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Abstract

A local equilibrium, irreversible thermodynamic approach is used to model metamorphic
segregations in pelites from the lower sillimanite zone near Rangeley, Maine. Relative phe-
nomenological coefficients for the model are derived from a reaction hvolving sillimanite
and another reaction involving staurolite using a least-squares technique to give the best fit to
the observed data. The mean values of the relative coefficients in an SiO2 fixed (: 1a.t1
marker?) reference frame from five rocks in the middle of the lower sillimanite zone are:
A lC i , 5 :5 .9 ,  FeO:2 .6 ,  MgO:  1 .8 ,  KOos :  1 .0 ,  NaOos :0 .9 ,  T iOr :0 .4 ,  and  CaO:  0 .2 .
The phenomenological coefficients are used with Gibbs-Duhem relations and conservation
equations to give the sequence of mantles, mineral modes in each mantle, chemical potential
profiles, and size of segregations that are expected to form around reacting sillimanite, stauro-
lite, and garnet. The model predicts that: sillimanite growth will produce a segregation with a
muscovite-free, biotite-rich mantle surrounding a sillimanite- and quartz-rich core; staurolite
will be replaced by a muscovite-rich pseudomorph; and matrix garnets should be rimmed by '

thir biotite-free mantles. Comparison of the computed textures with those observed in the
rocks shows a good match except for the case of garnet, where new garnet growth was not
sufficient to produce well-defned mantles in the relatively coarse-grained matrix.

Introduction

Cation-exchange reaction mechanisms

ents, fluxes, and reaction rates in metamorphic rocks
(Fisher, 1973, 1975, 1977; Frantz and Mao, 1976,

are com- 1979; Loomis, 1976; Weare et al.,1976).
monly invoked by petrologists to reconcile complex This paper uses irreversible thermodynamics to
metamorphic textures with isograd reactions inferred construct a quantitative model of reactions which
from field relations (e.g. Foster, 1977a; Hollister, formed mineral segregations in pelites from the lower
1977; Yardley, 1977; Bailes and McRitchie, 1978). sillimanite zone on Elephant Mountain near Range-
These mechanisms involve several local reactions in ley, Maine. Foster (1977a) found that three types of
different microscopic domains of the rock which mineral segregations were formed by reactions in
communicate with each other via the migration of these rocks as grade increased within the zone: (l) a
components from one region to another (Carmichael, sillimanite segregation composed of a sillimanite-rich
1969). Some workers (Eugster, 1970; Fisher, 1970; core and a muscovite-free mantle; (2) a staurolite
Olsen, 1972; Foster, 1975) have investigated meta- segregation composed of a staurolite poikiloblast sur-
norphic processes of this kind using a graphical ap- rounded by a coarse, mica-rich rim; and (3) a garnet
proach to show that local chemical potential gradi- segregation consisting of a garnet porphyroblast set
ents of some components are in the proper direction in a matrix of muscovite, biotite, plagioclase, qvartz,
to account for the required material transport from and ibnenite. The development of these segregations
one domain to another. However, it is difficult to use was attributed to the cation-exchange reaction mech-
these methods to examine chemical potential gradi- anism shown in Figure l. The reaction begins when
ents of more than a few components and to quantify sillimanite nucleates and grows in a biotite, mus-
the relative rates of transport and reaction which oc- covite, plagioclase, qvattz, ilmenite matrix which
cur in different parts of a rock. Consequently, more surrounds garnet and staurolite porphyroblasts. The
elaborate analytical approaches have been developed net local reaction in this segregation primarily con-
using irreversible thermodynamics to evaluate gradi- sumes muscovite and plagioclase while producing sil-
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limanite and biotite. As the sillimanite segregation
grows, staurolite surrounded by matrix in another
domain of the rock dissolves. It is replaced by a
pseudomorph that is dominated by muscovite with
lesser amounts of biotite, plagioclase, qvartz, and il-
menite. Garnets surrounded by matrix also grow a
small amount during the reaction. When the local re-
actions in the rock are summed together they equal
the continuous reaction inferred from field relations
(Guidotti, 1970, 1974; Foster, 1977 a).

Fundamental relationships

Rate and conservation equations

The cation exchange reaction shown in Figure I
involves two basic types of phenomena: (l) chemical
reactions and (2) the transport of material between

reaction sites. A quantitative model of this reaction
mechanism must analytically relate the rates of reac-
tion and material transport at any particular point in
the rock to the forces which drive the reactions and
material transfer. This can be accomplished through
equations commonly used to describe irreversible
thermodynamic processes (DeGroot and Mazur,
1962; Katchalsky and Curran, 1965). The approach
used in this paper is derived from Fisher (1973, 1975,
r977).

The magnitude and direction of flow of com-
ponents at any particular point may be related to
chemical potential gradients at that point by the set
of equations:

n

J,:  -  )  Lu Vp, ( i :1,2,. . .  . ,  n) ( l )
j - l

MgO,  T i02 ,KO,Noo ,
2

S f  +  Q  ( c o r e )

M + B + P+f + Q (pseudomorph)

Sfour.
Segr . S i + M + Q

S  +  B + P + I + G

Gornet ffi G

si l l im' fN s +Q+r (core)
seer '  1*  B+p+e+r  (monle)

Fig. l. Cation exchange reaction mechanism for sillimanite-bearing rocks near Rangeley, Maine. St : staurolite, S : sillimanite, G :

garnet, B : biotite, M : muscovite, p : plagioclase, I : ilmenite, Q : quartz.
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where J, is the flux of component i, Vp, is the chem-
ical potential gradient of component j, Lu is the diffu-
sion phenomenological coefficient which relates the
flux of component i to the chemical potential gradi-
ent of component j, and n is the number of com-
ponents. The rate of chemical reactions at any point
is given by a similal set of equations:

-s.
J" : ) LL A- (k:1,2,. . .,q) (2)

h - l

where J', is the rate of reaction k, A- is the affinity of
reaction m, LL are reaction phenomenological coef-
ficients which relate the rate of reaction k to the af-
finity of reaction m, and q is the number of reactions
in the system. The affinity of a reaction is a measure
of how far the reaction is from equilibrium. It is
given by the relation:

a

A-: - L ,^Ap, (:0 at equilibrium) (3)

where ,* i, il. stoichiometric coeffi.cient of com-
ponent i in reaction m and Ap, is the difference be-
tween the equilibrium value of p, and the actual
value of p,. If a system is composed of solids sur-
rounded by a fluid the transport of material in the
fluid is related to reactions between the solids and the
fluid by a conservation equation:

A q / a t + V . J , : l  r * f l  ( 4 )

where q is the concentratioo Jl'"o-oonent i in the
fluid at the point of interest, V .J, is the divergence of
component i at the point of interest and El-, 2,1 Ji is
the rate of production of component i by p chemical
reactions at the point of interest. The reactions in
equation 4 can be chosen to be those that represent
the precipitation of individual minerals from com-
ponents dissolved in the fluid phase. Under this con-
vention, Jl gives the rate of precipitation of mineral k
at the point of interest. When J', > 0 mineral k pre-
cipitates from the fluid. When J', < 0 mineral k dis-
solves in the fluid.

