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Abstract

We have examined experimental data for reactions among anthophyllite, enstatite, forster-
ite, quartz, talc, and water, using linear programming methods, in order to examine the range
of internally consistent thermodynamic data sets that is permitted by the experiments. Phase
diagrams calculated using the derived thermodynamic parameters may have all topologies
previously proposed to describe the anthophyllite stability field as well as others. Depending
upon the experimental data analyzed, phase diagrams in close agreement with
calorimetrically measured thermodynamic parameters may have the topology originally pro-
posed by Greenwood (1963) or the topology he sketched (Greenwood, 1971) in revising his
original ideas. The experimental data of Chernosky (1976) and Greenwood (1963) appear not
to be consistent with the available calorimetric data for the above minerals within their stated
uncertainties. This discrepancy is most easily explained if there exists a major difference be-
tween the properties of talcs used in the experiments and that used for calorimetric measure-
ments or if the calorimetric measurements are incorrect. A similar difference in the properties

of anthophyllite may also be indicated.
Introduction

Greenwood (1963) demonstrated for the first time
that the orthorhombic amphibole, anthophyllite, has
an extensive stability field in the system magnesia-
silica-—water. Using thermodynamic data and the re-
sults of his experiments, he suggested that the stabil-
ity of anthophyllite was limited at both low and high
temperatures by dehydration reactions and that the
stability field terminated at about twenty kbar by the
anhydrous decomposition of anthophyllite to ensta-
tite plus talc (Fig. 1).

Chernosky (1976) and Hemley er al. (1977a, b)
have made new experiments in the system magnesia—
silica-water. Chernosky (1976) combined his data
with experiments by Skippen (1971) and Greenwood
(1963), and favored the topology illustrated by
Greenwood (1963); he suggested, however, that the
anthophyllite field might terminate at pressures as
low as five kbar. Chernosky recognized some appar-
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ent inconsistencies between his experiments and
Greenwood’s, and suggested that a phase diagram
topology in which anthophyllite stability terminated
at low pressures might be required in order to resolve
these discrepancies. Hemley et al. (1977a, b) reported
equilibrium temperatures at one kbar for several re-
actions in the system magnesia-silica-water. They
calculated a phase diagram using these temperatures
and thermodynamic data, some of which were de-
rived from the experiments. This diagram, Figure 2,
appears to contradict that favored by Chernosky
(1976) and Greenwood (1963).

Chernosky and Knapp (1977) have reported addi-
tional experiments and have concluded that the an-
thophyllite field is best described by the phase dia-
gram proposed by Hemley et al. (1977b).

Any attempt to decide between alternatives should
proceed with a clear idea of the uncertainties in-
volved. Toward this end, we have investigated the
possible thermodynamically consistent phase dia-
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Fig. 1. Topology of equilibria in the system MgO-SiO,-H,0
proposed by Greenwood (1963).
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Fig. 2. Topology of equilibria in the system MgO-SiO,-H,0
proposed by Hemley ez al. (1977b).
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Fig. 3. Molar composition of minerals in the system MgO-
Si0,-H,0.

grams that satisfy the experimental data. Using linear
programming methods (Gordon, 1973; Day and Ku-
min, 1977, 1979; Halbach and Chatterjee, 1978), we
have derived limiting sets of internally consistent
thermodynamic parameters from the experiments
and have used these parameters to calculate ther-
modynamically consistent phase diagrams that pass
through all experimental brackets from which the pa-
rameters were derived. We have made a special effort
to separate consideration of what the experimental
data by themselves permit from the possible further
constraints of calorimetric data on permissible phase
diagrams. We emphasize an analysis of experiments
reported by Chernosky (1976) and Chernosky and
Knapp (1977), because these data place more critical
constraints on the possible phase diagrams, inde-
pendent of other thermodynamic assumptions, than
either the experiments of Hemley et al. (1977a,b) or
Greenwood (1963).

