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Computing and drawing crystal shapes
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Abstract

A computerized (Fortran) method for plotting crystal shapes is based on the following pro-
cedures. Each face is represented by an equation, the coefficients of which are derived from
the (kkl) indices and the central distance. The central distances may be measured (actual
shape) or represent relative growth velocities (ideal growth shape) or surface energies (equi-
librium shape). All triplets of face equations are solved to give the possible corners, then the
smallest polyhedron is found by eliminating corners which are further from the center than
any face. A drawing is made by connecting corners which have two faces in common. Matrix
methods are used to convert face indices from the crystal axial system to a working cartesian
coordinate system, and to rotate the image of the crystal to any desired orientation. Projec-
tion may be orthographic or perspective. Twins may be drawn with a composition plane, or
as interpenetrating individuals. Shaded, rather than line, drawings may also be made.

Introduction

The growth shape of a crystal depends on the rela-
tive growth velocities of the various faces, which de-
termine the relative center-to-face distances. The
equilibrium shape depends on the surfate energies,
whose relative values may also be taken by the Wulff
(1901) theorem to give the relative center-to-face dis-
tances. Various special and general methods exist for
predicting relative growth velocities or surface
energies (Donnay and Harker, 1936; Hartman and
Perdok, 1955; McLachlan, 1974; Dowty, 1976), but
even given these values, one is still faced with the
rather tedious geometric or mathematical problem of
determining the configuration of edges and corners
which define the crystal polyhedron. Computer
methods are ideally suited for this task. Several in-
vestigators have independently developed at least
parts of a general analytical procedure for determin-
ing and plotting crystal shape (Keester and Giddings,
1971; Felius, 1976; Schneer, 1978), but no compre-
hensive account of such a procedure scems to have
been offered.

Many ingenious graphical methods have been de-
veloped for making drawings of idealized crystals
(see Terpstra and Codd, 1961), but all can be very
time-consuming. The computerized matrix methods
outlined in this paper allow rapid and routine ortho-
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graphic or perspective drawing of any desired crystal
shape, viewed from any angle. The computer pro-
grams are written in Fortran.

Basic mathematical methods

Coordinate systems

Crystallographic calculations are easily done with
matrix algebra (Bond, 1946). For some operations,
such as symmetry transforms, it is most convenient to
use the system of base vectors (coordinate system) of
the crystal axes, but for most it is better to use a car-
tesian system. A vector, or a point whose location
with respect to the center of coordinates is repre-
sented by a vector, can be converted from one system
to another with a transformation matrix M:

V.=MV_;V.=M"V, 1
where V, is the vector in the crystal system and V, is
the vector in the cartesian system; M~ is the inverse
of the matrix M. The matrix depends on the mutual
orientation of the coordinate systems. The orienta-
tion used for this work is ¢ (crystal) parallel to z (car-
tesian) and & (crystal) in the y-z (cartesian) plane
(Fig. 1); then x (cartesian) is parallel to a* (crystal),
and if the projection is made along x, the (100) face
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is perpendicular to the view direction in a drawing.
The transformation matrix is

acos v, 0 0
M=|acosy, bsina 0 2)
acosfB bcosa ¢

_ /1 = cos’a — cos’B — cos’y + 2 cosa cosf cosy
sina

14}

__ €OSy — cosa cosfi
sina

2]

This orientation is somewhat different from that used
by Bond (1946) and Terpstra and Codd (1961), but
the matrix was derived in the same way.

The orientation of a face is specified in the crystal
system with the Miller indices (hkl), but the vector
[hkl] is not in general perpendicular to the face ex-
cept in the cubic system. However, the vector V,, in
the cartesian system which is perpendicular to the
face can be obtained by multiplying the vector V, =
[hkl] by the transpose of the inverse of the matrix M
above (Bond, 1946), or by premultiplication instead
of postmultiplication:

Vi = V.M 3)

In the cartesian system, the equation of the plane
(hkl) is then

Ax+By+ Cz=D\/A*+ B>+ C? ©))

where A, B, and C are the components in the x, y,
and z directions respectively of the vector V,,, and D
is the perpendicular distance from the plane to the
origin (the central distance).