Equation 4 can be integrated over a volume V to
give the total production of component i by chemical
reactions taking place within the volume:

/ (I ,." rl) av : l"u"r*dv + / (v ' r,) dv (s)

in which .f.,, denotes the volume integral. The volume
integral of the divergence of component i is related to
the integral ofthe,flux ofi over the surface surround-

ing the volume by the divergence theorem (Sokotni-
koff and Redheffer, 1966, p. 397-398):

t f
/  ( V ' J )  d V :  /  J t ' d A  ( 6 )

r l v  J 6

in which J" denotes the integral over the surface
which surrounds the volume V. Substitution in equa-
tion 5 using equation 6 gives:

/  ( : ,

which provides a relation between the production of
component i by chemical reactions within a volume
(given by the first term of the equation) and the
transport of component i into or out of the volume
(given by the last term of the equation). The middle
term in equation 7 represents a source s1 5ink for
component i which is present if the concentration of
component i in the fluid contained in the volume V
changes as the reactions proceed. In the"Rangeley
rocks this term is probably very small when com-
pared to the other terms because the volume of fluid
present along the grain boundaries in the rock is sev-
eral orders of magnitude less than the volume of
minerals produced by reactions in the segregation. In
addition, the concentration gradients between the
segregations are believed to be small because: (1) mi-
croprobe analyses suggest that pelites throughout the
lowqr sillimanite zone are fairly well equilibrated
(Guidotti, 1970,1974), (2) the sillimanite-forming re-
action was never overstepped by a large amount be-
cause sillimanite preferentially nucleates only in
biotite (Foster, 1975,1977a), and (3) the overall reac-
tion within the lower sillimanite zone is a continuous
reaction (Guidotti, 1970, 1974), so the entire rock
would be expected to be at or near equilibrium over
a range of temperatures and pressures. When the
middle integral in equation 7 is negligible the equa-
tion simplifies to:

Itr
which states that the amount of component i used or
consumed by the sum of the reactions occurring
within the volume V must be supplied or removed by
material transport between the volume V and its sur-
roundings.

Local equilibrium and reaction rates

Two types of rates are related by equation 8: the
rate of reaction and the rate of material transport.

,*u)av : l"ac,/aav + /r,.oe (z)

, , ,  r l )av:  
/ r , . *  

(8)
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These rates are related to the chemical potentials of
components by equations 2 and l. If the rate of reac-
tion is slow relative to the rate of material transport
the affinity of the reaction (r.e., the difference be-
tween the equilibrium and actual values of the chem-
ical potentials) will be large relative to the chemical
potential gradients in the rock. Segregations which
grow under conditions such as these are said to be re-
action controlled. On the other hand, if the rate of re-
action is fast relative to the rate of material transport
the afrnity of the reactions in the rock will be small
when compared to the chemical potential gradients
and reactions will occur near equilibrium. If bulk
flow of material through the rock is not occurring
then reactions taking place in the rock are governed
by chemical potential gradients which cause diffu-
sion to transport material from one area of the rock
to another. Reactions of this type are called diffusion
controlled. Calculations by Fisher (1977) suggest that
reactions in segregations ofthe type reported by Fos-
ter (1977a) should be controlled by diffusion of mate-
rial along grain boundaries. The shape of segrega-
tions in these rocks also supports a diffusion-
controlled reaction mechanism because the segrega-
tions, which are post-tectonic, tend to be elongate in
the direction which has the largest number of grain
boundaries. This suggests that the rate of the reaction
which forms a segregation depends upon the number
of grain boundaries through which material can be
supplied, as would be expected in a diffusion-con-
trolled reaction (Foster, 1976; Fisher, 1977).

Because reactions are relatively fast in ditrusion-
controlled processes, any signifisalt deviation from
equitbrium caused by material transport will be im-
mediately countered by a reaction that will keep the
system in a state which is relatively close to equilib-
rium. [n these circumstances the chemical potentials
at a point along the grain boundaries in the rock will
be essentially in equilibrium with the local mineral
assemblage. A system which behaves in this way is
said to be in local equilibrium (DeGroot and Mazur,
1962; Katchalsky and Curran, 1965; Korzhinskii,
1959; Thompson, 1959). If a system is in local equi-
librium the chemical potential gradients at any point
are governed by the Gibbs-Duhem relations of the
phases present so that:

n

)  {Vp,:0 (k:1,2,.  . . ,p) (9)
j - l

where { is the stoichiometric coefficient of com-
ponent j in phase k, Vp, is the chemical potential gra-

dient of component j n is the number of components
and p is the number of phases present at the point.

Calculation of local reactions

The local reactions which take place in metamor-
phic rocks depend upon the composition of the
phases present, reaction rates, and the ability of com-
ponents to move towards or away from a reaction in-
terface. The type of local reaction of interest in this
paper involves one mineral growing or dissolving in a
homogeneous matrix of other minerals under local
equilibrium conditions. An example of this type of
reaction is the nucleation and growth of sillimanite in
a matrix of muscovite, biotite, plagioclase, qaartz,
and ilnenite which formed the sillimamte segrega-
tions in Figure l. If the grain boundary phase does
not act as a net source 61 sink of material, then the
components produced or consumed by the reaction
between the core mineral and matrix minerals must
be supplied or removed by diffusion down chemical
potential gradients in the matrix srrrsulding the
core mineral. This is expressed mathematically by
substituting for the flux terms (J,) in equation 8 usirg
equation l:

dA

. (10)
. r1)

The right-hand integral represents the net amount of
component i which passes through a closed surface in
the matrix which surrounds the segregation during its
growth. The left-hand integral represents the net
amount of component i consumed by all of tle reac-
tions taking place within the volume enclosed by the
surface. Because the segregations to be modelled are
approximately spherical, the surface surrounding the
segregation has been chosen to be a sphere with its
center positioned at the center ofthe segregation. An
additional simplifying assumption is that the chem-
ical potential gradients and reactions are constant at
all points equidistant from the center of the sphere.
This allows equation l0 to be sinplified to

o, I"- (I ,," ll)x'ax : -4mx2i to,o*r,
( l  l )

(i:1,2,. . .,n)

where x represents the radius of the spherical surface
surrounding the segregation and (Vp,)- is the chem-
ical potential gradient ofcomponentj evaluated at a
distance x from the center ofthe segregation.

