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Defect calculations in silicates: olivine
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Abstract

The evaluation of the energy of formation of point defects in silicates is developed using
solid-state theory. The calculations require a proper treatment of the polarization effects in
the crystal as well as the usual Coulomb and repulsion energy terms. The theory is applied to
the calculation of point defects in forsterite. The Mg-O and O-O repulsion potential calcu-
lation uses the recent electron gas th€ory of Gordon and Kim (1972). The partly covalent Si-
O bond is treated semi-enpirically. The relative importance of the various energy terms in
the overall energy of formation is evaluated. The results show a marked di.fference between
defects on the Ml and M2 octahedral sites, and among the three di.fferent oxygen sites of oli-
vine. The energy di-fferences are on the order of several electron volts. The implication of the
results on the nature of defects and on the diflusion mechanism in olivines is then treated.

Introduction

In the past decade the solid-state theory of defects
in ionic crystals has been generally refined (Barr and
Lidiard, l97l). Most research has focused on the al-
kali halides, since rather extensive and precise data
on defect concentrations, electrolytic conductivity,
and diffusion phenomena exist for these compounds.
However, some preliminary data on geochemically
interesting solids (e.9. silicates) are available, and it is
important to develop the necessary models to digest
and interpret the experimental data as well as to ex-
tend the data to predict other useful quantities within
a sound chemical and physical basis.

The structure and energetics of defects in crystal-
line materials are central to the on6srslanding of
solid-state transport processes. A quantity of para-
mount importance in the applications of kinsliss 1s
geochemistry (e.9. isotope dating, geothermometry,
geospeedometers, alteration of minerals) is the diffu-
sion coefficient of an element in a particular crystal.
Some diffirsion coefficients are rather small at low
temperatures and hence are sometimes difficult to de-
termine experimentally. Furthermore, when multi-
component diffusion experiments are carried out,
their interpretation is not always clear. One possible
way of increasing our ability to apply kinetics, there-
fore, lies in developing a theoretical framework that
may allow us to predict some of the microscopic de-
tails of the defect structure and diffusion coeffi.cients

of minerals. While we are not now in a position to
derive absolute diffusion coefficients with reasonable
accuracy, we can begin to predict some of the useful
terms in the theory. Based on the success of the alkali
halide calculations (e.g. Ban and Lidiard, l97l),
these models will be able to aid considerably in un-
derstanding geochemical kinetics.

An important class of defect, which can be signifi-
cant in the transport theory of silicates, is the so-
called point defect class, which includes vacant lat-
tice sites, interstitial atoms, and impurities. This
paper will focus on the physical chemistry used to
characterize the energetics of these point defects in
silicates.

Energetics of defects-4enerd remarks

There are two approaches to the energetics of
point defects. On the one hand, one may write differ-
ent "defect reactions" which describe the formation
of vacancies, interstitials, electron holes, or con-
duction electrons. With this approach one writes ex-
pressions for the chemical equilibrium constants of
these reactions, assuming thermodynamic equilib-
rium for all the defects possible in the structure. This
leads to an interrelationship between the concentra'
tion of the different defects and the fugacities of im-
portant species such as O, (if multivalent ions are in-
volved) or the concentration of foreign ions. If used
in conjunction with experimental data, this simple

0003-004x/80/ l I 12-1237$02.00 1237



t238 LASAGA: OLIVINE

approach enables us to reduce the number of pos-
sible dominant transport mechanisms under the spec-
ffied experimental conditions (e.g. Kroger, 1971,
1974; Smyth and Stocker, 1975; Stocker, 1978a;
Buening and Buseck, 1973).

The second approach focuses on the microscopic
details of these defects, i.e. it tries to relate the
energies of formation 31fl migration of the defects to
the electronic, optical, and elastic properties, as well
as the crystal structure of each mineral. (For a re-
view, see Barr and Lidiard, l97l; Lidiard, 1972.) This
approach opens up new avenues of research as well
as a deeper understanding ofthe details ofthe trans-
port processes.

Of course, both approaches are complementary
and should be used together in the analysis of experi-
mental data and in predicting new transport phe-
nomena. For example, suppose we were interested in
the formation of Mg2* and 02- vacancies in a forste-
rite crystal. We could then write the defect reaction
AS

Mg(Ml)"n"."r; * O(3)q.r, + Y^.r"<",,r

* V6<rr + MgO (surface) (l)

Equation I states that an Mg2* ion on a magnesium
Ml octahedral site in forsterite (Mgr"") and an Or-
ion on an O(3) oxygen site (O") are removed to new
sites on the surface of the crystal, leavi.g behind a
magnesium site vacancy (V;") and an oxygen site va-
cancy (V(). Note that we must also distinguish
among the different crystal sites in the reaction. The
notation, at first a bit cumbersome, is the one gener-
ally used and introduced by Kroger (1971). The .. in
V,o" indicates a loss of +2 charge at the site----or
equivalently a gain of -2-and the " in Vo indicates
a loss of -2 charge.

The first approach to the treatment of defects
would introduce an equilibrium constant for reaction
l :

(X*"." X".")/(X.".." Xo,6): K* (2)

where X*," is the fraction of Mg-Ml sites which are
vacant, X*,." is the fraction of Mg sites which are
occupied by Mg and similarly for oxygen. Obviously
it is usually a very good approximation to set X1'g.rurg
and X"," equal to l. In this case, equatiol I 5implifies
to

X-"," Xo.u: K*: exp (-AG"/RZ) (3)

where AG" is the free energy of formation for the pair
of vacancies (generally called Schottly defects in

simple crystals). Equation 3 is always true at equilib-
rium and shows that the defect concentrations will
depend exponentially on temperature. The first
method proceeds along similar lines to obtain many
relations such as equation 3 for the possible different
defect reactions. In the true thermodynamic tradi-
tion, this enables us to derive relationships between
the various defect concentrations and,/or the external
variables.