Rotation matrices

In obtaining different view angles of crystals or in
generating twins it is necessary to be able to rotate
vectors, points, or planes about various directions.
This is also done with matrix multiplication in the
cartesian system:

V,=RV, )

where the vector may represent an axis, a point, or
the normal to a face. Matrices for rotation about the
cartesian axes are easily derived intuitively, but for
twin operations it is desirable to have a more general
means of obtaining the rotation matrix. A general ex-

pression for the rotation matrix found by Morgan
(1976) is:

Pu Piz Pis

P21 P2z Paa (6)
P P32 P

R=

pn = 1—2r2sin’8/2 — 2r; sin’4/2
P2 = 2r,1, 8in’4/2 — 2r, sinf/2 cosf/2
P13 = 21,1, sin’0/2 + 2r, sinf/2 cosf/2

px = 21,1, 8in’0/2 + 2r, sinf/2 cosf/2
P2 = 1 — 212 sin?f/2 — 2r? sin*4/2
023 = 21,1, 5in°0/2 — 2r, sinf/2 cosb/2

P31 = 21,1, sin’0/2 — 2r, sinf/2 cosf/2
P32 = 21,1, 5in°0/2 + 2r, sinf/2 cosf/2
ps =1 —2r7 5in’0/2 — 2r; sin’6/2

where 1,, 1,, and r, are the components of the vector
of unit length in the cartesian system representing the
axis of rotation, and 4 is the angle of rotation. The
sense of the rotation, which will be assumed through-
out this paper, is clockwise looking outward from the
origin along the axis.

Symmetry

It is desirable to take advantage of crystal symme-
try so that only one face per form need be entered
into the computer program. The generation of equiv-
alent faces is also carried out by matrix multiplica-
tion:

V=S8V, @)

where V, represents the indices (kk/). In a system de-
vised by L. W. Finger for the crystal-structure refine-
ment program RFINE (Finger and Prince, 1975), the
information for symmetry transforms is obtained
from the International Tables for X-Ray Crystallogra-
phy, Volume I. The atomic positions in the general
equipoint of each space group give the symmetry ma-
trices of the crystal and all their possible products.
Thus the position y, y—x, Z gives the matrix

®

n
o
Il
o - o
)

1
1
0
The elements of such matrices will be integers if the

operation is carried out in the crystal coordinate sys-
tem. In the computer program, the information is
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read in just as given in the Tables. The matrices (S,)
thus derived apply to points or vectors, rather than
faces. They also may contain translational operations
which are ignored for the purposes of determining
equivalent faces, although it is useful to have a file of
space-group symmetry cards for use in RFINE and
other programs which use this system (Dowty, 1976).
Because the face indices are the reciprocals of the ax-
ial intercepts, the desired matrix S; is the inverse of
the space-group symmetry matrix S,. However, the
inverse of a symmetry matrix is the transpose, so that
S, =Sl

General procedure

The requisite information, or input to the com-
puter program, is the symmetry information, unit-
cell parameters, and the indices of one face of each
form with its central distance. If the object is to de-
termine the growth or equilibrium shape, more faces
may be entered than are likely to be present on the
crystal.

The indices of symmetry-equivalents to each face
are first generated; then the equations of all faces in
the cartesian system are derived from equations (3)
and (4). To determine the crystal shape, every pos-
sible corner, or junction of three faces, is considered,
which involves a triple loop in the computer pro-
gram. The coordinates of the corners are found by
solution of the three simultaneous face equations.
This is most conveniently done by inverting the ma-
trix of the coefficients. In order for a corner actually
to be present on the crystal, it must lie on or inside
any and all faces. Thus the perpendicular distance §
of each corner from each face is computed by the for-
mula

_ Ae, + Be, + Ce, _D ©)
JAR+ B+ C

where €, €,, and ¢, are the x, y, and z coordinates of

the corner. If this distance is greater than zero

(within the precision of the calculation) for any face,

that corner does not exist on the crystal.