/ (-t,," n)av : / (-; L, vp,1
(i:1,2,. .
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Provided that local equilibrium is maintained, the
chemical potential gradients in equation l1 are con-
strained by the Gibbs-Duhem relations (equation 9)
ofthe phases surrounding the segregation. Thus, for
an n-component system in which a new phase is
growing at the expense of p - I matrix phases there
are p + n unknowns: n chemical potential gradients
in the matrix at the surface of the sphere which sur-
rounds the reacting phases and p reaction coefrcients
describing the net reaction that takes place witlrin the
sphere when the new mineral grows at the expense of
the matrix minerals. There are a total of n + p - I
equations that constrain the system: n conservation
equations like equation I I (one for each component)
and p - I Gibbs-Duhem relations (one for each ma-
trix mineral). If the value of one of the unknowns can
be estimated, then the system is constrained by an
additional equation that sets the value for the esti-
mated unknown. Then, the p + n equations can be
solved sinultaneously for p + n unknowns (Fisher,
1975, 1977). Unfortunately, in most geologic systems
neither the chemical potential gradients nor any of
the reaction rates are known. In this case, the relative
chemical potential gradients and the relative reaction
rates can be obtained by solving the matrix equation
given in Figure 2. The first p - I equations in Figure
2 canbe obtained by multiplying the Gibbs-Duhem
relations (equation 9) by a constant (A/&) giving it
the form:

L tFD-'(A/R"): o (k:1,2,.. .,p-l) (12)

where A is the surface area ofthe sphere ofradius x
where the chemical potential gradients are measured

and Ro is the net amount of phase p produced (Ro >
0) or consumed (\ < 0) by reactions inside the
sphere during unit time. These equations represent
the Gibbs-Duhem constraints on the chemical po-
tential gradients by the p - I matrix mins1als. ffus
next n equations in Figure 2 are obtained by rear-
ranging equation I I to have the following form:

, ! E t l-vip:l4rx'\ L,r(Vpi), + ) z,"R"l t/R"
I  i - '  k-r I

: X Lu (Vs)^ (A/R") + 5 /," (R,/&) (13)
j - t  k - l

(i:1,2,. . .,n)

t \
where Rr : 4z / Jl x'zdx.

t lo

These equations represent the conservation con-
straints which require the amount of material that
diffuses into (or out of) the segregation to be used up
(or produced) by the reactions taking place within
the segregation. Providing the Li;,/*, &rrd rf are
known, the equation in Figure 2 canbe solved using
matrix algebra to obtain the relative reaction coeffi-
cients (R"/Ro) and (Vp,). .A/Ro tenns. The latter
numbers can be used to obtain ratios of the chemical
potential gradients because they contain the common
term A/Ro. The 4 and 2,, required to solve the equa-
tion in Figure 2 can be obtained from microprobe
analyses of minerals in the rock to be modelled. Esti-
mates of the appropriate phenomenological coeffi-
cients are more difficult to obtain but their relative
values can be calculated under certain circumstances
as explained in the following section.

v ]  v l  ! 1  .  .  .  .  v l
r 2 3 n

\ 2 v 2 1 2 . . . . v 2
t 2 3 n

v 3  v 3  v 3  .  .  .  .  v 31 t 2 n

i p - ,  ip - ' "n - tn n n

L r t  L n  L t  z

Lz t  Lzz  LZZ

L a r  L : z  L a :

.  v r r  0  0
n

'  L t n  v l t  v t 2

'  L2, v21 v22

.  L 3 n  v 3 t  v 3 2

0 . . . 0

v r 3 '  '  ' v l p - l

v 2 3 ' ' ' v 2 p - l

v 3 3 '  '  ' v 3 p - t

( v u 1 ) * . A / R -
^ P

(  vp2)  , .  A /  R.

(v r : )  
* .o70 p

:

(  u l n J x . A / R
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R,  /RI p
RalR-

R- lR
J p

:

R / Rp - ]  p

0 0 0

0 0 0

0 0 0

0

0

0

\ r  Lnz  Lna l rh tvnt vn2 vn3 .h p-l

Fig. 2. Matrix equations to solve for relative chemical potential gradients in the matrix surrounding a segregation and the relative
reaction taking place within the segr€gatron.
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Phenomenological coefficients

Referenceframe

The flow of material from one area of a rock to an-
other must be measured by comparing the motion to
some reference frame in the rock. A number of com-
monly used reference frames have been reviewed by
Brady (1975). I prefer an inert marker reference
frame because it corresponds to the intuitive view of
diffusion of many petrologists. Unfortunately, the
Rangeley rocks do not have a set of evenly distrib-
uted inert markers against which to measure diffu-
sive fluxes. However, because all domains of the
rocks contain quartz and the rocks were not under a
deviatoric stress during the growth of mineral segre-
gations (Guidotti, 1968; Foster,1977a), the chemical
potential of SiO, should be fixed throughout the rock
at a given pressure and temperature. This means that
if cross terms in the inert marker phenomenological
coefficients involving silica are asl important, the sil-
ica-fixed frame should be equivalent to the inert
marker frame for these rocks. This can be verified by
examining the velocity of the silica-fixed frame with
respect to the boundary between the staurolite
pseudomorph and the matrix surrounding it. Al-
though the modes change at this boundary, the
phases in the pseudomorph are the same as the
phases in the matrix (Foster, 1977a), which indicates
this boundary is passive marker (Joesten, 1977). lt
the silica-fixed frame is equivalent to the inert

marker frame the transport of SiO, across this
boundary should be zero. Examination of Figure 3
shows that, as expected, there is no significant differ-
ence between the silica-fixed reference frame and the
inert marker reference frame in the vicinity of the
staurolite pseudomorphs in rocks from the middle
part of the lower sillimanite zone on Elephant Moun-
tain. Because of the lack of other inert markers there
is no direct proof that this is true in other parts of the
rock. However, SiO. should behave as an inert
marker everywhere in the rock because of the pres-
ence of qtJaftz in all domains.