The second approach, in this example, obtains the
size of the critical energy term, AG". Obviously the
first method cannot predict this term, but merely
states its existence. It will be concemed with the cur-
rent status of the theory for estimating AG" and with
its geochemical significance.

One important function of point defects, of course,
i5 slaUing difusion to take place in a crystal. There-
fore the diffusion coefficient (as well as the con-
ductivity) depends on the type and the energetics of
point defects. In fact, the number of atoms jumping
from their sites into adjacent vacancies will depend
on (1) the fraction of sites which are vacant and (2)
the fraction of atoms which, lsing next to a vacancy,
have sufficient thermal energy to go over the migra-
tion activation barrier and into the vacancy. Under
general conditions the diffusion coefficient is given
by an equation of the form

o : !x" exp(-U / Rr) (4)3

(Jost, 1960, p. 137) where d is the interatomic dis-
tance traveled in a jump, X" is the site fraction of va-
cancies, and U is the energy barrier to go from a
filled site to a neighboring vacant site. y is a vibra-
tional frequency which sometimes is set to the Ein-
stein frequency of a crystal or some fraction of the
Debye frequency (see Flynn, 1972, p. 330). Of
course, the pre-exponential factor in equation 4 is
quite approximate and gives only a rough idea of the
magnitude of D. More detailed treatments involve a
sophisticated account of the atomic dynamics in a
crystal (Flynn, 1972, Ch. 7). A similar equation
would follow if the diffusion mechanism involved in-
terstitial sites (Jost, 1960). Both X" and the term exp
(- U/RT) are very sensitive to temperature varia-
tions (the fundanental reason for their importance as
geospeedometers!) and X" is possibly sensitive to the
impurity content and/or oxidation state of the crys-
tal. These terms are therefore critical in the evalua-
tion of diffusion coefficients.

Equation 4 is usually multiplied by the so-called
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correlation factor, f (Barr and Lidiard, l97l: Le-
Claire, l97l). This factor corrects for the fact that
once an atom jumps into a vacancy, it has a higher
than random probability ofjumping back. However,
this factor is usually between I and 0.5 and is useful
in correlating isotopic data (which may be useful in
dslgrmining the diffusion mechanism) and not in un-
derstanding the overall size of the diffusion coeffi-
cient, D.

In elucidating the variation with temperature of
the term X" in equation 4 (or similarly the term X, if
an interstitial mechanism is involved) we must make
the important distinction between an extrinsic di-ffu-
sion mechanism and an intrinsic diflusion mecha-
nism. At high temperatures the size of X" is deter-
mined from the energy needed to form the vacancy,
En i.e.

X"aexp (-E,/RT) (5)

where we have a simple Boltzmann term. This ex-
ponential dependence on temperature in equation 5
will contribute to the overall exponential dependence
of D in equation 4. This overal activation energy is
then the value obtained from the temperature depen-
dence of the diffusion coefficient in the intrinsic re-
gion. However, as the temperature is dropped, we
reach a point where the number of vacancies induced
by the impurities (e.9. aliovalent ions) is much bigger
than the number of vacancies generated intrinsically
(i.e. by thermal equilibrium). Below this temperature,
X" is then fixed by the concentration of impurities
and is therefore independent of temperature. As a re-
sult, an exponential term from equation 4 is lost and
the activation energy for difusion decreases drasti-
cally. Below this temperature is the extrinsic region.
This variation of the activation energy with temper-
ature manifests itself as a kink in the lnD vs. l/T
curve. A well-documented example of this behavior
is seen in the experirnental data for the self-diffusion
of Na* ions in NaCl (Jost, 1960) or in the self-diffu-
sion of Br- in KBr doped with CaBr, (Barr and
Lidiard, l97l). Clearly a prediction of where these
temperature regions lie necessarily depends on the
energetics of the point defects. It is also inportant to
understand where these changes in slope occur, since
they will seriously affect the validity of any extrapo-
lation of experimental data.

The treatment of the energetics of point defects
(vacancies or interstitials) in ionic crystals dates back
to the classic paper by Mott and Littleton (1938).
Most current theories still employ the same approach
as Mott and Littldon, although the treatment of the

various terms in the original theory has been refined.
The energy needed to move ions in an ionic lattice or
to create vacancies and interstitials can be attributed
essentially to three terms: (l) the Madelung energy,
(2) the short-range energy (mainly repulsion) due to
ionic overlap, and (3) the polarization energy. The
physical property which distinguishes ionic crystals
and creates problems in theoretical calculations is the
presence of a large polarization energy. I will com-
ment on the evaluation of each and apply the theory
to an important silicate, forsterite.

