ionic radius" of the ion in MgO and CaO (1.12 and
1.194, respectively) determined by Bukowinski

(1980, 1981) and a crystal radius of 1.224 reported
by Shannon and Prewitt (1969). On the other hand,
Johnson (1973) has proposed a variable oxide ion
radius which decreases linearly from 1.4 to 0.84 as
the field strength of the cation bonded to it in-
creases from K+ to Be2+. Clearly this topic war-
rants further study.

Despite the large number of structural analyses
completed for the monosilicates, only a few have
been undertaken to record the deformation density
of the tetrahedral silicate group with which a map of
the theoretical density may be compared. A survey
of these studies reveals a fluctuation in the SiO
bonding peak heights ranging from 0.15 to 0.80
eA-3 with an average height of 0.35 eA-3. In addi-
tion, the distances between the oxygen atoms and
the bonding peaks range between 0.60 and 1.054
with an average separation of 0.754. The main
features in the experimental maps conform, on the
average, with those displayed in the theoretical
map. For sake of comparison, the experimental
map for the silicate group in the monosilicate anda-
lusite (Peterson, 1980) is displayed in Figure 3b with
the theoretical one calculated for the monosilicic
acid molecule. Despite the dissimilar bonding envi-
ronments, the two maps show a resemblance which
lends credence to the applicability and transferabili-
ty of the molecular wave functions and property
functions to analogous solid materials. In iddition,
both theory and experiment indicate a charge densi-
ty distribution like that expected from a bond
manifesting significant covalent character. As the
theoretical map was obtained from static wavefunc-
tions calculated at absolute zero without zero point
motion, the comparison in Figure 3 is perforce
qualitative. For the comparison to be quantitative,
the theoretical density must be averaged over the
appropriate vibrational states of the molecule.
Nonetheless, since the Debye temperature of a
monosilicate is large and since the zero point mo-
tion is not expected to have a gross effect on the
distribution, the thermally smeared distribution of a
theoretical map should not depart significantly from
that of the unsmeared distribution displayed in
Figure 3a (Spackman, Stewart and LePage, 1981).

Octahedral silicate group

By far the vast majority of silicates contain four-
coordinate silicon. Nonetheless, Si is six-coordi-
nate in such high pressure silicates as SiO2 (stisho-
vite) with the rutile structure, MgSiO3 with the

Fig. 3. A comparison of a theoretical difference deformation
map (after Hill et al., 1981) (a) of the OSiO group in rhe
monosilicic acid molecule with an experimental map (b) of the
group in the monosilicate andalusite, Al2SiO5. The contour
interval is drawn at 0.07 electrons A-3 in (a) and 0.10 e A-3 in
(b). The region about the nucleus of each atom in the theoretical
map represents the core region where the theoretical
deformation map is not expected to be accurate.
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ilmenite and perovskite structures and KAlSi3O8
with the hollandite structure and in such low pres-
sure silicates as SiPzOz and thaumasite, Ca:Si(OH)o
SO4CO312H2O. Also, in the moderately high pressure
phase K2SivISilvOe (Swanson and Prewitt, in
prep.), Si occurs in both four-coordination in 3-
membered rings and in six-coordination in octahe-
dra, linking the rings together into a three-dimen-
sional structure. Earlier, with the first synthesis of
stishovite. it was assumed that six-coordinate Si
was adopted only in phases formed at high pres-
sures. But, with the discovery of six-coordinate Si
in the molecular crystals tris(O-phenylenedioxy)
siliconate (Flynn and Boer, 1969), tris(acetylaceton-
ato)silicon(IV)perchlorate and tristhylammonium-
tris (pyrocatochloro)silicate (Adams, Debaerde-
macker and Thewalt, 1979), it is now recognized
that high pressure is not essential for the synthesis
of phases with octahedrally coordinate Si. In fact,
an examination of the low pressure phases shows
(unlike the high pressure phases) that the oxygen
atoms bonded to Si are also bonded to atoms like H,
C and P whose electronegativities are greater than
that of Si. According to Edge and Taylor (1971) and
Liebau (1971), these atoms drain electrons from the
SiO bonds, thus weakening and lengthening them
and reducing their mutual repulsions to the extent
that four-coordinate Si tends to be destabilized
relative to six-coordinate Si. Under these condi-
tions, the oxygen atoms are believed to behave like
the fluoride atoms in the SiF?- ion which is readily
formed in phases produced at low pressures. On the
other hand, Shannon, Chenavas and Joubert (1975)
have pointed out that six-coordinate Si in thauma-
site and SiP2O7 can be explained equally well in
terms of the sum of bond strengths, po, reaching the
oxygen atoms bonded to Si. For example, as po
increases, particularly in excess of 2.0, the SiO
bonds in a tetrahedral group will tend to weaken
and lengthen until a critical value is reached and six-
coordinate Si is adopted, thereby reducing the bond
strength sum to a value in better agreement with the
saturated value of 2.0.

In his pioneering work on the chemistry of silica,
Iler (1955, 1979) made the proposal that the hexoxo-
silicate ion, Si(OH)!,-, forms in aqueous environ-
ments as an intermediate product in the polymeriza-
tion of silicic acid. Since data are lacking for this
proposal, Gibbs et al. (1981) undertook an analysis
of the anion to explore whether there is any theoret-
ical reason why it might not form and to see how
well the anion might model the SiO bond lengths of

the hexoxosilicate ion in the mineral thaumansite
(Edge and Taylor, 1971). For the calculation, the
anion was assumed to consist of a Si atom bonded
to six hydroxyl groups each disposed at the corners
of an octahedron with the SiOH angles set at
109.47" and with hydrogen fixed at 0.96A from each
oxygen atom (Fig. 4a). The minimum energy SiO
bond length of the anion was obtained from a
potential energy curve calculated with a STO-3G
basis set. As the calculations converged rapidly ̂ and
yielded a minimum energy bond length of lJ7Ain
close agreement with the average bond length
(1.784) of the anion in thaumasite, there is no
apparent reason why the anion might not form as an
intermediate in an aqueous environment containing
the monosilicic acid molecule. But, on the other
hand, Raman and 2eSi NMR studies of the constitu-
tion of various aqueous sodium silicate solutions
indicate that the predominant form of the silicate
group is probably tetrahedral (Earley, Fortnum,
Wojcicki and Edwards, 1959; Freund, 1973;Engle-
hardt, Zeigan, Jancke, Hoebbel and Wieker,1975)'

Fig. 4. Drawings of the molecules (a) Si(OH)Z-' (b)

S(OH)4(OH2), and (c) HsSiOe. The silicon atom centering each of
these molecules is represented by an intermediate-size sphere,
the six coordinating oxygen atoms disposed at the corners of a
perfect octahedron are each represented by a large sphere' and

the hydrogen atoms attached to the oxygen atoms are each

represented by a small sphere . The point symmetries of Si(OH)e
and Si(OH)a(OHi2 are both C1 whereas that of HeSiOo is H6. No

significance is attached to the relative sizes of the spheres used

to represent the atoms. (After Hill et al., l9El.)
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Since the hexoxosilicate ion discussed above is
negatively charged, its minimum energy SiO bond
length may not be comparable with that of a solid
like stishovite.3 Thus, in their study of the crystal
chemistry of stishovite , Hill et al. (1981) optimized
the SiO bond lengths of the neutral Si(OH)4(OH)2
molecule. They formed this molecule by adding two
protons to Si(OH)?-, converting two hydroxyl
groups on opposite ends of the molecule to water
molecules (Fig. ab). Optimization of the SiO bond
length, R(SiO), assuming that all the bonds are
equivalent, yielded a slightly shorter minimum en-
ergy value of 1.75A compared with the average
bond length (1.774) observed for a number of
silicates and silicate molecular crystals with six-
coordinate Si (Fig. 5). The quadratic stretching
force constant calculated from the curvature of the
potential energy curve is 540 Nm-r, about l0 per-
cent less than that calculated for four-coordinate Si
in monosilicic acid. The larger force constant of the
bond in the latter molecule is consistent with its
shorter bond length and smaller coordination num-
ber.