Calculation of L matrix

The minerals involved in the reactiom fsrming the
segregations shown in Figure I can be represented by
the nine-component system FeO, MgO, NaOor, CaO,
TiO2, KOo., SiO2, H2O, AlO,.r. MnO and ZnO have
been ignored because they are imFortant only in in-
congruent reactions involving garnet and staurolite
respectively (Foster, 1975,1977a). To solve the equa-
tions shown in Figure 2 for this system a maximum
of 8l L,, must be known. To reduce the number of
phenomenological coefficients to a more manageable
number I assume that, to a first approximation, the
non-diagonal terms in the L matrix are zeto. In addi-
tion, quartz is present throughout the rock, fixing
trtsio, &nd eliminating the need to know L'o,.,o, be-
cause Lsiorsio, VF*o, : 0. I also assume that p"ro is
constant the rock should be saturated with a water-

+
lA lOs lz

vo ume

Ti02 t.o
-t.o

Fig. 3. Velocity ratios of some reference frames relative to the staurolite pseudomorph boundary from middle of lower sillimanite
zone. Calculated using the equation for relative velocity of reference frames given in Fisher (1977, p.394) and matrix fluxes computed
gsing mineral compositions, modes, and net volume changes in the staurolite segregations for specimens from outcrop RA66 reported by
Foster (1977a, Fig. 3, Tables 1-6, and Table 8). Vertical axis is the ratio of velocity of reference frame i to velocity of KO6 5 reference
frame. Horizontal line is mean of seven specimens. Vertical line gives one standard deviation.
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rich fluid because the overall reaction is a dehy-
dration reaction (Guidotti, 1970, 1974; Foster,
1977a). Thus, only seven L' are needed to solve the
equations shown in Figure 2. Although the relative
values of the phenomenological coefficients in an in-
ert marker reference frame are a function of the com-
position of the fluid or grain boundary phase (Kat-
chalsky and Curran, 1965), they can, to a first
approximation, be treated as constants if the varia-
tion in composition is small. This approximation'should be valid in the Rangeley rocks because the
system is believed to be close to equilibrium. In addi-
tion, no systematic variation in the modes of matrix
phases has been observed between segregations in
these rocks. This indicates that the amount of inter-
nal precipitation (Frantz and Mao, 1976) is small, as
expected in a system with nearly constant relative
phenomenological coefficients. Using this approxi-
mation, the relative values of the seven remaining
phenomenological coefficients can be obtained in the
following manner. The fluxes in the matrix around
staurolite and sillimanite segregations are con-
strained by the Gibbs-Duhem equations of the ma-
trix phases. The presence of quartz and the water-
rich grain boundary phase fix the chemical potentials
of SiO, and HrO while the two micas, plagioclase,
and ilmenite provide a set of four Gibbs-Duhem re-
lations which restrict the chemical potential gradients
around each segregation. Because the cross terms in
the L matrix have been neglected, each of the seven
non-zero chemical potential gradients in the matrix is
related to the corresponding flux by:

Yp.?: J?/L,, (i:1,2,. . .,7) (14)

where Vpi is the chemical potential gradient of com-
ponent i in the matrix around segregation a and Ji is
the flux of i away from segregation a. Equation 14
can be substituted into the four Gibbs-Duhem equa-
tions of the matrix phases around the staurolite and
sillimanite segregations, giving a set of eight inde-
pendent equations which relate the fluxes and phe-
nomenological coefficients in a rock:

1

X 4li l t , ,  :  o (k:1,2,. . . ,4;a:1,2)

The integral ofJi over a closed surface surrounding a
segregation is related to the net reaction inside ofseg-
regation a during unit time by:

where N,' is the amount of phase j which reacts in
segregation a and I is the amount of component i in
phase j. Integration of the Ji in equation 15 over a
closed surface surrounding the segregation permits
substitution for /"Ji'dA using equation 16, which
gives a relationship between the reactions in a segre-
gation and the diagonal terms of the L matrix:

(k:1,2,. . .,4; a:1,2) (17)

The Ni in equation 17 for staurolite and sillimanite
segregations in each of five rocks from outcrop RA66
in the middle of the lower sillimanite zone on Ele-
phant Mountain were calculated from the mode, vol-
ume, and composition data in Foster (1977a). For
convenience, unit area was chosen to be the area of
the surfaces surrounding sillimanite segregations
containing one mole of sillimanite and unit time was
chosen to be the time during which sillinanite grew
in these rocks. The Ni obtained from the rocks can
then be used to constrain the Ni'/L' terms in equa-
tion 17 through equations of the form:

(Ni/L,) l/Ni - (r/L1):0

( i :1,2,.  .  . ,7;  j :1,2,.  .  . ,5;  a:1,2) (18)

where the terms in parentheses are the unknowns.
For the system shown in Figure I there are four
equations like 17 for the staurolite segregation and
four for the sillimanite segregation, making a total of
eight linearly independent equations of this type per
rock. In addition, there are a total of 35 equations
like 18 for each segregation, giving atotal of 70 lin-
early independent equations of this type in each rock.
This system ofequations cannot be solved unless one
of the (\/L,') terms or (l/L,,) terms is known. None
of these terms are known, so the system of equations
can only be solved for relative phenomenological co-
efficients. This is accomplished by multiplying equa-
tions 17 and 18 by one of the L,, unknowns, in this
coS€ L'.qo,,r to produce equations of the form:

( ls) 5

t >, A(Ni L*oo,/L,,): o

(k:1,2,3,4; a:|,2) (le)

I KOs 5 was chosen for normalization because it has large fluxes

(16) which are computed from modal data with good point-counting
statistics.

1 f 5 
-l

X, l lX, l$ izrJ l :0
i : r  L  j : r  I

7x

Itr.uo: i n*t ( i :1,2,. .  . ,7)
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and

(Ni LKo",/Lt,) l/N.i. - fKOo,/Lu;: g

(i:1,2. . .,7; j:1,2,. . .,5; a:1,2) (20)

Note that when i is KOo, the phenomenological
coefficient ratio in equation 20 equals one, permitting
a solution to be obtained if the number of equations
is equal to or exceeds the number of unknowns.
There are a total of 78 independent equations like 19
and 20 that constrain 76 unknowns in each rock.
Thus, the system is over-determined, permitting a so-
lution to be obtained by least-squ31s leshniques. Be-
cause the L,, should be non-negative (Katchalsky and
Curran, 1965), the equations were solved using a
least-squares fit program (NNLs) described by Law-
son and Hanson (1974, p.269-271) which permitted
the signs of the unknowns to be specified. The equa-
tions were scaled and weighted using methods in
Draper and Smith (1966, p. 77-81, 145-150). The
variances of the Nf used to calculate the weights of
equations 20 were determined by propagating the
standard deviations of the modes from Foster
(1977a) through the calculation of the N,". Thus, the
equations with the most reliable Ni were weighted
most heavily in the least-squares fit. This procedure
gives the set of positive phenomenological coeffi-
cients that best fits the observed data.

b

a

Liy'L*,o 4

FeO AlOr MgO NoOl TiOz CoO

I

Fig. 4. Relative phenomenological coefficients in rocks from the
middle of the lower sillimanite zone. Reference frame is SiO2. It
should be equivalent to inert marker frame. Horizontal line gives
mean of five rocks. Vertical line gives standard deviation.