Madelung energy

The evaluation of the Madelung energy is perhaps
the most well-established and oldest of the proce-
dures. The Coulomb energy at a site with position
vector r, of an ion with charge z, is given by the se-
ries:

Yco'r :  > ?' ' t t - ,  (6)
? lr, - r'l

where the sum in equation 6 is over all the ions in the
lattice. The direct summation of the Coulomb poten-
tial, equation 6, converges very slowly. This slow
convergence is a result ofthe long-range interactions
due to the l/r form of Coulomb's law. Fortunately,
this slowly-convergent series can be profitably rewrit-
ten using Fourier transforms. A standard result de-
rived by Ewald (1921) (see also Kittel" 1956, p. 574)
and using the reciprocal lattice is

4 t s. o,^, exP[-(G'/4q)l
Yco ' t :  

V  . .  ^ I t ^  
J ( \ t ,  - -G t -

v en G*o (7)

- 22,(q/r)L/'+ Z, ! erfcQl'/'r,)' - i t t

In equation 7 the first term is a sum over all recipro-
cal lattice vectors, G : 2r (h a* + k b* * I c*),
where t*, b*, c* are the reciprocal basis vectors, h, k,
I are any integers, and S(G) is the structure factor de-
fined by

s(c):  X aexp(- iG.r)  (8)

The sum in equation 8 is over all ions in a unit cell
(which, of course, can be arbitrarily chosen). V*n is
the volume of the unit cell. The third sum is a direct
sum over all the ions in the crystal. 4 is an adjustable
parameter and V.o,, should be independent of the
value chosen for 4. An interesting result is that if 4 is
small enough so that exp(-G'/4q) is negligible even
for the smallest non-zero G vector, the sum'in equa-
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tion 7 reduces to only the last two terms. Therefore
the Ewald method essentially multiplies the direct se-
ries in equation 6 by an error function term, erfc,
(which makes the series converge very fast) and then
corrects for the erfc term by the simple second term
in equation 7. Of course, as ? -+ 0 equation 7 ap-
proaches equation 6. There have been some recent
papers on the optimization of the Madelung calcu-
ation (e.9. Catti, 1978; Tupizin and Abarenkov,1977)
and a recent application to the spinel structure
(Thompson and Grimes, 1977). For a useful review
see Sherman (1932). Some workers have analyzed
the stability of minerals based solely on Madelung
calculations (e.g. Appelo, 19791, Giese, 

.1975; 
Ohashi

and Burnham, 1972; van Gool and Piken, l969a,b;
see however, LJrusov, 1965). Unfortunately, the eval-
uation of the Madelung term by itself is not sufficient
for our pulposes, as we shall see below.

Short-range potential

While the method of evaluation of the long-range
summations needed to obtain the Madelung poten-
tial is well developed, the description of the repulsive
forces between ions is not completely developed.
This results, in part, from the necessity to include
quantum mechanical effects and the possibility of
many-body forces in evaluating the ion-ion short-
range potentials. Even though some workers have
approximated the repulsive potential by a term of the
form l/f (n > 8), by far the most common treatment
uses the empirical Born-Mayer repulsive potential

Vro- : A exp(-rlp) (10)

which is a pairwise potential between two ions at a
distance r (A and p are constants). There is some va-
lidity to the exponential form of the potential used in
equation 10. The rationale rests upon the well-known
fact that the electron density in atomic orbitals
decays predominantly as e-" (e.g. hydrogen orbitals),
where r is the distance from the nucleus. In fact, ex-
ponential decay is a general property of all l/r type
potentials.

The parameters A and p in equation 10 are usually
obtained for simple cubic crystals not from quantum
mechanical calculations but from the equilibrium
cation-anion nearest bond distance and the compres-
sibility of the crystal. Sometimes the Born-Mayer po-
tential between ions i and j is written as

V"o-: A exp[-(r, + 4- r)/pl ( l  l )

where r, and r., are the ionic radii; but clearly equa-
tions 10 and ll have the same form.

An important problem with the Born-Mayer po-
tential is that, although the hydrogenic type potential
is reasonable at intermediate distances, this form is
not correct at very close separations and in fact un-
derestimates the actual interionic repulsion for snall
r (1.e. for r smaller than the equilibrium distance ro-
see Kim and Gordon,1974b). This is a consequence
of the fact that the Bom potential approaches a con-
stant value as r + 0, while the Coulomb term ap-
proaches infinity. This problem leads to the so-called
"polarization catastrophe."

It is also usual to add small attractive Van der
Waals terms to the Born potential in order to better
describe the long-range part of the interionic poten-
tial. The form of this term is

Vrro* : - C/f (r2)
However, the choice and size of the parameter C is
not well-established for the common ions.

In this paper, I use a more recent method, hitherto
not widely used in defect calculations, for evaluating
the short range potential; this is the so-called electron
gas model of Gordon and Kim (1972). The basic as-
sumption of the model is to treat ions as spherically
symmetric charge distributions of known electron
density (e.g. analogous to the densities that X-ray
crystallographers use) and then evaluate the inter-
ionic interaction by using the well-known electron
theory, which relates the energy of an electron gas to
its electron density (Fetter and Walecka, 1971,p.29).
The electron density at any one point is given by the
sum ofthe electron densities ofeach ion separately at
that point. This model works very well in predicting
the positions (rJ and depths of potential minima for
the intermolecular potentials of the rare gases (which
are isoelectronic with many of the common ions) and
of closed shell ions (Gordon and Kin, 1972; Kim
and Gordon, l974a,b).In particular, it predicts very
well the important potential wall for distances closer
than the internuclear equilibrium distance, r*. The
theory is slightly offin predicting the long-range part
of the potential, since some of the dispersion energy
is not incorporated into the simple theory (more re-
cent versions can include some polarization terms
and correct for this).

Calculation of elastic properties, their pressure de-
rivatives, and the eqrrilifdgm distances in alkali hal-
ides and alkaline-earth dihalides using the electron
gas theory have been very successful (e.g. Kim and
Gordon, 1974a\. This has also been extended to alka-
line earth oxides (Cohen and Gordon, 1975, 1976).
Qns important problem, which arises when oxides
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are considered, is the choice of electron density for
the O'z- ion. Since O'- is an unstable ion in vacuum
(le. the reaction O'- + O- + e- would occur sponta-
neously) calculations of the electron density of the
oxygen anion must involve some sort of stabilizing
"fictitious" positive charges, such as do occur in real
crystals (e.g. six +l charges arranged in an octahe-
dral arrangement about the oxygen anion). This
problem leads to some ambiguity in the electron den-
sity. The two widely used electron densities for O'-
obtained in this fashion are those of Watson (1958)
and of Yamashita and Asano (1970). Both electron
densities will be used in our calculations of the short-
range interionic potentials.