Si3 d orbital population

In a study of six-coordinate second row cations,
Tossell (1975) undertook an Xo Scattered Wave
calculation for the highly charged holosilicate ion,
SiOS-, when investigating variations in the elec-
tronic structure of the oxyanions MgOAo-, AIOS-
and SiOS-. As expected from electronigitirrity 

"on-siderations, the calculations indicate a substantial
increase in covalency in the series as evinced by an
increase in the width of the valence band. However,
the paucity of experimental data prevented compar-
ing these calculated spectral data to those of stisho-
vite. In addition, as Tossell's X. results for the ion
indicate that the higher energy lt2"-type Si3d AO's
are associated with a smaller fraction of electron
density in the interatomic region than the 2e"-type

3In a bond length study of solids and chemically similar
molecules, Gibbs er a/. (1981) found that the calculated bond
lengths for neutral molecules agree to within 0.02A, on the
average, with those in chemically similar solids. On the other
hand, those calculated for highly charged molecules were found
to depart from experimental values, on the average, by 0.07A in
length. Gupta and Tossell (1981) ascribe this poor agreement to
electron--€lectron repulsions between the extra electrons. As
electrostatic neutrality generally obtains within the fundamental
domain of a solid, the values for highly charged molecules are
not expected to be comparable with those in chemicallv related
solids.
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Fig. 5. A potential energy curve calculated for Si(OH)r(OHJz

(see Fig. 4b) as a function of the SiO bond length, R(SiO). In the
calculation of the total energy, Er, all R(SiO) values were
considered as equivalent. A frequency distr ibution of
experimental SiO bond lengths in silicates and siloxane
molecular crystals with six-coordinate silicon is superimposed
on the drawing. The average bond length for the distribution is
1.77A compared with a minimum energy bond length of 1.754.
(Modified after Hill et al., 1981.)

AO's, he concluded that evidence is lacking for the
&sp3 hybidization model proposed for hexacoor-
dinate Si compounds by Voronkov, Yuzhelevskii
and Mileshkevich (1975). In a later CNDO/2 MO
study of the X-ray emission and absorption spectra
of stishovite, Brytov, Romashchenko and Shchego-
lev (1979) reported 0.9 electrons in the lt2"-type
AO's and 1.0 in the 2e"-type AO's of the holosili-
cate ion. An examination of the STO-3G* wave
functions described above for the S(OH)4(OH2)2
molecule indicates a somewhat smaller population
of 3d electrons, with 0.6 electrons in the 2e"-type
and 0.3 in the ltzs-type AO's. A 66-31Gx basis
calculation for the molecule indicates 0.4 electrons
in the 2e"-type and 0.2 in the lt2"-type AO's, for a
total of 0.6 electrons in the 3d AO's of Si (Hill et al.,
1981). Also, a total of 0.6 electrons was obtained in
these AO's in similar calculations for SiO2 and
H4SiO4 molecules (Pacansky and Hermann, 1978;
Newton and Gibbs, 1980). Thus, the 3d type polar-
ization functions on Si seem to make about the
same contribution to the wave function of a mole-
cule regardless of the coordination number of Si.

A population analysis of the STO-3G wave func-
tions of Si(OH)4(OH)zyielded a charge of * 1.40 on
Si compared with +1.36 obtained for four-coordi-
nate Si in HrSiO+. However, the charge on the six-
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coordinate Si is reduced to +0.74 when the 3d type
AO's of Si are added to the basis set. This charge
compares favorably with that (+0.97 : 4 - 6 x 1.03
x 0.49) calculated with Pauling's (1952) method for
a six-coordinate SiO bond length of 1.76A. It is
noteworthy that Pauling's method yields a charge of
- +1.0 on Si regardless of whether it is bonded to
either four or six oxygen atoms. Nonetheless, as the
charge on an atom in a molecule or a solid is
arbitrary and not an observable, there is no experi-
mental technique that can be used to verify these
numbers (Stewart and Spackman, 1981).

Deformation density maps for six-coordinate Si

Of the silicates with six-coordinate Si, stishovite
is the only one for which deformation density maps
have been produced from X-ray diffraction data.
Actually, because of its chemical and structural
simplicity, the mineral is ideally suited for such a
charge density study. The structure of the mineral
consists of a framework of corner and edge sharing
silicate octahedral groups. As the octahedral shar-
ing coefficient is 3.0, each oxygen atom in the
mineral is bonded to three Si atoms lying at the
corners of a triangle. The Si atoms occupy octahe-
dra that share opposite edges with other octahedra
to form interconnected octahedral chains along c.

A deformation map calculated through a SiOa
plane of one of these octahedra is displayed in
Figure 6a (Hill et al., 1981). The most prominent
features in the map are peaks of electron density in
each bond located about 0.684 on the average from
oxygen. As may be expected, the peaks in the
shorter equatorial bond are significantly larger
(0.47e A-3; than those in the longer apical bonds
(0.29 eA-3). Interestingly, these peaks have about
the same heights as those recorded for the SiO
bonds in the monosilicates. On the other hand, the
bonding peaks in stishovite are significantly smaller
than those (-0.85 eA-r; in a-qruarlz, where the
bonds are -0.2A shorter in length. However, we
are unable to offer a satisfactory explanation of why
the peak heights in the monosilicates are significant-
ly smaller on the average than those in a-quartz.

To assess the net charge transfer of electrons
from Si and O into the SiO bond for six-coordinate
Si, Hill et al. (1981) completed "split valence" 66-
31G* calculations for two different molecules with
six coordinate Si. In devising the topology of these
molecules, they considered three factors: (1) the
simulation of the bonding requirements of both Si
and O; (2) the flexibility of an adequate AO basis

set; and (3) computational feasibility. Earlier stud-
ies by Newton and Gibbs (1979) on the disiloxane
molecule indicate that a 66-3lG* basis is required to
yield qualitatively meaningful deformation densi-
ties. Because of the very large size of this basis,
computational feasibility limited it to molecules
with a few atoms, thus placing severe constraints on
its ability to model the Si and O environment in
stishovite. With these limitations in mind, Hill et al.
(19S1) completed calculations for the two following
molecules: (1) the S(OH)4(OH2)2 molecule (Fig. ab)
and (2) an octahedral molecule with the same for-
mula (HrSiO6), but with the eight H atoms symmet-
rically arranged on the 3-fold axes of the SiO6
octahedral group in conformity with Or G 4lm32l
m) point symmetry (Fig. 4c).

The deformation map for the S(OH)4(OH2)2 mol-
ecule was deficient as a model for the six-coordi-
nate Si in stishovite in that it lacked any significant
build up of electron density in the SiO bonds of the
molecule. At first glance, the HaSiOo molecule may
also seem to be deficient as a model, but a careful
scrutiny of its topology shows that it satisfies the
bond strength sum requirements in stishovite, i.e.,
the bond strength sum to each oxygen atom is
exactly 2.0. Moreover, the features of a deforma-
tion map calculated for a SiOa plane of the molecule
are similar to those in the experimental map for
stishovite (Fig. 6b). Not only are the bonding peaks
in the theoretical map (0.31e A-3) similar in height
to those in stishovite, but also the peaks are located
about 0.654 from the oxygen atom compared with a
bond peak to oxygen atom separation of 0.684 in
the mineral. Clearly, both theory and experiment
indicate that the bonding in stishovite has apprecia-
ble covalent character, but its smaller bonding
peaks relative to those in o-qruarlz suggest that the
covalent character of the bond may be less for six-
than for four-coordinate Si.

The disiloxy (SiOSi) grouP

Silicates exhibit a wide variety of polymerized
tetrahedral silicate groups of differing topologies
ranging from the oligosilicates with oligomers of
corner sharing silicate tetrahedra to the tectosili-
cates with continuous three dimensional extensions
of corner sharing tetrahedra (Liebau, 1980). The
polymerized tetrahedral groups in this latter class of
silicates are held intact by the important disiloxy
group in contrast with the monosilicates which
contain insular silicate tetrahedral groups. In the
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Fig. 6. An experimental deformation map (a) calculated
through the apical and equatorial bonds of the holosilicate anion
in- stishovite, a very high pressure polymorph of SiO2, compared
with a theoretical map (b) calculated through a SiOa plane of the
H8SiO6 molecule displayed in Figure 4c. The contoui interval is
drawn at 0.05 e A-3 in (a) and 0.07 e A-3 in (b). In (a), the zero
contour is drawn as a long-dashed line, the negative contours are
short-dashed lines, and the positive contours are as solid lines.
(After Hill et al., 1981.)

last section, we examined a series of calculations
for the SiO bond in molecules with four- and six-
coordinate Si and observed that the optimized bond
lengths are in good agreement with those in compa-

rable silicates. In this section, geometries and de-
formation density distributions generated for the
molecules H6Si2O7 and H6Si2O will be compared
with those observed for the silica polymorphs. Then
the bond lengths and angles generated for rings of
disiloxy groups will be compared with those in
silicate and siloxane solids.