The mean and standard deviation of relative phe-
nomenological coefficients calculated in this manner
from five rocks from the middle of the lower silli-
manite zone are given in Figure 4. Specimens from
the middle part of the lower sillimanite zone were
chosen for the analysis because tle staurolite porphy-
roblasts have not been completely pseudomorphed in
these rocks, so that the composition of both the prod-
ucts and reactants in the segregations can be ob-
tained for each rock. The five specimens at outcrop
RA66 were selected because they have the largest
and most abundant segregations at this outcrop,
which pernits the best estinates of the modes in the
staurolite and sillimanite segregations. An independ-
ent check of the validitv of these coefficients will be
discussed later.

Calculation of local reactions and
chenical potential gradients

The mean values of the diagonal coefficients of the
L matrix given in Figure 4 can be used in the system
of equations shown in Figure 2 to theoretically pre-
dict local reactions and chemical potential gradients
in the system shown in Figure l. The three segrega-
tions form separate local systems which communi-
cate with each other via mateial transport through
the matrix. The local systems will first be cbnsidered
one at a time and then assembled in a system which
describes the interaction between the segregations
during metamorphism. The mineral compositions,
modes, and segregation volumes reported by Foster
(1977a, Fig. 3, Tables l-6 and 8) for one representa-
tive rock (RA66N) in the lower sillimanite zone will
be used to illustrate the following discussion. I as-
sume that the system is always in local equilibrium,
that it is open to a water-rich fluid which fixes p",o,
and that the mineral compositions and relative phe-
nomenological coefficient ratios do not change dur-
ing the growth of the segregations.

S il limanit e s e gre gation

This segregation is formed when sillimanite nucle-
ates and begins to grow in a biotite, muscovite,
plagioclase, qvartz, ilmenite matrix. The overall reac-
tion which takes place between the matrix minerals
and the growing sillimanite can be calculated by
solving the system of equations given in Figure 5.
The first four rows represent the respective Gibbs-
Duhem equations for biotite, muscovite, plagioclase,
and ilmenite in the matrix of RA66N. The com-
ponents SiO, and HrO are not included in the
Gibbs-Duhem relations because their chemical po-



A The atea of a sphere which surtounds a segregat ion.
Superscr ipts s,  st ,  and g in equat ions 22-24 stand,
f o r  s i l l i n a n i t e ,  s t a u r o l i t e ,  a n d  g a r n e t  s e g r e g a t i o n s ,
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A, The aff in i ty of react ion n,

" i  
The.concentrat ion of conponent i  in the f lu id or
gralnDomdary pnase.

Ji  The f lux of conponent i .

.li The flux of cornponent i in the natrix aroud segregation^  
a .  S u p e r s c r i p t s  s ,  s t ,  o d  g  s t e d  f o r  s i l l i n e i t e ,
staurol i te,  i ld gamet segregat ionsr respect ively.

. t i  The rate of chenical  react ion k.

Lr,  The di f fusion phenonenological  coeff ic ient which relates- '  
the f lu of componetrt  i  to the chenical  potent ial  grad-
i a n +  ^ f  ^ ^ ! l h ^ n a n +  i

L*n^- The phenonenological  coeff ic ient which relates the f lux
of K065 to the chemical potent ial  gradient of  KOo.s.

LJ- The react ion phenorenological  coeff ic ient relat ing the
T a t e  o f  r e a c t i o n  k  t o  t h e  a f f i n i t y  o f  r e a c t i o n  n .

n The nwber of conponents in the system.

l i  The nunber of moles of nineral  j  in segregat ion a whj.ch
'  ta. l .e part  in the net reacl ion within the segregat ion

during the growth of one nole of s i l l inanite in the rock.

p The nunber of sol id phdes in the systen.

q The nuber of react ions in the systen.

R,,  The stoichionetr ic coeff ic ient of  phase k for the net
^ react ion within a volue of rock. The subscript  p stands

for the core mineral  in the center of a segregat ion which
is not present in the natr ix aroud the segregat ion. The
subscripts s,  st ,  md g stand for the core ninerals si l -
I in i l i te,  staurol i te,  md gamet respect ively.

t  T i m e .

v A volune of rock surrouded by a closed surface.

x Distance f tom the center of a segregat ion.

r i  The cienical  potent ial  of  conponent i '

Vui The chenical  potent ial  gradient of  colponent i .

-  The chemical potent ial  gradient of  conponent i
vul  in the natr ix aroud segregat ion a. superscr ipts

-  
s ,  s t ,  d d  g  s t d d  f o r  s i l l i n e i t e ,  s t a u r o l i t e ,  a n d
ganet segregat ions, respect ively.

f- . .  \  The chenj.cal  potent ial  gradient of  conponent i  evaluated
( ' u i / x  a t  a  d i s t d c e  x  f r o n  t h e  c e n t e T  o f  a  s e g r e g a t i o n -

The stoichiometr ic coeff ic ient of  corponent i  in
" i t  react ion k.

k The stoi .chionetr ic coeff ic ient of  component j .  in
" i  nineral  k.

tv Integral over the volune V.

/s Integral  over a closed surface'

tential gradients are fixed at zero by the presence of
quaftz and the water-rich grain boundary phase in
all domains. The next seven equations are the con-
servation relations for FeO, NaOor, MgO, AlO,.r,
KOo', CaO, and TiO2, respectively. The last two
equations represent conservation equations for SiO,
and H2O, respectively. These two equations are used
to calculate the amounts of quartz and water that
take part in the reaction.

FOSTEK THERMODYNAMIC MODEL OF MINERAL SEGREGATIONS

Table 1. Summary of symbols The solution of these equations is given in Table 2.

The net reaction among the solid phases in this segre-
gation which produces one mole of sillimanite is:

0.28 muscovite + 0.05 plagioclase + 0.01 ilmenite --+

1.0 sillimanite + 0.06 biotite + 0.52 quaftz
(A)

This reaction consumes three matrix phases: mus-
covite, plagioclase, and ilmenite. Provided that the
matrix is homogeneous and the grain size is small rel-
ative to the segregation diameter, the reaction will
entirely use up one of these phases in the vicinity of
the growing sillimanite. In the case of RA66N, which
has a matrix composed of 3l%o biotite, 26Vo mts-
covite, 8Vo plagioclasa,2Vo ilmenite, and 33Vo quartz,
the muscovite will disappear before either the plagio-
clase or ilmenite, because reaction A consumes 1.7
nrm3 of plagioclase and0.2 a163 sf ilmsnite for every
26 mm' of muscovite consumed. Thus, when the
muscovite in 100 mm3 of matrix in RA66N is used up
by reaction A 6.3 mm'of plagioclase and 1.8 mm3 of
ilmenite remains.