It is necessary to check each new corner against
the list which is being built up, since if more than
three faces meet at a corner, many triplets of faces
give the same solution (e.g. a corner with four faces
appears in four triplets). The overall procedure can
be time-consuming if the number of faces is very
large—the number of permutations of » faces taken
three at a time is n(n — 1)(n — 2)/3, and each such
permutation must be checked against the list of valid
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corners and the distance from each face computed.
The labor is somewhat reduced if triplets involving
parallel and opposite faces [for which (€,), + (€.), =
(e,): + (€,), = (€,), + (€,). = 0] are identified and re-
jected.

The result of the procedure is a list of valid cor-
ners, each with xyz coordinates and at least three ap-
pertaining faces. The forms present on the growth or
equilibrium shape are determined from the list of
faces. If the object is to make a drawing, the edges
between corners must be identified. This is done by
considering all possible pairs of corners, a double
loop in the program. An edge exists between any two
corners which have two faces in common. A list of
edges is compiled, in terms of the coordinates of the
two corners, and a drawing is made by connecting
each pair of corners with a straight line, either by
hand or by machine.

Of course, the actual drawing is a projection. This
operation is done most simply, for orthographic pro-
jection, by neglecting one of the cartesian coordi-
nates, conventionally x. Before making the projec-
tion, it is customary to rotate the crystal to a suitable
view orientation. For a standard view, the crystal is
rotated —arctan (1/3) about z, then arctan (1/6)
about y (Terpstra and Codd, 1961). This gives a view
of the crystal in effect from the front (a* axis), but
from a direction slightly upwards and to the right
(Fig. 1). Any other view may be obtained by adding
appropriate values to the rotations about the carte-
sian axes. In practice, all the separate rotation matri-
ces are multiplied together into a single orientation

cliz

Fig. 1. Stereogram (upper hemisphere) showing orientation of
crystallographic axes (a,b,c) and cartesian axes (x,y,z) for
crystallographic calculations and plotting. The star shows the
standard projection direction for orthographic drawings.
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matrix, and this is applied to the coordinates of each
corner.

If an edge is on the front side of the crystal, within
its outline in projection, the normals of both its faces
will make angles of less than 90° with the projection
direction, i.e. they will have positive x components. If
the edge is on the drawing outline, one face normal
will have a positive x component and the other a
negative one. If the edge is on the back, both face
normals will have negative x components. Thus back
edges can be identified and either omitted entirely or
drawn with dashed lines. Before making this test, the
face normals are multiplied by the orientation ma-
trix.

Stereo pairs are easily drawn by rotating an appro-
priate amount on the z axis (Fig. 2). Once a set of
corners and faces has been determined, which is the
principal labor of the procedure, its orientation can
be changed simply by multiplying each corner and
face by the new orientation matrix.

For stereo pairs, it appears to be more satisfactory

(b)
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to use perspective rather than orthographic projec-
tion. In this case, the y (horizontal) and z (vertical)
coordinates of each corner are transformed before
drawing, but after rotation, by the equations

¢ ¢
{—e {—¢€

where { is the distance from the projection point (the
eye) to the center of the crystal and the projection is
onto the plane x = 0 (Fig. 3). This method does not
give perfectly true perspective, since straight lines are
still drawn instead of curved ones, but the curvature
is negligible except for very close views. The distance
from the crystal center to the projection point should
also be used to determine p, the stereo rotation angle:

sin (1/2) = M/(29) an

where A is the interocular distance, usually about 2%
inches. With perspective projection, determining
back edges must be done by computing the dot prod-
uct of the face normals and the vector V. from the

y=g¢ (10

vl =
s Z _ez‘

Fig. 2. Computer drawings of crystals. In Figs. 2 and 4, the two images on the right are a stereo pair, traced from the machine plot, and
the image on the left is the original machine plot of the left-eye image. (a) Above: cubic crystal, class m3m showing the rhombic
dodecahedron {110} and hexoctahedron {321}. (b) Below: quartz, class 32, showing the hexagonal prism {1010}, thombohedra {1011}
and {0111}, the trigonal dipyramid {1121} and the trigonal trapezohedron {5161}.
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plane of
drawing
(x=0)
Fig. 3. Perspective projection of a point P (normally a crystal
corner) with coordinates ¢,, €, €, into the point P’ with
coordinates y/, Z’ in the plane of the drawing (x = 0); see equations

(10). The x axis is horizontal and the y axis is vertical on the page;
view is down the z axis.

projection point to either corner. If

Vr,u - Vi
COSP = IV, TVl (12)

is positive, the face represented by V,, is in back.