The other problem arises from the use of an ionic
model in the electron gas. This model will be debat-
able especially if Si-O bonds are involved, as they
are in silicates. Our group is currently working on a
scheme which combines the covalent bonds (treated
by molecular orbital methods) with ionic interactions
(treated by the electron gas). At this stage, however,
the Si-O potentials will be approximated using em-
pirical Born type terms (see below). In later papers,
this treatment will be refined.

Polarization energy

A very important term in the energetics of point
defects is the polarization energy. The sign of the po-
larization energy is the opposite of that of the Cou-
lomb energy term. Therefore, the polarization term
reduces significantly the energy needed to remove an
ion from a lattice. It is the importance of this term, its
long-range nature, and the difrculty of evaluating it
that makes the treatment of defects in ionic lattices
much harder than that needed in metals.

The macroscopic polarization induced in a crystal
lattice at a position r from a defect with an effective
charge q is given by the expression

where the polarization, P, is defined as the induced
dipole moment per unit volume of crystal and eo is
the static dielectric constant of the lattice. Equation
13 is the point of departure for all evaluations of the
polarization energy, including the classic work by
Mott and Littleton (1938). However, a simple treat-
ment due to Jost (1960) readily shows the importance
of the polarization energy. The polarization energy
ofa charged sphere ofradius r and charge q embed-

ded in a dielectric continuum with dielectric constant
eo is given by

(14)

(e.g. see Jost, 1960, p. 105, or Jackson, 1962,p. ll5).
In this case r would be the size of the cation or anion
hole and is comparable to an ionic radius. Cohpare
equation 14 to the Coulomb potential in an NaCl lat-
tice at a lattice site:

Eco.t : ,r, UE-t- (15)

where a is the cation-anion distance and 1.746 is the
usual Madelung constant. Since the hole size, r, in
equation 14 is nearly equal to a/2 and eo is approxi-
mately 5, the magnitudes of the terms in equations 14
and 15 are similar. Since the polarization term has
the opposite sign to the Coulomb term, it cannot,
therefore, be ignored in evaluating the overall ener-
getics of the defects.

In a more correct treatment (see next section),
equation 13 is used to compute the total electric field
at any point in the lattice (which includes a contrihu-
tion from the induced dipole moments) and then the
induced dipole moment is calculated at that point
(self-consistently). This induced dipole moment will
then yield a potential energy at the defect site. Sum-
mation of all the potentials yields the polarization
energy.

Application to defects in forsterite

Forsterite is a relatively simple orthorhombic or-

thosilicate with a reported space group of Pbnm
(Hazen, 1976). The structure consists basically of an

almost ideal hexagonal close-packing of oxygen

atoms with Mg filling l/2 of tbie octahedral sites and
gi filling l/8 of the tetrahedral sites' There are two

crystallographically distinct octahedral sites, Ml and

M2, one tetrahedral site, and three crystallographi-
cally distinct oxygen sites, Ol, C2, and 03. The Ml

site is a center of symmetry for the structure and the

M2 site lies on a mirror plane (Fig. l).
To convert the structure to a cartesian coordinate

representation we have used the fractional cartesian

coordinates (of Mg-Ml, Mg-M2, Si, 01, 02, and 03

in one unit cell) given by Hazen (1976) for forsterite
at I atm and 1000"C. (The unit cell contains 4

MgrSiOo molecules.) The Madelung energy term at

each site in forsterite is calculated using equation 7.

The results, which are given in Table l, are verified

Epor", : -r/2{ 
(t 

- 
*)

P:*('-il+ (r3)
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Fig. l. Olivine structure parallel to (100) plane. Small open
circles Mg atoms at x: zero; small solid circles Mg atoms at x = 1.
Radial lines on small circles designate the Ml octahedral sites. Big
circles are oxygens. Si atoms, at @nters of tetrahedra. are not
shown. (Redrawn from Deer et al., 1962.\

to be independent of4 as a check on the calculations.
The numbers given are the Coulomb potentials at the
particular site in units of e'/l A. Thus, the Coulomb
energy of a Mg2* ion at an Ml octahedral site is
(+2X-1.590556) : -3.181| e'/A. Since e'zlA :
14.3990 ev, the energy is V*,, (Me-Ml) : 45.8048 ev.
Using the potentials ry'" from Table l, we easily obtain
the lattice Coulomb energy of the crystal from the
equation:

e 2 -
Er"rco: - 

iX 
l /2 |  z" lr ,

: (-14.3990 ev) t/Z [2(-1.590556)
. + 2(-r.712426) + 4(_3.273312)

+ (-2)(1.e08726) + (_2X1.e01546)

+ 2(-2)(1.826216)l : 249.280 ev
:5758 kcallmole

This calculation shows that the Coulomb lattice en-
ergy is in reasonable agreement and indeed makes up
a major portion of the whole lattice energy extmpo-
lated from experiments: 4927 kcallmole (Urusov,
1965). The Coulomb energy is higher since we musr
subtract the repulsion energy. Note that we multi-
plied the 03 potential energy by two since there are
two 03 oxygen atoms in one formula unit of
Mg"SiOo.