Once the matrix muscovite has disappeared
around the growing sillimanite, the reaction inside
the muscovite-free rim surrounding the sillimanite is
constrained by the Gibbs-Duhem equations of the
lsnlining matrix phases: ilmenite, plagioclase, bio-
tite, and quartz. To calculate the relative chemical
potential gradients in the muscovite-free rim and the
net reaction in that part of the segregation inside of
the muscovite-free rim, the muscovite terms in the
conservation equations and the muscovite reaction
coefficient are removed from the matrices in Figure
5. This is accomplished by deleting row two from the
square matrix and right-hand side column matrix,
column nine from the square matrix, and the R-/&
term in the left-hand side column matrix. Because
one equation and one unknown have been removed,
the solution can be obtained in the manner pre-
viously described. The reaction occurring inside the
muscovite-free rim to produce one mole of sillima-
nite is:

0.1I biotite + 0.28 plagioclase +

1.0 sillimanite + 0.37 qvartz + 0.03 ilnenite (B)

The relative chemical potential terms in the mus-
covite-free mantle are given in Table 2. Because re-
actions A and B are not the same there must be a re-
act ion at the matr ix/muscovite-free mantle
boundary. The reaction coefficients at this boundary
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reaction calculated for the part ofthe segregation in-
side the muscovite-free mantle. In RA66N this reac-
tion is:

0.28 plagioclase * 0.01 ilmenite +

0.02 biotite + 0.65 quartz (D)

Reaction D can be used to calculate the composition
of the muscovite-plagioclase-free mantle by sub-
tracting or adding the reaction coefficients to the
amount of muscovite-free mantle which contains
0.28 moles of plagioclase.

The reaction inside the muscovite-plagioclase-free
mantle (Table 2) u/ill eonsume biotite in RA66N be-
fore it consumes qvartz, creating a qluafiz * ilmenite
mantle next to the growing sillimanite. The reaction
between the biotite-bearing mantle and the biotite-
free mantle is given in Figure 6a. It was calculated by
subtracting the reaction for the segregation inside the
biotite-free rim from the reaction inside the mus-
covite-plagioclase-free rim (Table 2). The modes of
the biotite-free mantle were calculated from the in-
terface reaction and modes of the muscovite-plagio-
clase-free mantle in the same manner as for the other
mantles. The biotite-free mantle is converted into the
sillimanite-ilmenite core by a reaction that consumes
qnaftz and produces sillimanite (Table 2 and Fig. 6).
It does not involve ilmenite because, when the biotite
disappears, ilmenite is the only Fe- and Ti-bearing
mineral in the interior of the segregation' To dissolve
or precipitate ilmenite in this part of the segregation

(vur)  
* .A/R,

(vp,  )  * 'Al  R,

(vur)  
* 'AlR,

(Vu4) x.A/Rs

(vpr)  
* 'A/R,

(vuU) 
* .A/R=

(vur)  
* 'AlR,

R-/R
B S

\/R,

R P / R s

R .  / R
t s

*Q/*,

Rl|l/Rs

0

0

0

0

Fig. 5. Matrix equations to solve for chemical potential gradients in matrix around sillimanite s€gregation and net reaction within the

segregation. Solution for RA66N is given in the first column of Table 2. B, M, P, I, Q, W, S stand for biotite, muscovite, plagioclase'

itrnenite, quartz, water, and sillimaniie respectively. Components 1,2,J,4,5, 6, 7, 8, 9 are FeO, NaOo s, MgO, AlOr.s, KOo.s, CaO' TiOz'

SiO2, and H2O respectively.

can be obtained by subtracting reaction B from reac-
tion A. It is:

0.28 muscovite + 0.04 ilmenite +

0.17 biotite + 0.23 plagioclase + 0.15 quartz (C)

The composition of the muscovite-free rim can be
determined by calculating the number of moles of
each phase contained in the amount of matrix
needed to supply 0.28 moles of muscovite and then
subtracting the number of moles of reactants and
adding the number of moles of product phases in re-
action C. The modes of each phase in the muscovite-
free rim can be calculated by using molar volumes of
the minbrals to convert the mole fraction of each
phase to volume percent. The modes calculated for
the muscovite-free rim for RA66N are given in Fig-
ure 6a. These modes can be used with reaction B to
determine if the reaction inside the muscovite-free
rim will consume biotite or plagioclase first. In the
case of RA66N the plagiocl65s i5 eliminated before
biotite, creating a plagioclase-muscovite-free mantle
around the growing sillimanite. The reaction inside
this mantle can be calculated by removing the mus-
covite and the plagioclase terms in the matrices given
in Figure 5 and solving for the remaining unknowns.
The solution is given in Table 2. The reaction at the
boundary between the muscovite-free and mus-
covite-plagioclase-free zone can be computed by
subtracting the reaction calculated for the portion in-
side the muscovite-plagioclase-free mantle from the
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Table 2. Chemical potential gradients and net reactions within
, segregations (calculated)
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the colunn heading.

Thj-s tern gives relatj.ve stoichionetric coefficients for the net Teactj-on in the portion of the segregation enclosedby the region ldentif ied in the colmn heading.

would require Fe and Ti to diffuse in the same direc-
tion through the quartz * ilmenite mantle. This is
prevented because of the constraint on the chemical
potential gradients of Fe and Ti provided by the il-
menite Gibbs-Duhem equation. As the quartz is re-
placed by sillimanite, ilmenite is passed from the
mantle into the core. The modes of the core region
are calculated by using the corelbiotite-free mantle
reaction and the biotite-free mantle modes to calcu-
late the amount of ilmenite passed into the core when
one mole of quartz is converted to one mole of sil-
limanite.

The volumes for each mantle are calculated bv

subtracting the amount of mantle consumed by the
local reaction on the innsl 631gin of the mantle from
the amount of mantle produced by the local reaction
on the outer margin of the mantle. For example, the
volume of the muscovite-free mantle can be calcu-
lated by subtracting the amount of muscovite-free
rim consumed by reaction D from the amount pro-
duced by reactio4 C. The radius of each boundary
shown in Figure 6a is calculated by adding the vol-
umes of the portions of the segregation inside of each
boundary together and calculating the radius of a
sphere having this volume.

The calculated local reactions, modes, and thick-
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ness of mantles in a segregation produced by the
growth of one mole of sillimanite in a matrix similar
to that of RA66N are given in Figure 6a. The size of
the segregation depends upon the amount of silli-
manite which has grown in the core of the segrega-
tion. However, the sequence of mantles, relative
thickness of mantle, and modes are independent of
the amount of sillimanite growth. They depend only
on the mineral compositions and mode of the origi-
nal natrix.