Disiloxy groups in the silica polymorphs

The disiloxy groups in the silica polymorphs
exhibit a relatively wide range of SiOSi angles,
varying from about 135 to 180". As the angle wid-
ens, the bridging bonds tend to shorten by a small
yet significant amount. In fact, they appear to
shorten nonlinearly when plotted against the angle
but linearly when plotted against either the hybrid-
ization index, \t (: - l/cosZSiOSi defined by the
superscript spn), or the fraction s-character, /l :
(1 + \1-r, of the bridging oxygen of the disiloxy
group (Gibbs et al.,1972; McWeeny, 1979; Newton
and Gibbs, (1980). For a brief but very informative
discussion of f, as provided by the concept of
hybridization, the reader is referred to an excellent
paper by Newton (1981) who examines the role
played by the hybrid AO's of the bridging oxygen in
the disiloxy group and provides a quantum mechan-
ical underpinning of the hybrid concept in terms of
ab initio hybrid AO's obtained with localized mo-
lecular orbital theory.

In an attempt to elucidate the nature of the
disiloxy group, Tossell and Gibbs (1978), Meagher,
Tossell and Gibbs (1979), DeJong and Brown
(1980a, b) and Lasaga (1982) have employed semi-
empirical CNDO/2 theory to calculate a series of
potential energy curves for disiloxane and various
molecules containing the disilicate group and have
found that the minimum energy angle for a fixed set
of SiO bond lengths is in good agreement with a
typical angle in the silica polymorphs. It was also
found that the broad range of angles recorded for
these minerals can be interpreted in terms of the
shape of the curve for the disiloxane molecule
(Tossell and Gibbs, 1978). In a recent study of the
correlation between bond length and angle, the SiO
bond lengths in disilicic acid were optimized as a
function of the SiOSi angle using STO-3G theory
(Newton and Gibbs, 1979, 1980). The resulting
correlation displayed in Figure 7 agrees to within
about 0.03A with that observed for coesite, a high
pressure polymorph of silica (Gibbs, Prewitt and
Baldwin, 1977a). Also, as observed for the silica
polymorphs, the mean SiO bond lengths for the
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Fig. 7. A comparison of the experimental SiO bond lenghs,

R(SiO), in coesite, a high pressure polymorph of SiO2,
(uppermost curves in (a) and (b)) with those calculated for the
bridging bonds in the disilicate molecule, H6Si2O7, with its
bridging angle being fixed in succession at 140, 160 and 180"
(lowermost curves in (a) and (b)). The bond lengths in both
coesite and the molecule vary nonlinearly when plotted against
zSiOSi and linearly when plotted against/" = l/(l + \2) where )'2
: - l/coszSiOSi is called the hybridization index of the bridging
oxygen atoln because its state of hybridization is given by the
symbol spr'. lAfter Newton and Gibbs, 1980.)

molecules decrease linearly with the hybridization
index of the bridging oxygen (Meagher and Gibbs,
1976).

The energetics of the disiloxy group

In a study of the quadratic bending and stretching
force constants of the disiloxy group, Newton and
Gibbs (1980) used STO-3G basis functions to calcu-
late three potential energy curves for the disilicic
acid molecule, H6Si2O7, as a function of the SiOSi
angle. To maintain the average SiO bond length of
the molecule at 1.624, the bridging bond lengths
were set in succession at 1.59, 1.62, and 1.65A,
whereas the nonbridging bonds were set at 1.63,
1.62 and 1.614, respectively. For simplicity, the
OSiO and SiOH angles were each set at 109.47" and
the neutralizing protons were placed at 0.96A from
each of the nonbridging oxygen atoms. The three
curves that resulted from the calculations have
respective minima becoming progressively broader
with each curve rising gradually with increasing
angle to 180". In contrast, the curves rise steeply (in
the region of -120') with decreasing angle from the
minima. When a three point parabola was fit to each
of these curves, Newton et al. (1980) found that the
resulting symmetric SiOSi bending constant is in
rough agreement with that reported for a-quartz.
They interpreted this to mean that the bonding

forces in the two systems are comparable and that
the force field for the group in the molecule may be
applicable and transferable to a-quattz' Moreover,
since the SiO stretching (-850 Nm-t) and the OSiO
bending (-100 Nm-t) force constants are signifi-
cantly larger than that of the SiOSi bending force
constant (-10 Nm), the bulk modulus of the mineral
was concluded to be controlled in large part by the
compliant nature of the SiOSi angle. When it was
assumed that the dominant contribution to the
isothermal bulk modulus, K (:VdPl|Vli, is the
bending force constant of the SiOSi angle, the
calculated bulk modulus (0.397 megabars) was
found to be in good agreement with the experimen'
tal value (0.393 megabars) extrapolated to 0'K. The
bending force constant, when examined as a func-
tion of the shape of the disiloxy group, was found to
increase as the bond lengthened and the angle
narrowed. Since the bulk modulus appears to be
controlled by the compliance of the SiOSi angle, the
isothermal pressure derivative of the bulk modulus
should also decrease as the mineral is compressed
and narrower equilibrium angles are adopted (Ross

and Meagher, 1981). The isothermal pressure deriv-
ative of the bulk modulus, K' (: AIVAPIT), should
also be relatively large inasmuch as the SiOSi angle
should narrow at a relatively rapid rate upon initial
appl icat ion of pressure (Bass, Liebermann,
Weidner and Finch, 1980). Eventually, when the
angle is compressed to about 120o, nonbonded
Si '  ' '  Si  and O ' ' 'O, repulsions should dominate
and the value K' should approach a constant value.
Finally, temperature and pressure changes should
have a relatively large effect on the soft SiOSi angle
while they should have a moderate effect on the
OSiO angle and little effect on the stiff SiO bond in
o-quartz (Levien, Prewitt and Weidner, 1980; Ross
and Meagher, 1981; Lager, Jorgensen and Rotella,
1982).

Potential energy surface of the disiloxy group

In a recent examination of the energetics of the
disiloxy group, Meagher et al. (1980) calculated the
potential energy of HeSizOz for more than 70 differ-
ent pairs of bridging bond lengths and angles. The
resulting total energies, plotted as a function of
R(SiO) and ZSiOSi and contoqred, generate the
surface displayed in Figure E. A study of the surface
shows for the most part that the potential energy of
the group varies relatively slowly with angle in the
vicinity of the minimum but relatively rapidly with

r 8 0t 6 0t 4 0
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change in bond length. The minimum energy config-
uration is located at the bottom of a relatively
narrow energy valley blocked at one end and
bounded laterally by steeply rising energy barriers.
In contrast, the other end of the valley is bounded
by a gradually rising surface. It is also observed that
the valley shows a slight curvature which conforms
with the curvilinear bond length-angle trend ob-
served for coesite (Fig. 7). Superimposed upon the
energy surface are the experimental bond length
and angle data for the disiloxy groups in the silica
polymorphs (Hill and Gibbs, 1979; Gibbs et al.,
1981). The data follow the general trend of the
surface, but the observed bond lengths are about
0.024 longer on the average than thaidefined by the
valley bottom (Fig. 8). Despite this difference,
which may be related to lattice vibrations at room
temperature, the fact that the bond length and angle
data for the silica polymorphs fall close to the valley
bottom indicates that the energetics of the disiloxy
group in the disilicic acid molecule may be trans-
ferred and applied as a model to account for the
energetics and geometry of the group in the silica
polymorphs.

The barrier to linearity is defined to be the
difference between the total energy of the molecule
evaluated for a straight bridging angle and that
evaluated at the minimum energy angle. It is small
(- 3kT at room temperature) and indicates that a

relatively small amount of energy will be expended
in deforming the SiOSi angle from its minimum
energy value to 180". If the bonding forces in
disilicic acid and the silica polymorphs are similar,
then the SiOSi angles in the latter may be readily
deformed from their equilibrium values to form a
periodic extension of silicate tetrahedra without
unduly destabilizing the resulting structure. Thus, a
broad continuum of SiOSi angles is expected to
occur in agreement with the relatively large range of
observed angles. Also, because ofthe steep energy
barrier blocking the valley at narrow angles, SiOSi
angles less than -120" are indicated to be unstable.
Finally, the glass forming tendencies and the ability
of silica to exist in a relatively large variety of
polymorphs depending on the ambient temperature
and pressure may also be ascribed in part to the
flexible nature of the disiloxy group and the ease
with which its angle can be deformed from its
equilibrium value without excessively destabilizing
the final structure.