Polarization energy

Removing an ion from a crystal lattice site is "cou-
lombically'' equivalent to addi.g a charge of oppo-
site sign to the site, that is removing a Mg'* ion is the
same as inserting a -2 charge in an Mg site. If we
place a charge Q on a given site (or on an interstitial
site), we will obtain first of all an energy due to the
Coulomb interactions of the charge with all of the
other ions in the crystal. The calculations of this en-
ergy follow directly from the data in Table l. How-
ever, the extra charge Q also induces a dipole mo-
ment on all the ions in the crystal. This effect arises
since the symmetry of the crystal is broken by the
charge, leading to the existence of a net electric field
at each ionic lattice site. The electric field, E, in a
continuum of static dielectric constant, eo, at a dis-
tance r from the charge Q is given by (Q/e.rr) f
(where f is a unit vector pointing from the charge Q
to the position in question at a distanc€ r). The mac-
roscopic polarization in the medium, P, is therefore
given by (Jackson, 1962, p. 109):

(16)

P::#('_ il,
We must use the static dielectric constant in equation
16 since the electric field is static. This means that the
induced dipoles in the lattice are the net result of
both electronic dipole moments and dipole moments
resultirg from the induced ionic displacements. We
treat €o as a scalar in this paper; in a refinement, we
would have to take into account slight variations of eo
with crystallographic direction due to the tensorial
nature ofthe dielectric constant.

The quantity needed to obtain the polarization en-
ergy is the actual induced dipole on each ion, p,oo, as
a result of the introduction of the defect charge, e.
The induced dipole on an ion is given by tle usual

Table l. Coulomb potentials-forsrerite (units of e2/A)

lon

P:  
t o , -  I  

E
4n

v
a

Mg-M1
l,lg-142

S i

-  1 . 590556
- t .7t2426
- 3.2733L2

L.908726
1 .901546
t.8262L6

01

0 3
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formula involving the total ionic polarizabilities and
the total electric field:

Pioo: di E., (17)

(We will also treat the polarizabilities as scalars.) E.,
in equation l7 is the total electric field at the site of
the ion: it is the sum of the electric field from the
charge Q and the electric field from the induced di-
poles themselves. If N is the number of formula units
per unit volume, then the polarization of forsterite
(dipole moment per unit volume) is simply:

P: N(2p." + pst + 4po) (18)

Since there are 4 formula units of forsterite in the
primitive unit cell, N : 4/(abc). Therefore, using
equations 17 and 18:

P:  +  (2a- "4cs1 i4do)E,o ,

Solving for E-. from equation 19 and inserting into
equation 17:

d r  e  l , _ l \ *
0 """ + ""rF 4 "") 4 rtl'- el'

(20)

We have replaced P in equation 20 by the expression
in equation 16.

Equation 20 gives the induced dipole on ion i at
each lattice site. From a knowledge of the dipole mo-
ments, pr, the calculation of the polarization energy is
straightforward; we simply add all the potential
eneryies at the position of the charge Q due to the ex-
istence of the induced dipole moments. The potential
of a dipole p a distance r away from the dipole is
given by the formula

Vor**: 1t c,osfl/f (2r)

where d is the angle between the vector p and the
vector r (Karplus and Porter, 1970, p.251). Since all
the dipoles point towards Q in this approximation
(use of scalars), the vectors ;r and r are parallel and
thus d : n. Therefore equation 2l reduces to Vu,*,. :
- p/f . The total polarization energy is obtained by
summing over all the ions:

V!i"": -

Inserting equation 20,

V*r"..: - a +

M.=-- 3 - l l t -11 e3)"" 
- 

(2o*"* c5; * 4as) 4nl' .o,

The sums in equation 22 are over the distances from

Q to all the ions of the particular type (e'S-l.r. the first

sum all Mg ions). The evaluation of the )(1,/r") terms

by direct summation is not as hard as evaluating the

Coulombic term. Hence we have carried out a direct

summation in our calculations of the dipole sums'

The results are shown in Table 2.
Before proceeding, we should mention a few of the

important expressions relevant to the terms used in
the final polarization equation 22.TtLerc is an impor-
tant relation between the ion polarizabiliti€s' <r1' orrd
the crystal dielectric constant, eo, which for crystals of
high symmetry is termed the Clausius-Mosotti rela-

tion. In the presence ofhigh-frequency electric fields
(e.g. visible light) the net induced dipole moment of
the crystal per unit volume (polarization) only arises
from the induced electronic dipoles on each ion. This
gives rise to the high frequency dielectric constant, e-

[e.g. see Kittel (1956, Ch. 7) for a detailed account].
The polarizabilities involved are the electronic po-

larizabilities of the ions, c". The relationship between
e- and a" is derived in several standard texts (for a
good exposition see Karplus and Porter, 1970, p.

250). The result, in the case of forsterite, is

Q4)

where V is the molecular volume of forsterite and
di,rg2sioa is the electronic polarizability of one forste-

rite formula unit and is given bY

dfug,sioa :2 a'u"* c!; * 4 a! QS)

Table 2. Dipole sums-forsterite [>(l,/y') in A{]

l i lt of r'r-ut Ms-M2
d e t e  c  t

.[r",,n i.M* x i*r" ] i] e2)
where

abc
l[t: 4

\. l',
at

vr.@, : -,-, abc y. --------s- ! lt - 1\ I il::ill 3:39119 3:3lil? 3:33ii9 3:13331 3.139?L 3'J1?3:''Portr Y 4 I (2au"*a",+4o')4trl' 6l 'l 3i 3:??i39 3:?33i1 3:!ilii 3.3',21t l'j:,11i 3:i?33i
which we can rewrite (using Mott and Littleton's no- Z1 3:i3?3i 3:13111 S.iZlZZ ',.Zzgit 3.3:';"i 3:ili|i
tation) as:



This relationship (equation 24) and the assunption
of universality for polarizabilities allows us to obtain
the electronic polarizabilities from the high fre-
quency dielectric constants, which are known for
most crystals (e.9. from the index of refraction). In
turn, the electronic polarizabilities of the ions (equa-
tion 25) are also reasonably well known (see Tess-
man et al., 1953). We should note that the polariza-
bi l i ty of  oxygen in part icular seems [o vary
depending on the crystal structures. This effect may
be partly due to covalency effects.