The distribution of minerals within the sillimanite
segregation provides a way to test the validity of the
procedures used to calculate the segregation form
because the internal fluxes of the segregation were
not used to calculate the relative phenomenological
coefficients. In previous work (Foster, 1975, 1977a)
two compositionally distinct regions in the sillimanite
segregation were recognized: a dark-colored biotite-
rich, muscovite-free mantle and a light-colored bio-
tite-poor, sillimanite-rich core. The biotite-rich
mantle in Foster (1977a\ corresponds to the outer
two mantles shown in Figure 6a while the silliman-
ite-rich core in Foster (1977a) combines the quartz *
ilmenite mantle and the sillimanite + ilmenite core
region of Figure 6a. Re-examination of the thin sec-
tions used in the 1977 work shows that the outer part
of the biotite rim commonly contains most of the
plagioclase while the outer part of the sillimanite

Table 3. Comparison of calculated and observed textures for
specimen RA66N

Sil l inai te Segregat ion

0b served

core is qrufitz- and ilmenite-rich. This was not pr€-
viously recognized because the color contrast of the
segregation does not appreciably change when the
mode of plagioclase and quartz varies. An additional
complication is that because the primary sedimentfry
lamination is still present in the sillimanite-bearing
rocks the matrix is not completely uniform. A local
variation in the plagioclase, biotite, ilmenite, or
quartz mode of the original matrix can cause the in-
i"r r.qo"o"" of mantlei to change. This may account
for the presence of small amounts of biotite and
plagioclase in the core region (Foster, 1977a, Fig. 3)
and the irregular concentration of ilmenite in the
core region (Foster, 1977a, p. 730). A comparison be-
tween the average modes and thicknesses of the bio-
tite-rich rim and the biotite-poor core from specinen
RA66N with the values calculated from the model
sillimanite segregation shown in Figure 6 are given in
Table 3. The eomparison between the observed and
calculated values in the segregation interior provides
a fairly good independent test ofthe procedures and
assumptions used to construct the model, because the
distribution of material within the segregation was
not used to derive the relative phenomenological co-
efficients. The close agreement between the calcu-
lated and observed values indicates that the assump-
tions and procedures used to calculate the model are
valid.

St aurolite segre gation

This segregation forms when staurolite poikilo-
blasts begin to dissolve in a biotite, muscovite,
plagioclase, quartz matrix. The overall reaction
which takes place between the matrix minerals and
the dissolving staurolite can be calculated by replac-
ing the sillimanite values with the appropriate
staurolite composition in the right-hand matrix
shown in Figure 5. Solving this equation will then
give the reaction and chemical potential terms rela-
tive to the stoichiometric coefficient of staurolite. The
solution is given in Table 2. The net reaction which
consumes one mole of staurolite (Ro : -l) is:

1.0 staurolite * 6.6 quara"'> 
.u)

0.2 biotite + 1.8 muscovite

+ 0.7 plagioclase * 0.1 ilmenite

This reaction consumes staurolite and quartz in a
volume ratio of 3: l. Because the amount of poikilo-
blastic quartz in the staurolite porphyroblast is com-
monly 25-30 percent, the staurolite is entirely con-
sumed before the quartz is used up. The resulting

Core radius
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Mdtle nodes
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G A R N E T  S E G R E G A T I O N

Fig. 6. Sillimanite, staurolite and garnet segregations calculated for specimen RA66N. Vertical boxes contain modes, horizontal boxes

contain local reactions. Mantles are identified by absent matrix phase in parentheses [e.g. (M) : muscovite-free]. (a) Segregation

produced by growth of one mole of sillimanite. (b) Segregation produced by pseudomorphing of one mole of staurolite. (c) Segregation

produced by growth ofone mole ofgarnet. Dashed line gives garnet'boundary prior to new growth.

pseudomorph which replaces the staurolite poikilo-
blast consists of the biotite, muscovite, plagioclase,
and ilmenite produced plus the few percent poikilo-
blastic q\artz which was not used by reaction E. The
observed and calculated modes for this segregation in
rock RA66N are given in Table 3. Again, a close
match is observed, but this is to be expected because
the overall reaction in the staurolite segregation was
used to calculate the phenomenological coefrcients.
The modes and local reactions are given in Figure 6b
for the segregation formed when a poikiloblast origi-
nally containing 1.3 moles of staurolite is partially
pseudomorphed by micas due to a reaction consum-
ing 1.0 moles of staurolite in a matrix similar to
RA66N. It can now be easily shown that the matflx/
pseudomorph boundary acts as an inert marker even
though the modes change: the solution to the matrix
equation on either side of this boundary will always
give reaction E because the same phases are present
on both sides of the boundarv to bufer the chemical
potential gradients.

Garnet segregation

This segregation should form when garnets sur-
rounded by a matrix of biotite, muscovite, plagio-
clase, quartz, and ilmenite begin to grow in a local
reaction that helps balance the overall staurolite
breakdown reaction for the whole rock as shown in
Figure 1. The segregation for this case can be calcu-
lated by following an approach that is identical to
that outlined for the sillimanite segregation except
that garnet is used as the growing core mineral. The
segregation predicted by the model when 1.0 mole of
new garnet grows on a pre-existing porphyroblast is
shown in Figure 6c. Comparison of the model garnet
textures with the observed textures in the Rangeley
rocks shows that in this case the match is not good.
Although there is a tendency for the matrix around
garnets to be plagioclase- and biotite-poor, no sys-
tematic distribution of mantles around the matrix
garnets in the lower sillimanite zone has been ob-
served. The apparent reason for the lack of mantles
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around the garnets is that only a small amount of
new garnet growth took place on each porphyroblast,
so that the thickness of the mantles which should
have formed is about the same as the size of the mica
grains in the matrix around the garnets. At this scale
the matrix is not homogeneous because the local
composition in the vicinity of the garnet varies
widely on account of the irregular distribution of in-
dividual grains. Presumably, if more garnet growth
took place or if the matrix were finer-grained the cal-
culated sequence of mantles would develop.

ll/hole-rock reaction

The relative amount of groWh of each segregation
can be calculated by the principle of mass balance,
provided that an estimate of the material entering or
leaving the rock on a handspecimen scale can be ob-
tained. Because the field relations and previous stud-
ies (Guidotti, 1970,1974; Foster, 1977a) indicate that
the rocks are dehydrating as sillimanite grows, the
system is assumed to be open to HrO but closed to all
other components. This means that, provided all re-
actions in the rock take place within the three segre-
gations, the integrals of the fluxes of each of the
seven conserved components in the matrix outside of
the three segregations must sum to zero:

(i:1,2* . .,7) (21)

After integrating and dividing through by the ap-
propriate phenomenological coefficient this equation
becomes:

Vp;' e" + Vp|' A" + Vtrre. {e : Q

(i :1,2,. . . ,7) (22)

which leads to:

-(Vpi.A"/R"): (Vpi .A",/R*) R",/R"

+ (Vpi.A8lRs) Rs/R"

( i :1,2,. . . ,7) (23)
The terms in parentheses are part of the solution of
the matrix equations used to obtain the overall reac-
tion for each segregation. They are given for each
component in Table 2. The amount of staurolite and
garnet which react during the growth of one mole of
sillimanite can be calculated with a least-squares fit
to the seven equations having the form of equation
23.The results for RA66N are Rr/R":0.08 and R",,/
R" : -0.12. These ratios can be used to relate the re-

actions in the staurolite and garnet segregations to
the growth of the sillimanite segregation. The results
of these calculations for the growth of 0.06 mole of
sillimanite in l00cm3 rock RA66N are shown in Fig-
ure 7. Comparison with the observed textures shows
that the model closely matches the staurolite and sil-
limanite segregations, but not the garnet segregation,
which does not show distinct mantles in the rocks. As
discussed previously, this is probably due to the small
amount of new garnet growth and the large grain size
of the matrix phases relative to the mantle thickness.