Rings of disiloxy groups

A silicate ring of difunctional units differs from a
comparable siloxane ring in that each Si atom in the
siloxane ring is bonded to two bridging oxygen
atoms and two nonbridging organic groups, where-
as in the silicate ring each Si atom is bonded to four
oxygen atoms (Noll, 1968). In spite of this impor-
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tant difference, Chakoumakos et al. (1981) have
found that a close correspondence exists in the
shape of the disiloxy group in silicate and siloxane
rings. The SiOSi angles in 4-, 5- and 6-membered
silicate rings exhibit a wider range of angles (130 to
180') and a wider angle on average (145') than the 3-
membered silicate rings which exhibit a range of
values from 120 to 140" with an average angle of
130'. Despite a somewhat smaller range of angles
(125 to 170") and a paucity of 5- and 6-membered
rings, the average angles exhibited by siloxane rings
are practically the same as those observed for
silicate rings (Fig. 9). Also, as observed for the
silica polymorphs and other silicates (Brown e/ c/',
1969; Brown and Gibbs, 1970; Gibbs et aI., 1972:'
Gibbs et al.. 1974; Gibbs et al., 1977a; Hill and
Gibbs, 1979), the bridging SiO bond lengths in both
siloxane and silicate rings appear to shorten with
increasing SiOSi angle (Ribbe, Gibbs and Hamil,
1977).

In their STO-3G calculations, Chakoumakos et

Siloxones
6 -  Membered

c/. (1981) optimized the SiO bond lengths and SiOSi
angles for several molecules, including cyclotrisi-
loxane and cyclotetrasiloxane which consist of a 3-
and 4-membered ring, respectively' To reduce com-
puter costs, the calculations were made assuming
nfSiUl : 1.50A, zOSiH and zHSiH : 109.47'and
various point symmetries for the molecules. As

cyclotrisiloxane has yet to be isolated, no compari-
son could be made between its calculated and

observed bond lengths and angles. On the other
hand, the shape of the disiloxy group in cyclotetra-
siloxane determined for a gas phase molecule
(Glidewell et al., 1970), shows a fairly close corre-
spondence with that calculated (Chakoumakos et

c/ . ,  1981):

obs. calc.
R(SiO) 1.63A 1.614
zsiosi 149" 142"
zosio lr2" 111'

Chakoumakos et al. (1981) also discovered that the

r ings

)  1 6 0

ls iost(")
t20

5-  Membered r ings 
c+ '

C 3 "
Dgt t

Fig. 9. The SiOSi angle frequency distributions for rings ofdisiloxy gtoups in silcates and siloxanes. The average angle for each

distribution is represented by 
" 

UotAfu." arrow while regular arrows mark the SiOSi angles of cyclotrisiloxane and cyclotetrasiloxane

molecules optimized for various point symmetries. The point symmetries assumed in optimization of the angles are stated at the

origin of each regular anow. (After Chakoumakos, 19E1.)
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bridging bond lengths and angles calculated for
these molecules reproduce the correlations dis-
played in Figure t0 between R(SiO) and /l for
siloxanes and silicates. Note that the calculated
SiOSi angle frequency distributions plotted in Fig-
ure 9 correspond fairly well with those observed. It
was also observed that the maximum SiOSi angle
that a 3-membered ring of regular tetrahedra can
adopt is 130'. Inasmuch as this is about l5o narrow-
er than the minimum energy angle of the SiOSi
group, they went on to suggest that the bond in a 3-
membered ring is strained and less stable than that
in a larger ring which may adopt a wider, more
stable angle by embracing a nonplanar configura-
tion. However, they did note that a 3-membered
ring may be favored in a high pressure environment
where nalrower SiOSi angles are indicated to be
stabilized (Ross and Meagher, 1981). Chakoumakos
et al. (1981) also suggested that 3-membered rings
should be relatively uncommon in silica glass and
melts where more flexible 4-, 5- and 6-membered
rings should predominate.

Deformation maps for the disitory group
In an earlier section of this report, we examined

the tetrahedral distribution ofcharge density in the

monosilicic acid molecule and noted a net transfer
of density from Si and O into the SiO bond region in
forming a polar covalent bond. In this section, a
deformation map of the disiloxy group in disiloxane
will be compared with a static deformation map of
the group in o-quartz (Fig. 11).

The map of the SiOSi group in disiloxane was
calculated for the observed geometry of the mole-
cule, using a 66-31Gx "split valence" basis wave
function (Newton and Gibbs, in prep.). The result-
ing map displayed in Figure llb indicates that there
has been a transfer of electron density from the Si
and O atoms to a peak in each bond and also to the
lone pair region on the back side of the bridging
oxygen atom. Interestingly, these peaks are offset
from the line between Si and O toward the interior
side of the SiOSi angle in conformity with the
narrower angle between the hybrid orbitals on the
bridging oxygen atom and with the suggestion
(Newton, 1981) that these orbitals play a crucial
role in modeling the electron density distribution of
the disiloxy group. Also, in their study of disilox-
ane, Newton and Gibbs (in prep.) optimized the
molecule's geometry using a "split valence" basis
and obtained an equilibrium SiOSi angle of 149", a
SiO bond length of 1.6424 and a dipole moment of
0.32 I compared with experimental values of 144a,
1.6344 (Table 1), and 0.24D (Varma, MacDiarmid
and Miller, 1964).

In a mapping of the electrostatic properties from
X-ray data for a-qaartz, Spackman et al. (1981)
computed a static deformation map for the disiloxy
group in the mineral. This map displayed in Figure
1la represents the deformation density of the bond
at absolute zero and, as such, may be compared
directly with the theoretical map of the bond dis-
played in Figure 1lb. As observed in the theoretical
map for disiloxane, the bonding peaks are arcuate in
shape and are situated closer to the more electro-
negative oxygen atom. However, the electron den-
sity goes to zero on both sides of each bonding
maxima in the theoretical map in contr'ast with the
map for a-qurtz which shows the bonding peaks
superimposed on a continuum of charge density
between the bonded centers. In fact, the charge
density distribution in a-quartz appears to be
smeared more than one would expect for a localized
bonding model. Also, the heights of the bonding

4 Durig et at. (1977) report a SiOSi angle for disiloxane of
149+2o.

S i l oxo  n  es
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f s =  l O l ( l + ) , 2 )

o 5 0

Fig. 10. Experimental SiO bond lengths, R(SiO), for rings of
disiloxy groups in siloxanes (a) and silicates (b) plotted againstf
: ll(l + )r2) where )t2 = -llcosZSiOSi. The solid lines
superimposed on both figures were determined by linear
regression analyses. The five data points plotted as solid circles
represent theoretical values obtained by optimizing the bridging
bond lengths and angles of several cyclotrisiloxane and
cyclotetrasiloxane molecules with various point symmetries.
The dashed lines denote regression lines fit to the theoretical
data. The SiO bonds used to prepaxe (a) each have a bond
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Fig. 1 l. Comparison of an experimental static deformation map (a) of the disiloxy group in o-qnartz with a theoretical map (after

Spackman et al., (1981) (b) of the bond in disiloxane calculated with a 66-3lG* basis (after Gibbs and Newton, in prep.). The contours

are drawn at intervals of 0. 10 e A-3 in (a) and 0.07 e A 3 in (b).

peaks in the mineral are significantly larger (0.85
eA-3) than those calculated for disiloxane. These
peaks are even larger than those (0.6e A-3) in a
deformation map of the silicon monoxide molecule
which was calculated at the Hartree-Fock limit
(Stewart, in prep.). Nonetheless, the bonding peaks
in SiO are arcuate in -shape as in o-quartz and are
situated closer (0.60A) to the oxygen atom. As
recorded for the disiloxane molecule, the electron
density associated with the bonding peak in SiO
also drops to zero between Si and O. There is,
however, a conspicuous absence of charge density
in a-quartz on the back side of the oxygen atoms
that may be ascribed to lone pair density. To our
knowledge, such an accumulation in the lone pair
region has yet to be observed in a silicate.

In addition to the static maps for a-quartz, defor-
mation maps have also been reported for the SiOSi
groups in pectolite (Takeuchi and Kudoh, 1977),
coesite (Gibbs et al., 1978) and enstatite (Ghose,
Wang, Ralph and McMullan, 1980). The charge
density distributions recorded for the bonds in these
minerals are in closer agreement with the theoreti-
cal map in that the bonding peaks between Si and O
average 0.35eA-3. The electron density between Si
and O drops to zero in each of these minerals rather
than showing peaks superimposed on a continuum
of charge density between the bonded centers as in
a-quartz. The modest peaks of charge density in the
bond region give the same picture of a covalent
bond as was inferred from aspects ofthe bond such
as overlap population (Gibbs et al., 1972; Newton

(  b)
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I
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and Gibbs, 1980). However, the bond picture is
somewhat obscured in that the theoretical maps
exhibit nodes between the bonding peaks and Si.
This feature is observed in all the theoretical maps
calculated and will be discussed at a later time
(Newton and Gibbs, in prep.).