Twins

Twins are most easily and consistently described
by the system of Friedel (1926; see also Cahn, 1954),
in which only rational lines or planes may be twin
operators. To produce a second crystal related to the
original one by rotation, a twin rotation matrix is de-
rived from (6) above, after transforming the indices
of the twin axis to the cartesian system, and the
coordinates of each corner are multiplied by this twin
matrix. A reflection twin is generated by utilizing the
identity of a mirror plane and a two-fold rotary-
inversion axis. The crystal is rotated by 180° about
the normal to the twin plane, then inverted. In prac-
tice, the rotation and inversion matrices are com-
bined by multiplication into one twin matrix.

An idealized contact twin with a composition
plane is obtained by inserting a plane with the de-
sired orientation and a distance of zero, i.e. passing
through the center, into the list of faces before solv-
ing for corners. The twin matrix is then applied to the
corners and faces of this completed half-crystal, and
if the twin is by reflection, the two halves will match.
To determine front and back edges, each half-crystal
is treated independently. In order to prevent the trace
of the composition plane on the back of the crystal
from showing through in the drawing, edges which
are defined by the composition plane and any regular
face whose normal is greater than 90° from the pro-

jection direction are rejected. In some cases, edges or
parts of edges involved in re-entrant faces will still
need to be removed from the drawing,.

If the twin is by rotation of 180°, a composition
plane parallel to the twin axis will have a parallel ori-
entation in the two individuals, but the remainder of
the faces will not necessarily match at the boundary.
In many cases the structures of the two individuals in
a rotation twin will match without dislocation only if
the composition plane is the rhombic section, which,
though parallel to the twin axis, may be irrational.
The rhombic section is the plane passing through the
twin axis [hkl] and the line or vector V, per-
pendicular to the twin axis in the plane (kkl). The
orientation of this plane may be found with a se-
quence of vector multiplications. If the twin axis [hk/]
is the vector V,, and the normal to the plane (hkl) is
the vector V,,

le = Vla X Vh and Vrs = V\p X Vta (13)

where V, is the normal to the rhombic section.

Interpenetration twins can be drawn by not speci-
fying a composition plane, and carrying out the twin
operation on the entire crystal (Fig. 4). Here it is al-
most always necessary to draw in lines of junction
between the individuals, and to remove some edges
of each crystal which are masked by the other(s).
With some ingenuity twin configurations involving
composition planes not passing through the center of
the crystal, such as multiple lamellar twins, may be
drawn by making independent drawings of the indi-
viduals and superimposing them.

Shaded drawings

Line drawings of crystals, even when they are ste-
reo-pair perspective, do not closely resemble real
crystals; they give the impression of cardboard or pa-
per models with inked edges. Shaded drawings that
may be more pleasing to some tastes can be made if a
suitable plotter is available (Fig. 5).

In the main program, before performing any orien-
tation or stereo rotations, the cosine of the angle be-
tween each face normal and an illumination direc-
tion is calculated. The illumination direction is
specified in standard crystal vector notation [uvw].
These illumination cosines are punched on cards, as
well as the x and y coordinates of the two corners de-
fining each edge. A second program reads these data,
and converts the corner coordinates into equations of
lines in the plane of the plot. Shading densities for
each face are derived from the illumination cosines.
The plotting area is scanned point-by-point on a fine
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(a)

©

Fig. 4. (a) Andesine, class T, albite twin by reflection on (010), showing the pinacoids {010}, {001}, {201}, {110}, {110}, {111}, {T11},
{130}, {130}, {021} and {021}. (b) Aragonite or cerussite (class mmm) “sixling” twin; actually two twins by reflection on (110) and
(T10). Forms shown are the pinacoid {010}, prism {110} and dipyramid {111}. (c) Cubic crystal, class m3, “iron cross” twin; pentagonal
dodecahedron {210} twinned by rotation on [011].
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*

grid, and a rather complicated algorithm uses the
edge equations to determine in which face each point
lies. The shading density for the face then determines
whether a dot should be placed at that point.

Copies of the computer program are available
from the author.
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