However, we do not have an oscillating electric
field but a static field due to the presence of a
charged point defect. In this case, the atonic dis-
placenents of the ions due to the presence of the
charge become important. (For fast frequency fields
the net force on an ion over a vibrational period is
zero!) This adds a new component to tle net dipole
moment, namely the dipole due to ionic dis-
placement. Thus the correct polarizability, a', is the
sum of the electronic and displacement terms

ct  :  c ' *  cd

The new bigger polarizabilities lead to a new and
higher dielectric constant, the static dielectric con-
stant, eo. Analogous to equation 24:

# 
: fi r"l^"+ cg, + 4a[) Q7)

Unfortunately, there is a gap in knowledge of the
static dielectric constant. Thus, the value is not
known very well even for forsterite. We are in the
process of carrying out detailed measurements of €o
as a function of temperature and pressure for a vari-
ety of important silicates. However, based on similar
compounds, the static dielectric constant is expected
to be in the range 6-8 (Cygan and Lasaga, 1979).
More work needs to be done to measure and charac-
terae e. as well as to evaluate the systematics of the
{ (e.S.Roberts, 1949; Agawal et al.,l9Z7; Shanker
et al., 1977, 1978). Without proper data on the di-
electric constants ofvarious silicates, it is hard to nar-
row down the values of the total polarizabilities of
the individual ions, cl which are needed in equations
19, 20, and 23.'We must, in fact, test the additivity
and universality assumption, which is used in equa-
tion 27.
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this paper, we will furthermore vary the value of the
various polarizabilities to investigate the possible ef-
fect that this uncertainty has on the calculated ener-
getics of point defects. We will also give the resulting
dielectric constant, eo, computed from the polatua-
bilities and equation 27.

Short-range potential

To calculate the short-range part of the potentials
for the O-O and Mg-O interactions in forsterite, we
have used the electron gas approximation, including
both the Yamashita-Asano (1970) and the Watson
(1958) models for the oxygen anion. Although some
covalency is present even in the Mg-O bond (for a
recent discussion of bonding in MgO see Buko-
winski, 1980), we expect these interactions to be
largely ionic.

The problem arises with the treatment of the much
more covalent Si-O bond. We did not use an elec-
tron gas model for this interaction; instead, we chose
a Born-Mayer type potential

Q6) Vs,-o : A exp[-(rr,"/p)] (28)

where A and p are constants, which must be deter-
mined. At this stage the simplest path is to at least
choose the repulsive potential in such a way that
within the electrostatic model we reproduce some of
the most important features of the Si-O bond.
Within this scheme, the entire potential describing
the Si-O bond in the crystal is given by:

V,o,: V-r.-b * V"r-

R c z
V,o,: - ?+ Aexp[-(r/p)] (29)r

The frst term is the Coulomb attraction of the ions,
and the second term is the short-range repulsion.

Two inportant physical properties of the Si-O
bond are the equilibrium distance, obtained from X-
ray measurements, and the stretching force constant,
obtained from infrared and Raman spectroscopy.
The A and p parameters in equation 29 are then cho-
sen to ensure that the potential satisfies these crystal
data, i.e.

dV 8e2 A
dr:  , ,  

--exp[-(r /p)]

We can, however, make a good start by using val- : Q when r: ro : 1.62A
ues for the crDs obtained from other ionic crvstals
Some preliminary work by Cygan and tasagi ittr) +:- {g * 4 

" 
exp [-(r/p)]

gives credence to the additivity rule and supports the 
(Ir r p-

general range of values used for the polarizability. In : F : Force constant
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- 4.4 mdyne/A (see Basile et al., 1973; Devarajan
and Funck, 1975). With these two conditions, the Si-
O repulsion is given by

V'!'I-o : 474 exp [-(r/.53)] ev (30)

Note that in computing the repulsive potential, we
now include only Si-O pairs which are directly
bonded. The summation is not limited in this way for
the electron gas Mg-O or O-O interactions, although
the most dominant contributions are from nearest
neighbors. In the calculations any possible repulsion
between the silicon and magnesium ion has been ne-
glected.

Results

We can combine the various terms derived in the
previous sections for forsterite and compute the over-
all energy needed to remove the ions from the vari-
ous lattice sites in forsterite. For an ion of charge 2,,
the Coulomb potential at the ion's site would be 4V,,
where V, is given by equation 7 and shown in Table
l. This quantity is the Coulomb energy needed to
take the ion out of its structural site and remove it to
infinity. However, this is not the Coulomb energy
needed to form the vacancy, since in this case the ion
is on the surface of the crystal. At the surface, we
now regain half of the Coulomb energy since the ion
is surroundedby Vz of its usual neighbors. Therefore,
the net Coulomb energy needed to form the vacancy
isr/z z,*r. The same reasoning applies to the polariza-
tion and short-range energy terms. Hence the net en-
ergy needed to form the vacancy ofion i is given by

F,i: thlzrY-",(i) * z1V*w(D - V.."(Dl (31)

where V*".(i) is given by equation 22, Q: -zr, and
V,.o(i) is the repulsion energy of ion i with all its
nearest neighbors. Table 3 shows the size of each
term in equation 3l for each type of Mg and O ion in
forsterite as well as the overall energy, E,. We have
chosen a particular set of ionic total polarizabilities,
aJ, for Table 3, which giyes a static dielectric con-
stant, €o, of 6.M from equation 27. The Yamashita-
Asano 02- potential was also used in the electron gas
calculations.