SiOT groups (T = Si, Al, B, Be)

The shape and variability of the SiOT groups in
silicates

Assuming that the chemical interactions in gas-
phase molecules and solids are essentially the same
and that carefully selected molecules can serve as
models for describing the SiOT bridging angles in
solids, Tossell and Gibbs (1978), Meagher et al.
(1979) DeJong and Brown (1980a, b) and Lasaga
(1982) computed bridging angle potential energy
curves for several siloxane and silicic acid mole-
cules, using the CNDO/2 method. Not only were
the average bridging angles in various silicates
reproduced, but also their ranges seem to conform
with the shapes of the curves. In the last section, we
examined the nature of the disiloxy groups in disili-
cic acid and various ring silicates and showed that
their equilibrium geometries conform with the bond
length and angle variations in comparable silicates
(within the experimental error). Then we found that
the group comprises significant accumulations of

bonding density in conformity with its covalent
character. In this section. we will examine a similar
set of curves generated for the SiOT groups in the
molecules whose optimized bridging bond lengths
and angles are given in Table 2. As observed in the
Tossell and Gibbs (1978) study, the range of angles
in solids conforms for the most part with the
energetics of the bridging bonds in various silicate
molecules (Downs and Gibbs, 1981; Geisinger and
Gibbs, 1981b). Equally important, we will show that
the bond length and angle trends provided by these
molecules mimic experimental trends between
R(TO), /i and the bond strength sum to the oxygen
atom.

The tetrahedral bond lengths and angles of the
molecules listed in Table 2 were optimized with
their OTO and TOH angles fixed at 109.47" and
their OH bond lengths fixed at 0.964 (Fig. t2a). The
hydrogen atoms bonded to the bridging oxygens of
the H6T2O6(OH) molecules in Table 2b were locat-
ed in the plane of the bridging angle, bisecting its
exterior angle (Fig. 12b). An examination of Table 2
shows, despite the relatively large variation of the
individual SiO bond lengths (-0.104), that the
mean SiO bond length for each molecule deviates,
on the average, by only 0.014 from the grand mean
SiO bond length. By the same token, the individual
AlO, BO and BeO bond lengths show a similar
variation, but again the individual mean bond

Table 2: Optimized bond lengths (A) and angles (') for T,OT2 bonds in H6T,T2O7 and H7T1T2O7 molecules (see Fig. l2);po is the bond
strength sum to the bridging oxygen and f" : l(l + 12) where )r2 : -secZTrOTz

( a )  H 6 T l T 2 o 7  m o l e c u l e s

H6T, tTzO7 n(T to) t .  n (TzO)u ,  R(T tO) .u ,

H 6 S i S i O T  1 . 6 0

H6SiA1OT 1 59

uus i ro r l -  1 .60

Hus iBeof -  1 .  s8

uuaurof - 1 .6s
uurnof- 1.4r

1 . 6 0

R ( T ^ 0 )  Z T " o T ^  p  F  R e f .z n o t L z o s

I . 6 6  1 4 2  2 . 0 0  O . 4 4 I  a , b , c

L . 1 2  1 , 3 6  r . 7 5  0 . 4 1 8  b , c

1 . 4 8  1 2 6  I . 7 5  0 . 3 6 4  c

r . 6 2  1 3 1  1 . 5 0  0 . 3 9 6  d

I . 7 4  1 5 0  1 . 5 0  0 . 4 6 9  c

1 . 4 9  L 3 3  1 . 5 0  0 . 4 0 5  c

1 . 6 9  r . 6 7

I . 4 4  1 . 6 4

1 . 6 0  1 . 6 8

1 . 6 5  7 . 7 4

r . 4 t  ) - . 4 9

HTTtr20 j

nrsrs io )+  r .71-  r .7 r
H 7 S 1 A 1 O 7  I . 6 7  1 . 8 0

H T S i B O T  L . 6 7  1 . 5 1

n r s i n e o ) -  1 . 6 5  L . 6 6

H T A r A l o + -  r . 7 6  L . 7 6

ErBBor l -  r .4g  L .Ag

(b)  H7TIT2O7 molecu les

1 . 6 5  I . 6 5  1 3 2

1 . 6 5  r .  7 0  1 3 3

1 . 6 5  1 . 4 5  r 2 8

1 . 6 6  r , 5 8  I 2 9

1 . 7 1  r . j L  1 4 0

L . 4 6  r . 4 6  I 3 7

3 . 0 0  0 . 4 0 1  c

2 , 7 5  0 . 4 0 r  c

2 , 1 5  0 . 3 8 1  c

2  , 5 0  0 .  3 8 6  d

2 . 5 0  O  . 4 3 4  c

2 . 5 O  0 . 4 2 2  c

a 
Newton aod Glbbs (1980)

b  
M . . g h . .  e t  a 1 .  ( 1 9 8 0 )

"  C . i " i n g . .  a n d  c l b b s  ( I 9 8 J )

d 
Do*" . .d cibbs (1981)
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that the minimum energy SiO, AlO, BO and BeO
bond lengths (Table 2) agree within the expected
error with experimental values obtained for a num-
ber of silicates (Fig. 14). When the frequency distri-
butions of the SiOSi, SiOAl, SiOBe and SiOB
angles in solid silicates were superimposed on the
graphs in Figure 13, they found that the average
angle obtained for each population agrees to within
a few degrees of the minimum energy angle ob-
tained in the calculations:

Fig. 12. Drawings of the molecular structures of HeSiTOz (a)
and HTSiTOT (b). The intermediate-sized spheres represent the
tetrahedrally coordinated Si and T (: Si, Al, B, Be) atoms, the
large spheres represent oxygen and the small spheres represent
hydrogen. No distinction is made in the drawings between Si and
T atoms. The bridging oxygen is only bonded to a Si and a T
atom in HrSiTOT, whereas it is bonded to Si, T and H in HTSiTO?.
Hence, the po value of HzSiTOz is one unit larger than that of
I+SiTO7. No significance is attached to the relative sizes of the
spheres in the molecules. (After Geisinger and Gibbs, 1981.)

lengths deviate by only 0.014 from their grand
means. Interestingly, Smith and Bailey (1963) re-
ported a similar variation in bond distances in an
important review of AIO and SiO tetrahedral bond
lengths. With the equilibrium TO bond lengths
given in Table 2, potential energy curves were
calculated for the molecules H6Si2O7, H6SiAlO+-,
H6SiBO+- and H6SiBeOT- as a function of the
bridging angles between 110 and 180'. The resultant
curves (Fig. 13) are similar in that each shows a
minimum in the region between 125 and 145" and
each rises steeply with decreasing angle in the
vicinity of 110-120". This agrees with hybridization
arguments by Coulson (1973) which imply that the
directions of the hybrid orbitals on the bridging
oxygen, and hence the SiOT angle, must exceed
90'. Clearly, the calculated angles having minimum
energy decrease in the series SiOSi, SiOAl, SiOBe
and SiOB with a concomitant increase in the barrier
to linearity. It is noteworthy that the barrier to
linearity seems in general to vary directly with the
equilibrium angle, the narrower the angle, the larger
the barrier. In addition, Geisinger and Gibbs
(1981b) and Downs and Gibbs (1981) have found

Group

SiOSi
SiOAI
SiOBe
SiOB

Minimum
energy angle(")

142
136
1 3 1
126

Average SiOT
angle(")

145
138
r27
r29

Unlike the potential energy-angle curves generat-
ed for H6Si2O7 and H6SiAlOl-, both curves for
H6SiBO+- and H6SiBeO]- show relatively larger
barriers to linearity, indicating that the range of
SiOB and SiOBe angles in solids and molecules
should be somewhat less than that observed for
materials with SiOSi and SiOAI angles. An exami-
nation of the frequency distributions in Figure 13
shows that their angles conform with the energetics
of the curves, i.e., LSIOB and ZSiOBe range from
120 to 142' and 118 to 152", respectively, while
ZSiOSi and ZSiOAI range from 120 to 180" and 115
to 180o, respectively. Thus, not only are molecular
orbital generated potential energy curves capable of
reproducing the shapes of SiOT groups in silicates,
but they also provide important insight into the
variability of their angles in solid silicates contain-
ing other tetrahedral atoms.