Yardley (1977) has pointed out that the absolute
rate of complex ionic cycle reaction mechanisms is
related to the supply ofheat to the rock. In the pres-
ent case, if the absolute sizes of the chemical poten-
tial gradients are too small to permit the reactions in
Figure 7 to consume heat as fast as it is supplied to
the rock, the temperature will rise. This will cause the
absolute values of the gradients to increase as the
rock moves farther from equilibrium, resulting in
more rapid material transport, which increases the
reaction rate. When the rate of consumption of heat
by the endothermic reaction equals the rate of supply
of heat, the rock will reach a steady state and the
temperature and reaction rate will remain constant.
On the other hand, if the absolute size of the gradi-
ents permit the endothermic reaction to use heat
more rapidly than it is supplied to the rock, the tem-
perature will fall, decreasing the chemical potential
gradients until the reaction consumes the same
amount of heat that is supplied to the rock. Provided
that local equilibrium is maintained and the whole-
rock equilibrium has not been overstepped enough to
permit sillimanite to nucleate directly on garnet or
staurolite, the relative reactions, relative gradients,
segregation morphology, and modes will be the same
regardless of the absolute rate of the endothermic re-
action because they are governed only by the con-
servation equations and Gibbs-Duhem equations of
the phases present.

C hemical potential profil es

The physical processes governing material trans-
port throughout the rock during the growth of a spe-
cific amount of sillimanite (R") in the lower silliman-
ite zone can be illustrated by constructing profiles of
the chemical potential of each component along a
line from one segregation to another as shown in Fig-
ure 7. These profiles are constructed by using the re-
action coefficients (Ro/R") of the core minerals which

/ ,: oo" * l" tr.*'* / Ji dA* : o



RXN. +
l . M + I  =  $ + P + Q
? . P + l  =  B + Q
3 .  B  =  Q + I
4 . Q =  S
5 . S t + Q = M + B + P + I
6 .  B +  P =  M + I + Q
7  P = Q
8. M=Q
9.  Q=G
lO. I+Q =  M

lmm

were calculated in the previous section and the chem-
ical potential terms tOD-.A/R"l given in Table 2.
The relative value of the gradient at a distance x
from the center of each of the segregations shown in
Figure 7 is given by:

[(Vp)-/R"] : [(V,r,).' A/R"]' (Ro/R")' (4o*')-' (24)

(P:s, st, g; R":constant)

where the term 4nx'is the area (A) of the surface of a
sphere with radius x surrounding the segregation. Be-
cause the value of R" is a constant, these gradients
can then be'integrated from the center of one segre-
gation to another, giving the relative value of the
chemical potentials along the profile lines shown in
Figure 7. Because only relative gradients are known,
the standard state for all components was chosen to
be the value at the center of the sillimanite segrega-
tion. The diference between F*oo, h the center of the
staurolite segregation and the standard state was cho-
sen to have unit value. The profiles shown in Figure
8 provide an interesting view of the interplay be-
tween the local reactions and chemical potential gra-
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dients in the rock, and their effect on the material
transport. Reactions which are sources for a com-
ponent produce discontinuities which form a ridge
on the chemical potential profile while reactions
which are sinks are marked by discontinuities which
form a depression on the profile. Ifthe profile crosses
a reaction interface with little or no discontinuity, it
is not an important source or sink for that com-
ponent. The sources, sinks, and direction oftransport
of all components in all parts of the rock can be de-
termined from the chemical potential profiles. For
example, consider Al. One of the two major sources
for transported Al in the rock is the staurolite break-
down reaction at the porphyroblast/pseudomorph
boundary within the staurolite segregation. This re-
action produces Al that diffuses away from the
staurolite segregation due to the steep lrero,, gradient
in the pseudomorph and matrix. The other major Al
source in the rock is the breakdown of muscovite at
the outer boundary of the sillimanite segregation.
The gradient steepens when it crosses from the ma-
trix to the muscovite-free mantle because the Al pro-

FOSTEK THERMODYNAMIC MODEL OF MINERAL SEGREGATIONS
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Fig. 7. Whole-rock texture with segregation spacing and size approximately equal to average segregations in RA66N. The two thinnest
mantles in the garnet segregation wer€ not shown because ofreduced size. The sillimanite segregations in 100 cm3 ofrock contain 0.06
mole of sillirnanite. Dotted lines show profile positions for Fig. 8.
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Fig. 8. Relative chemical potential profiles between
segregations. The term piis the chemical potential of component i
in the core of the sillimanite segregation and p[qo, is the chemical
potential of KOo 5 in the core of the staurolite segregation. Note
that th€ curvature of the chemical potential profiles between
reaction sit€s is due to the x-2 term in equation 24, not intemal
precipitation.

duced from the muscovite breakdown reaction must
be transported away as well as the Al supplied by
diffusion through the matrix from the dissolving
staurolite. The major Al sink in the rock is provided

by the growth of sillimanite at the corelmantle
boundary of the sillimanite segregation.

Conclusions

The results show that textures commonly observed
in pelites from the lower sillimanite zone on Ele-
phant Mountain near Rangeley, Maine can be ex:
plained by an irreversible thermodynamic model.
Preliminary studies (Foster, 1977b,c,1978, 1980, and
unpublished data) of other textures from amphibo-
lite-facies pelites suggest that models of this type with
similar relative phenomenological coefficients are
valid for pelitic rocks throughout the amphibotte
facies. If this is substantiated by future studies, irre-
versible thermodynamic models will become a pow-
erful tool used to understand processes which form
metamorphic segregations. Ultimately, quantitative
models of segregation growth will be of considerable
value in the interpretation of polymetamorphic ter-
raines because they will permit the reconstruction of
previous mineral assemblages from the textures pre-
served in the rock. With these data, it should then be
possible to map different generations of isograds in
detail by using the distribution of pseudomorphs and
segregations in the field.
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