Table 3 points out explicitly some of our earlier
comments. First, the repulsion energy for the magne-
sium ions is only llvo of the Coulomb energy. This is
a typical result. On the other hand, the polarization
energy is a significant fraction of the Coulomb en-
ergy. We have already commented on the necessity
to include this term. An important point is that the
energy differences between the sites (e.9. Ml and M2

Table 3. Defect energies in forsterite"

Si te v  -  (ev)
cour

uool( . t )  v . .p( t t ) , , b
toc

Mg-M1 45.8049
Mg-M2 49.3L43

0 -1  54 .9676
o -2  54 .7608
0-3 52.59L5

3 3 . 5 1 0 3  4 . 5 8 7 2  7 . 7 0 7 4
32 ,3256  4 .L799  12 .8088

25 .9265  26 .2L77  2 .8234
26 ,3449  25 .506L  2 ,9098
25 .1  443  25 .6634  1 .1838

a  
a y r = O ' 9 1 '  a r r = 0 ' 2 0 ,  a o = Z ' 3 9 '  e o = 6 ' 4 4 '  Y a m a s h i t a -

Asano 02-  used in  the  ca lcu la t ions .
bThe actual energy needed to remove the lon is half

this amount as explained in the text.

sites) depend on differences in all three energy contri-
butions. The repulsion energy for oxygen is a much
bigger fraction of the Coulomb energy than in the
case of magnesium. The reason is that the Si-O bond
is partly covalent and was modeled by fitting the
Born-Mayer potential to the bond properties. In fact,
it is surprising and encouraging that the absolute size
ofthe energies needed to form oxygen vacancies is so
close to what is expected! (Remember we did not pa-
rameterize the size of V.,-o in equation 28.)

Clearly magnesium vacancies alone or oxygen va-
cancies u1s1e ssnnot exist in the crystal, since this
would result in a net macroscopic build-up of charge.
Hence, in ionic crystals the effective charge of a
newly-formed vacancy must be balanced by forming
other vacancies (Schottky defects) or by the forma-
tion of interstitials (Frenkel defects). We ignore here
the formation of electron holes or particles. An im-
portant type of defect in forsterite, therefore, is the
formation of "MgO" Schottky vacancies, that is the
simultaneous formation of a magnesium and an oxy-
gen vacancy. The overall energy needed to form the
various MgO Schottky defects in forsterite (E-' +
Eo) is also included in Table 3. The types of energies
obtained in the table are in the right range for the
energies expected. For example, the Schottky forma-
tion energies for periclase, MgO, have been esti-
mated at 5+l ev (Yamashita and Kurosawa, 1954)
and at 6.6 ev (Barr and Lidiard,l97l).

Table 4 gives the overall energy for the MgO de-
fect formation under various total polarizabilities,
c's, and various O'- potentials. Note that the oxygen
anion has the largest total polarizability, as expected
from its large size. It also largely controls the size of
the dielectric constant and the polarization term for
the same reason. While Sia* would have a negligible
electronic polarizability (see Tessman et al., 1953)' it
does have a small total polarizability due to the ionic
displacement contribution.
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1 / 2  v ' " ' r e v )
^2-r  roo" ,  \ ,  os i  oo .o Mg-M1 Mg-M2 0t

6 . 3 1  3 . 8 9

6 . 3 1  7 . 2 5

6  . 2 5  3 . 9 0

6 . 2 5  7 . 2 7

6 , 4 4  3 . 8 5

6 . 4 4  7 . 2 2

6 . 0 4  3 . 9 0

5 . 0 5  4 . 8 2

Y a M s h i t a  0 . 9 1  0 . 1 0  2 . 3 9

w a t s o n  0 . 9 1  0 . 1 0  2  3 9

Y a n e s h i t a  0 . 9 f  0 , 0 5  2 . 3 9

w a t s o n  0 . 9 1  0 . 0 5  2 . 3 9

Y a n a s h i t a  0 . 9 1  0 . 2 0  2 . 3 9

W a t s o n  0 , 9 I  0 . 2 0  2 . 3 9

Y a m a s h l t a  0 . 8 0  0 . 1 0  2 . 3 9

Y a n a s h i t a  0 . 9 1  0 ,  I 0  2 . t O

Table 4. Energies needed to remove ions in forsterite region. This has been shown to be true in periclase
(Wuensch et al., 1973). However, we can predict that
the cation vacancies formed (either thermally or due
to a charge imbalance such as with Fe,*) will prob-
ably be in the Ml octahedral sites.

Note that the predominance of Ml vacancies ex-
pected from the calculations has direct bearing on
the diffusion behavior in forsterite. Since the Ml sites
line up in a row along the c direction (see Fig. l), Ml
vacancies should facilitate diffusion along the c axis.
On the other hand, for an Mg atom to move along
the a or D direction, it would have to hop alternately
from an Ml to an M2 site. Since there are much
fewer M2 vacancies, diffusion along the a or b drrec-
tion should be harder. In fact, experiments have
shown this marked diffusion anisotropy in olivine
with the energy of activation for D., E, being much
less than E. or Eo (see Buening and Buseck, 1973;
Misener, 1974). Hence the calculations yield an un-
derstanding of the observed diffusion anisotropy.

The reasonable results obtained here suggest that
the migration energies may also be obtained by the
model. Obviously, in this case the repulsion potential
will play a bigger role, since the ions will come into
closer contact. We are now carrying out such calcu-
lations. The migration energy will be directly related
to the observed difusion activation energy for olivine
in the case of extrinsic diffusion. This will therefore
be an important use of this model in geochemical ki-
netics.