When a proton is attached to the bridging oxygen
of an H6T2O7 molecule, the barrier to linearity
increases significantly, suggesting that the variabili-
ty of a given angle should be reduced with increased
coordination number of the bridging oxygen (Gei-
singer and Gibbs, 1981b; Downs and Gibbs, 1981).
A study of the SiOSi groups for the disilicates
tabulated by Baur (1971) shows that the SiOSi angle
for two-coordinate oxygen ranges between 130 and
180o whereas the angle for three-coordinate oxygen
is less variable and ranges between 124 and 137".
Thus, if each bridging oxygen atom in a structure is
three-coordinate, then the range of bridging angles
is indicated to be relatively narrow. In contrast,
when some oxygens in a structure are two-coordi-
nate, then the range of angles is relatively large
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The energetics of the disilathia and disiloxy
groups-Q comparison

The basic moiety in the thiosilicates is the tetra-
hedral thiosilicate group consisting of a Si atom
bonded to four sulfur atoms disposed, on the aver-
age, at the corners of a tetrahedron. Even though
the SiS bond is -0.54longer than its SiO counter-
part, the range of bond lengths (0.19A) in thiosili-
cates is the same as that observed in silicates.
However, in contrast with the silicates, not only do
the thiosilicates show a much narrower range of
bridging angles (106-115), but they also show a
more limited assortment of tetrahedral topologies.
In a study of these differences, Geisinger and Gibbs
(1981) found in a series of STO-3G calculations that
the barrier to linearity of the disilathia group is more
than a magnitude larger than that calculated for the
disiloxy group. Their calculations also yielded a
minimum energy SiSSi angle of 111" and bridging
bond length of 2.llA compared with averaged ex-
periment?l values in molecules and solids of 110.3"
and 2. 13 A, respectively.

Geisinger and Gibbs (1981a) have indicated that
the assortment of tetrahedral topologies exhibited
by a compound should be related in part to the
barrier to linearity and to the relative stiffness of the
bridging angle, the greater the barrier and stiffness
of the angle, the more restricted the assortment of

r .75

1 .65

r . 55

t .45
t . 50  t . 60  t . 70

( n{ro))oo,
Fig. 14. The averaged tetrahedral bond lengths, (R(TO))"et.,

optimized for the molecules in Table 2 versus the averaged
bridgrng bond lengths, (R(TO))"b"., involving the angles used ro
prepare the histograms in Figure 13. The 45. line represents the
points ofperfect agreement. (After Geisinger and Gibbs, l9Elb.)
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Fig. 13. Potential energy curves for the [I6SiTOT and HTSiTOT
molecules (T = Si, Al, B, Be) displayed as a function of (a)
zSiOSi, (b) zSiOAl, (c) zSiOB and (d) zSiOBe (after Downs
and Gibbs, l98l). Each curve was calculated using the optimized
bridging bond lengths given in Table 2; the solid and dashed
curves were calculated for H5SiTOT and HzSiTOr, respectively.
The histogram superimposed above each pair of curves is a
frequency distribution of the experimental SiOT bridging angles
recorded for various silicates. (After Geisinger and Gibbs,
l98lb.)

whether or not other three-coordinate oxygens are
present. In addition, the typical angle forthe three-
coordinate oxygen atoms in the disilicates is signifi-
cantly narrower on the average (-132") than that for
the entire population (-144\. The theoretical
curves for H6Si2O7 and H7Si2O)* lGeisinger and
Gibbs, 198lb) corroborate these results. Not only is
the barrier to linearity of H7Si2O|+ (-0.02 a.u.)
with a three-coordinate bridging oxygen larger than
that for.H5Si2O7, but the minimum energy angle for
HiSi2Ol* is about l0o narrower than thatlor fLSirO,
(Table 2).
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stable tetrahedral topologies. As the SiOSi angle is
compliant and has a small barrier to linearity, the
constituent tetrahedra in a silicate may bond togeth-
er in a wide range of angles, allowing a large
assortment of polymeric groups of similar energies
to form. On the other hand. the more limited
assortment of tetrahedral topologies in the thiosili-
cates may be related to the larger barrier to linearity
and to the greater stiffness of the SiSSi angle.
Geisinger and Gibbs (1981a) also suggested that the
narrow distribution of bridging angles in the thiosili-
cates may inhibit the formation of SiS2 as a glass
inasmuch as nearly the same SiSSi angle should be
adopted and repeated again and again as in a solid.

The effect of po and f, on the variation of R(TO)
(T : Si, Al) in the tectosilicates

Few rules have had a more profound effect on our
thinking in mineralogy than Pauling's (1929) electro-
static valence rule, proposed more than half a
century ago but still used today to characterize the
relative strengths ofbonds and local charge balance
in silicates. The rule postulates that the sum of
strengths of the electrostatic bonds, po, to each
oxygen atom from the adjacent metal atoms in a
silicate should exactly or nearly equal 2.0 in order
to saturate the valency of the atom. Through the
years, not only has this rule been useful in restrict-
ing plausible structure types for a substance, but it
has also been found to be an important aid in the
determination of crystal structures. When first pro-
posed, it was found to be exactly or nearly com-
pletely satisfied in a variety of silicates. However,
as more and more silicate structures were deter-
mined, more and more violations were reported.
Smith (1953), for example, found in a reexamination
of the melilite structure that the ps value of one of
the oxygen atoms departs by as much as 20 percent
from 2.0. Following the discovery that a positive
correlation exists between R(SiO) and p6, he went
on to make the important postulate that the varia-
tions in R(SiO) can serve to alter the bond strengths
so that the valence of each oxygen atom in the
structure is effectively saturated by the strengths of
the bonds reaching it.

In 1970, Baur reexamined this correlation and
found that about half the variation in R(SiO) for
nearly 300 SiO bonds from a wide variety of sili-
cates could be described in terms of a linear depen-
dence onps. Later, Phillips, Ribbe and Gibbs (1973)
also found that about half of the variation of ROO)

(T : Si, Al) in the feldspar, anorthite, could be
similarly described. But they also found that about
40 percent of the R(TO) variations in the feldspar
could be described in terms of the SiOAI angle with
shorter bonds tending to involve wider angles (see
also Brown, Gibbs and Ribbe, 1969).

To ascertain whether both p6 and /l make a
significant contribution to the regression sum of
squares when considered in the presence of each
other, Geisinger, Swanson, Meagher and Gibbs
(unpublished) completed a multiple linear regres-
sion analysis of R(SiO) as a function of po and/" for
more than 130 SiO bond lengths in eleven tectosili-
cates, including anorthite. The analysis yielded the
equation

R(SiO) : 1.49 + 0.10p0 - 0.16^ (17)

Not only do statistical tests indicate that both po
and/. make a significant contribution to the regres-
sion sum of squares, but also the resultant multiple
correlation coefficient indicates that about 70 per-
cent of the total variance in R(SiO) may be account-
ed for by its regression on ps andf,. When the AIO
bond length data for the tectosilicates were included
in the regression analysis, the calculation yielded
the equation

R(TO) : 1.49 * 0.10ps - 0.16n + 0.132x (18)

where.r was set equal to 0.0 and 1.00 for SiO and
AIO bonds, respectively. Note that the regression
coefficients for pq and f; are identical in both (17)
and (18), indicating that both data sets may be
commingled and treated as a single population. The
fact that they are identical suggests that the bonding
forces that govern R(TO) in the tectosilicates are
very similar irrespective of whether a tetrahedral
group contains either Si or Al. As expected, the
coefficient of x in (18) is equal to the difference
between the crystal radii of four-coordinate Al and
Si published by Shannon and Prewitt (1969).

The observed tetrahedral bond lengths,
R(TO)ou"., used in the regression analysis are plot-
ted in Figure 15b against R(TO).4.., calculated with
(18) using the ps, /" and x values observed for the
more than 200 bond lengths employed in the analy-
sis. Although the agreement is not perfect (some of
the bond lengths depart by as much as 0.03A from
the 45' line of perfect agreement), equation (18)
orders the experimental bond lengths rather well in
conformity with the line drawn in Figure 15b.

As the bond lengths and angles generated for the
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Fig. 15. Tetrahedral TO (T = Si, Al) bond lengths, R(TO)"d. ,
calculated as a linear combination of bond strength sum, po, the
fraction of s-character of the bridging oxygen atom, i, and the
Al-content, x, of the tetrahedron containing the bond. (a) The
tetrahedral bond lengths, R(TO)"d", calculated using equation
(19) and the po andf, values for a number of molecules versas
their optimized bridging bond lengths, R(TO)opt.t (b) The
tetrahedral bond lengths, R(TO)."r"., calculated with equation
(18) using the observed po and[ values for eleven tectosilicates
(c-quartz, low cristobalite, coesite, anorthite, low albite, low
microcl ine, low cordieri te, paracelsian, slawsonite,
reedmergnerite and danburite) versus the bridging bond lengths,
R(f0)ou" , observed for these minerals (The Al and Si atoms
were assumed to be ordered in each of these phases); (c) The
tetrahedral bond lengths, R(TO).d., calculated with equation
(19) using the observed po and /l values for the eleven
tectosilicates versus their observed bridging bond lengths,
R(TO)"b".. The solid lines drawn on each scatter diagram
represent lines ofperfect agreement. (After Geisinger and Gibbs,
l9Elb.)