The energy differences obtained here between the
Ml and M2 sites are also directly related to cation
exchange calculations. Obviously in this case we
would have to compute the energies needed to take
out a second type of ion (e.g. Fe2*) from the Ml or
M2 sites and then take the appropriate differences.
The total polarizability of the different ions in miner-
als becomes, of course, a very important parameter to
evaluate for these calculations. For transition metal
ions, though, crystal field energies may have to be
added besides the polarization and repulsion terms
developed here. There are now methods using ap-
proxinate ab initio molecular orbital theories, which
can be used to obtain these crystal fields @allhausen,
r977).

Finally, the oxygen vacancies are important in the
oxygen di-ffusion. Reddy et al. (1980), using proton
activation techniques, found an energy of activation
for oxygen diffusion in forsterite of 89+3 kcallmole
or 3.9 ev. Anion diffusion in this case may be con-
trolled by both the formation and 1[s migration
energies ofthe vacancy. Since the relation

6 . 4 3  1 . 6 1

3 . 9 4  0 . 6 2

6 . 4 4  7 . 1 1

3 . 9 6  0 . 7 2

6 . 4 t  1 . 4 1

3 . 9 2  0 . 4 3

6  . 4 3  1  . 8 1

7 . 3 4  2 . 0 9

t . 6 4  0 . 7 8

0 . 5 8  0

1 .  7 3  0 . 8 7

o . 6 1  0 . 0 5

r . 4 5  0 . 5 9

0 . 4 0  0

1 . 8 6  0 . 9 8

2 . t 7  L . 2 6

Note that the two different oxygen potentials
(Yamashita-Asano and Watson) yield different sizes
for the total potential. The Watson Or- density al-
ways gives much lower energies for vacancy forma-
tion and in some cases gives unreasonable numbers
for the 03 vacancy formation energy. On the other
hand, Cohen and Gordon (1976) obtain somewhat
better equations of state with the Watson charge den-
sity.

There are some important results from the num-
bers in Tables 3 and 4. Table 4 shows that the ditrer-
ences in the energies needed to form the different va-
cancies (le. between Ml and M2 or Ol and 03) are
significant. Thus the most stable MgO vacancy pair
would be an Mg(Ml)-O3 vacancy pair. The most un-
stable vacancy would be an Mg(M2)-Ol Schottky
defect. In fact, the stability ofthe possible vacancies
decreases in the order;

Mg(Ml)-o3 > Mg(Ml)-o2 > Mg(Ml)-ol

> Mg(M2)-o3 > Mg(M2)-oz > Mg(M2)-ol (32)

Table 4 shows that the sequence in equation 32 is not
altered by reasonable variations in eo and in the ionic
cf's, although the actual energy differences between
the defects do vary. Defects involving Mg-M2 tend to
require 2 to 3 electron volts more energy to form than
defects involving Mg-Ml. Thus the predominant Mg
vacancy should be Mg-Ml and the predominant O
vacancy should be 03.

If the "MgO" defect formation energies are indeed
around 6 ev's, then it suggests that cation diffusion
will be largely controlled by impurity-induced va-
cancies (le. extrinsic diffirsion). In the case of olivine
these impurities are most likely Fe3* ions and the dif-
fusion will be dependent on ./o., which is indeed the
case @uening and Buseck, t9l3; Stocker, l97gb).
Even in the case of pure forsterite, we expect minor
impurities to limit the cation diffirsion to the extrinsic
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)L'J",*" : exP [-(E"/RT)]

must always be satisfied, the presence of an impurity
controlled (and therefore constant) X",." leads to a
sinple dependence of X,,o on temperature. E" is the
Schottky formation energy, i.e. tt,Le energy given in
Table 4. Therefore the energy of activation for oxy'
gen di-ffusion must include both E" and the migration
energy, if the diffusion is intrinsic, and must also be
greater than E". If the values for the oxygen migra-
tion energy are low, the experimental value of 3.9 ev
is in reasonable agreement (although somewhat
lower) with the values obtained in this paper for the
"MgO" Schottky formation energies, E". However, if,
as is more likely, the migration energy is at least l-2
ev, the experimental value is substantially less than
expected. We expect the migration energy to be at
least l-2 ev, since Misener (1974) obtained an activa-
tion energy for magnesium difusion of 2.64 ev (for T
greater than ll25'C) and 1.36 ev (T less than
ll25'C) along the c axis of forsterite. Since magne-
sium diffusion is expected to be extrinsic, these val-
ues reflect the migration energy for magnesium di-ffu-
sion. Hence we expect the oxygen migration energies
to be at least in the same range. We therefore suggest
that the oxygen diffusion measured is extrinsically
controlled or is occurring along dislocations.

SummarY

We have developed the basic theory needed to un-
derstand the formation and migration of defects in
"ionic" silicates. Although more work needs to be
done in rsfining the model and in particular the
treatment of the silicon-oxygen bonds, the results ob-
tained are encouraging. The computed absolute val-
ues of the energies of formation are quite reasonable
when compared to results from similar crystals. The
ordering of site vacancies in forsterite according to
predicted stability (Ml > M2; 03 > ol or 02)
should be important in understanding the atomistic
dynamics (e.g. ditrusion) in olivines. For example,
the results obtained here are in complete agreement
with the observed di.ffusion anisotropy in olivines.
The type of model developed here will also be used
in carrying out molecular dynamical calculations in
olivines and in s$hining migration energies for ions
in the crystal (and hence activation energies). Exten-
sions of the model to the understanding of site pref-
erenoes in a crystal should be important, although
ligand field calculations must also be performed if
transition metal ions are involved.
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