TOT groups in the silicate and siloxane molecules
described in this report and elsewhere (Meagher et
aI., 1980; Swanson et al., 1980; Gibbs er at., l98l)
agree rather well with those in solid silicates and
siloxanes, Geisinger et al. (trnpublished) completed
a multiple linear regression analysis of R(TO) as a
function of po, -/l and -r for more than 25 molecules
whose bond lengths and angles had been optimized
with STO-3G basis functions. As in the case of the
tectosilicates, each variable was indicated to make
a significant contribution to the regression sum of
squares. Also, the optimized bond lengths,
R(TO)opt., used in the regression analysis were
observed to be highly correlated (R2 : 0.94) with
those calculated for the molecules as evinced bv

Fig. 15a. As a matter of fact, when the equation

R(TO) : 1.64 + 0.08p6 - 0.41A + 0.11.r (19)

obtained in the regression analysis is evaluated
using the p0,/l and r values for each TO bond in the
tectosilicates, the resulting R(TO)"4.. values serve
to rank the observed bond lengths fairly well (Fig.
15c). The ability of this equation to rank the ob-
served bond lengths is additional evidence that the
forces governing the shape of the SiOT group in a
molecule and a tectosilicate are virtually the same,
notwithstanding the long range Madelung potential
of the solid.

An examination of the regression coefficients of
(18) indicates that R(TO) increases with decreasing
/l (with narrowing of the SiOT angle) and with
increasingp6. Inasmuch as the expected distance of
a 2p-electron from the oxygen atom nucleus is
greater than that of a corresponding 2s-electron, the
increase of R(TO) with decreasing/" is anticipated.
In other words, R(TO) should increase with de-
creasing/" because the effective radius of the oxy-
gen atom is expected to increase linearly with its
state of hybridization in the order sp I spz I sp3
(Dewar and Schmeising, 1960; Brown and Gibbs,
1969; Newton and Gibbs, 1980).

The linear dependence between bond length and
po is well-documented for a number of oxides,
including phosphates, sulfates, borates, silicates
and aluminates (Baur, 1970; Swanson et al., 1980a
Geisinger and Gibbs, 1981b). Interestingly, even
though Si is more electronegative and effectively
smaller than Al, both R(SiO) and R(AIO) exhibit
about the same linear dependence on po within the
experimental error. This is in contrast with the
observation by Lager and Gibbs (1973) that the
dependence seems to be better developed for the
most electronegative metal atoms. The dependence
of R(SiO) and R(AIO) on p0 has been analyzed by
Meagher et al. (1980) and Swanson et al. (1980) both
of whom optimized the geometries of a number of
molecules with bridging SiOSi, SiOAl, and AIOAI
groups and with p6 values ranging between 1.50 and
3.00. Their analyses indicate that the bond length
variations in the molecules are linearly dependent
upon ps and that the R(TO) versus p0 correlations
generated for the molecules duplicate the trends
recorded for various silicates (Fig. 16) by Baur
(1970) and Geisinger et al. (unpublished). Popula-
tion analyses for several of these molecules indicate
that the bond-length dependence on p6 is related to
a redistribution of the charge density in the bonds
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Fig. 16. Bridging tetrahedral TO (T = Al, Si) bond lengths,
R(TO), optimized for a number of molecules verszs the bond
strength sums, ?o, of the bridging oxygen atoms. The R(SiO) and
R(AIO) data are plotted as bullets and triangles, respectively
The lines drawn through the two trends were obtained in
regression analyses of observed tetrahedral AIO and SiO bond
length data versus po for a large number of silicates. (After
Geisinger and Gibbs, l98lb.)

(Geisinger and Gibbs, 1981b). In particular, &S po
increases, the charge density build-up in the bonds
reaching the bridging oxygen may be reduced as the
charges on the Si atoms increase, implying an
increase in the overall ionicity of the system. This is
expected to lead to an overall weakening and a
concomitant lengthening of the bonds to the oxygen
atoms. In addition, when the electrostatic bond
strengths for each of the SiO and AIO bonds are
multiplied by 2.0lps, a well-developed correlation
obtains between the resulting bond strengths and
the Mulliken overlap populations calculated for the
optimized bond lengths of the molecules (Fig. l7).
Thus, it is apparent that po is a measure of bond
strength irrespective of whether the bonds are con-
sidered to be ionic, covalent or some resonating
structure in between the two extremes.

The Pauling concept of bond strength

As we have seen in the earlier sections of this
report, the application of molecular quantum chem-
istry to bonding problems in silicates has provided
new and valuable insights into bond length and
angle variations, charge density distributions and
the elastic properties of the bonds. In this section,
we will examine two sets of first- and second-period
bond strength-bond length curves generated for the
hydroxyacid molecules in Table 3 (Gibbs and New-
ton, in prep.). In addition to mimicking the well
known Brown-Shannon curves (1973), the theoreti-
cal curves will be found capable of reproducing the

t . 40

r .20

r .oo

o.80

o .60

o .40
o.30 0.40 0.50 0.60

n(TO)
Fig. 17. A scatter diagram of the normalized bond strengths,

2s/po, for the bridging SiO and AIO bonds in more than 25
molecules versus the Mulliken bond overlap populations
calculated with the optimized bridgrng bond lengths and angles.
The quantity s is the Pauling electrostatic bond strength, and po
is the bond strength sum of the bridging oxygen atom. (After

Geisinger and Gibbs, l9Elb.)

Pauling (1929) bond strengths, s (: the valence ofa
metal atom divided by its coordination number), of
the bonds in the molecules. Also, a Mulliken popu-
lation analysis will show that s is linearly correlated
with bond overlap population in agreement with
earlier assertions that s may be equated with bond
number (Gibbs et al., 1972;Brown and Shannon,
1973;Lager and Gibbs, 1973).

Bond strength-bond length curves

A number of relations have been proposed be-
tween bond strength and bond length (see Brown
and Shannon (1973) for an excellent review ofthese
relations). One of the simplest ones is presented in
Figure 18a where ln(s) is plotted against ln(R(XO))
for first and second-period metal atoms, X (Gibbs
and Newton, in prep.). The R(XO) values used in
preparing these plots were generated with the Shan-
non-Prewitt (SP) crysta-l radii (1969), assuming an
oxide ion radius of l.22A.Inasmuch as the SP radii
were obtained from accurate bond length data from
a large variety of crystal structures, the R(XO)
values used in the plots may be taken as accurate
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Table 3: Optimized bond lengths, R(XO), for various hydroxy-
acid molecules; s is the electrostatic bond strength of the XO
bond and s."1e. ?ro the bond strengths calculated with equation
(21) and the theoretical constants given in the final section of this

repon

Molecule R(XO) s 6 ,
c a 1 c .

First  per iod XO bonds
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1 . 0 0

l .  0 0

o , 7 5

o , 6 7

o . 6 7

0 .  5 0

0 .  5 0

0 .  3 3

0 .  3 3

o . 2 5

0 ,  1 7

estimates of the XO bond lengths for various coor-
dination polyhedra in oxide solids. In an effort to
reproduce the correlations in Figure 18a, Gibbs and
Newton (in prep.) undertook a series of molecular
orbital calculations for a variety of hydroxyacid
molecules (Table 3) with three-, four- and six-
coordinate metal atoms to explore the extent to
which the ln(R(XO)) values for the molecules might
be linearly correlated with ln(s) and to see whether
the overlap populations, n(XO), of the optimized
XO bonds correlate with the electrostatic bond
strengths. The protons used to neutralize the mole-
cules in Table 3 were placed at 0.964 from the
oxygen atoms and the XOH angles were fixed at
109.47" as described earlier. for instance. for the
Si(OH)4(OH2)2 molecule displayed in Figure 4b. In
the calculations, the XO bonds of each molecule
were treated as though they were equivalent while
the optimized R(XO) values were found by fitting a
three-point parabola to each potential energy curve
in close proximity to the energy minimum. When
Gibbs and Newton (in prep.) plotted the resulting
ln(R(XO)) values against ln(s), two linear trends
emerged (Fig. 18b) like those displayed in Figure
l8a. Unlike the two empirical trends, which parallel
one another, the theoretical trends possess slightly

steeper slopes and show a slight divergence. On the
other hand, the empirical ones are identical in both
slope and intercept with those reported by Brown
and Shannon (1973) which were obtained by requir-
ing the bond strength sums reaching the metal
atoms in more than 400 crystals to equal the formal
valences on these atoms.

As the trends in Figure 18 are highly linear, each
may be modeled by the linear equation

ln(s): a + bln(R(XO)). (20)

And, if we set a : Nln(R) and b = -N, where N
and R are constants, (20) becomes

ln(s): Nln(R) - Nln(R(Xo)),

ln(s) : In(R(XO)/R)-N'

and we have

s: (R(XO)/R)-N (2r)
This equation corresponds with an expression pro-
posed by Donnay and Allman (1970) and indepen-
dently refined by Pyatenko (1973) and Brown and
Shannon (1973) for modeling bond strength versus
bond length variations. An analysis of the regres-
sion equations fitted to the data in Figure 18 yields
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Fig. 18. Plots of ln(s) uerszs ln(R(XO)) where s is the Pauling

bond strength and R(XO) is the interatomic separation between
the first and second row cation X and an oxygen anion. (a) ln(s)
verszs In(R(XO)) where R(XO) is the sum of the crystal radii of
an X cation and the oxygen anion. (These plots were prepared
with those X cations whose radii were considered to be accurate
by Shannon and Prewitt (1969); cation radii tagged with a
question mark were omitted); (b) ln(s) versus ln(R(XO)) where
R(XO) is the bond length optimized for each of the H2,_,X'O.
molecules in Table 3. (After Gibbs and Newton, in preparation.)
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the following least-squares estimates of R and N
(Gibbs and Newton, in prep.).

FIRST SECOND
PERIOD PERIODs

R N
Empirical SP-R(XO): 1.38 4.2
Theoretical R(XO): 1.39 5.2

R N
1.62 4 .3
r .66  7  .3

When equation (21) is mapped out for each R and N
pair above, it is apparent that the theoretical bond
strength versus bond length curves are somewhat
steeper than those obtained with the SP radii (Fig.
19). Despite this diference, when the s values for
the hydroxyacid molecules in Table 3 are calculated
with the theoretical equations, they agree to within
0.04 units, on the average, with Pauling's values
(Table 3). Finally, when the bond overlap popula-
tions calculated for the molecules are plotted
against Pauling bond strength (Fig. 20), a strong
correlation (r2 : 0.98) is observed in agreement
with the assertion that s can be equated with bond
number (Gibbs et a1.,1972). Thus, we consider the
bond length versus bond strength curves of Donnay
and Allman (1970), Pyatenko (1973) and Brown and
Shannon (1973) to have the same meaning and
signiflcance as the well known carbon-carbon bond
length versus bond number curves published for the
hydrocarbons by Pauling (1960) and Coulson (1961).
Even though the Pauling bond strength has its origin
in the ionic model, the trend in Figure 20 indicates
that is a direct measure of the strength of a bond
regardless of whether the bond is considered to be
ionic or covalent, the larger the value of s, the
shorter the bond. Moreover, when the bond lengths
in an oxide are taken into account. the Brown-
Shannon curves have been shown to generate bond
strengths that sum to values close to the formal
valences on the atoms in conformity with Pauling's
electrostatic valence principle. Finally, the repro-
duction of the bond strength versus bond length
curves with molecular orbital theory has estab-
lished a connection between experiment and theory

s Employing a STO-3G* basis set with d-type AO's on Si,
Chakoumakos and Gibbs (l98lb) have since derived the theoreti-
cal equation s : (R(XOyl.59;-r s, using the SiO bond lengths
optimized for three hydroxyacid molecules with 4-, 6- and 8-
coordinated Si. Although this equation is based on only three
bond lengths, it agrees very well with an empirical equation s =
(R(XOyl.62)-4'3 derived by Brown and Shannon (1973). Note
that the constants derived by them are virtually the same as
those derived here with the Shannon-Prewitt crystal radii.

l .o

Fig. 19. Theoretical and experimental bond strength-bond
length curves. (After Gibbs and Newton, in preparation.)
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and has provided a quantum mechanical underpin-
ning for Pauling's second rule (Pauling,1929).

Some concluding remarks

Important advances have been made in the last
few years in generating structures, heats offorma-
tion, electron density distributions and equations of
state for a variety of simple solids, using the princi-
ples and methods of quantum mechanics.
Bukowinski (1980, 1981), for example, has success-
fully calculated equations of state and electronic
densities for the minerals periclase, MgO, and lime,
CaO, using a self-consistent symmetrized augment-
ed plane wave method. Clearly the success of these
calculations augurs well for establishing new stan-
dards for future high pressure studies of minerals of
geophysical interest and for furthering our under-
standing of the deep interior of the earth. Equally
important in the field of solid state physics, phillips
(1973) and Cohen (1973), for example, have used
the pseudopotential method to improve our under-
standing of structures, stabilities, electron charge
distributions and compressibilities of a variety of
simple solids, consisting of either one, two or three
atom types (see Chapters 1-6, O'Keeffe and Nav-
rotsky, 1981). In addition, Chelikowsky and
Schluter (1977) have used the method to generate
the band gap, the photoemission spectra and the
pseudocharge density distribution for a-quartz.
Notwithstanding the efrcacy of these powerful
methods, they have, for the most part, been limited
by computational effort (i.e., computer costs) to a
relatively simple class of structures like diamond,
rock salt and wurtzite and as such have yet to be
applied globally in calculating bond length and angle
variations, deformation densities and force con-
stants for such important rock-forming minerals as
the silica polymorphs, the feldspars, and the biopyr-
iboles. Until these calculations are affordable and
forthcoming, we suggest that molecular orbital cal-
culations on representative molecules can be used
to improve our understanding of the solid state
properties and the nature of the bonding forces in
these rock-forming minerals.

As described in this report, a variety of recent ab
initio calculations on various siloxane and silicate
molecules has given a fairly good account of the
bond length and angle variations in solid siloxanes
and silicates. Besides providing valuable data on
the charge density distribution, the compressibility,
the polymorphism and the glass-forming tendencies
of silica, the calculations have also shed light on the

question of why silicates exhibit such a large assort-
ment of structure types. They have also proven
useful in interpreting the bond length and angle
variations and the glass-forming tendencies of sili-
cates with SiOSi, SiOAl, SiOB and SiOBe groups.
By reproducing the Brown-Shannon bond length-
bond strength curves, the calculations have also
provided a quantum mechanical underpinning of
Pauling's electrostatic valence principle by showing
that the strength of a bond is dependent on bond
length to the extent that the valence on each oxygen
atom in a structure is effectively saturated by the
electrostatic valences of the bonds reaching it as
postulated by Smith (1953).

In light of the successful application of these
calculations to silicates, we are forced to conclude
that the bond length and angle variations, the local
force field and the deformation densities in silicates
are governed in large part by the local atomic
arrangement of a solid. Moreover, the success of a
large number of semi-empirical molecular orbital
calculations in ranking the bond lengths and angles
for a variety of phosphates, sulfates, germanates,
etc., indicates that this conclusion may hold for a
relatively large class of inorganic solids (Lager and
Gibbs, 1973; Tossell and Gibbs,1977; Louisnathan,
Hill and Gibbs, 1977;Hill, Louisnathan and Gibbs,
1977).In fact, Bullett (1980) has reached a similar
conclusion in a review of the tight-binding method
and its ability to generate equilibrium cell dimen-
sions, directional Compton profiles, and local den-
sities of state for a variety of semiconductors and
transition metals.

During the coming years, we believe that molecu-
lar orbital theory will provide a great deal of new
and valuable mineralogical information about the
principles governing the formation of various struc-
ture types as well as identifying systematic relation-
ships between structure and physical properties. In
particular, we suggest that the theory will provide
new insight into such physico-chemical processes
as sorption, diffusion and catalysis in the zeolite
minerals, ion exchange and order-disorder transfor-
mations in the feldspars, chemical reactions and
reaction paths in silicate minerals and glasses, the
cleavage mechanism of the disiloxy group by water
and its bearing on the reaction of silicate minerals
and glasses with water,dissolution mechanisms and
the self-condensation and hydrolysis of such mate-
rials as monosilicic acid (Gibbs, Meagher, Smith
and Pluth, 1977b; Mortier, Geerlings, Van Alsenoy
and Figeys, 1979; DeJong and Brown, 1980b;
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Sauer, Hobza and Zahradnik, 1980; Hass and Me-
zey, l98l; Chakoumakos and Gibbs, 1981a).

In concluding this report, we suggest that miner-
alogists can no longer look upon the application of
quantum mechanical theory to mineralogical prob-
lems as an object of mere curiosity. The insight
afforded by the theory, the understanding provided
by its application as well as its ability to generate
data for unknown quantities not amenable to direct
measurement are compelling and cogent reasons for
acquiring some knowledge of the theory. However,
if we persist in studying minerals solely by conven-
tional methods, then we can expect to forfeit a
segment ofour field ofresearch and expertise to the
chemists and physicists who are being attracted into
the field of quantum mineralogy by its many impor-
tant and challenging problems.
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