We will show that several phase diagram to-
pologies are permitted by the experiments, but the
one that seems to fit the experimental data best has a
topology first suggested by Greenwood (1971). On
the other hand, the best agreement with calorimetric
data is found when the phase diagram has a topology
similar to that proposed by Greenwood (1963).

The phases with which we are concerned are illus-
trated in Figure 3, and some of their properties are
documented in Table 1. The equilibria are listed in
Table 2 along with equations of linear dependence
by which these reactions are related.

Methods of thermodynamic analysis

The approach we have followed is based on the ex-
tensive discussions of Chatterjee (1970, 1977), Fisher
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Table 1. Composition and properties of substances in the system magnesia-silica-water

PHASE COMPOSITION VOLU'MEl HEAT CAPACITY COEFFICIENTS z H;, S;‘
(cm3) A B c (@) J/K)
Anthophyllite (A) Mg7Si8022(OH)2 264 .46 842.513 163.121 -221.502 —120830593
(821.403) (182.088) (-196.481) + 8088
Enstatite (E) MgSiO3 31.47 102,717 19.832 - 26.276 —291.1394
+ 2,449
Forsterite  (F) Mg,8i0, 43.79 149.829  27.363 - 35.648 - 2170166°  -398.995°
+ 1918 + 0.882
o Quartz Q SiO2 22.688 46.944 34.309 - 11.297 = 9106485 —182.4895
+ 1674 + 0.125
B Quartz 60.291 8.117
Talc (T) Mg35i4010(0H) 2 136.25 414 470 100.126 -109.370 —59162007 -1273.0825
+ 7200 +  0.844
Hydrogen H2 27.280 3.264 - 0.502
Oxygen O2 29.957 4,184 - 1.674

lFormula unit volumes are taken from Robie and Waldbaum (1968) except for anthophyllite, which was given by

Greemwood, (1963).

The value for enstatite is for the monoclinic form.

2Most Heat capacities have been recalculated from Kelley (1960). Values for talc and anthophyllite are discussed

in the text. |
T+ C (105 T2 (J/X).

Values in parentheses are calculated from Table 3, Hemley and others (1977b).

Cp = A+ B (103

3Weeks (1956) . Includes a correction of about 47 kJ for the iron content of the amphibole. We made an additional
correction of about 4.5 kJ for the calcium content, assuming it was present as tremolite.

b . ] o
This entropy is for clinoenstatite.
not much different.
limits on the entropy of formation of orthoenstatite.

5Robie and Waldbam, 1968.

°

6Based on unpublished value of Gf

listed above.

Zen and Chernosky (1976) have argued that the entropy of orthoenstatite is
We have arbitrarily increased the uncertainty by 2 J/°K in order to estimate permissable

by Hemingway and Robie, as reported by Zen and Chernosky, 1976, and the entropy

7
Zen and Chernosky (1976) based on data originally reported by Barany, 1963.

and Zen (1971), and Zen (1969, 1972). These authors
have shown that the equilibrium conditions for a de-
hydration reaction may be written (see Table 3 for a
summary of notation)

AG(T,P) = AH,}(298,1) — TASJ(298,1) + G'(T,P)

1)
where the last term is
T T
G'(T,P) = / ACp,dT — T/ ACp,/TdT
298 298
+AV(P—- 1)+ n,G(T,P) )]

This statement of the equilibrium condition ignores
the possible effects of thermal expansion and com-
pressibility on the solids but is otherwise exact.

If the volumes and heat capacities of the solid
phases are known, these data may be combined with
the properties of water (Fisher and Zen, 1971) in or-

der to calculate the value of G'(T,P) at the temper-
ature and pressure of any experiment and to place
limits on the enthalpy and entropy of the reaction.
Most hydrothermal experiments lie in the stability
field of either the products or the reactants. In the
first case, AG(T,P) < 0, and in the second, AG,(T,P)
= 0. Therefore, if the products are stable in an exper-
iment,

—AH(298,1) + TAS,(298,1) = G(T,P) 3)

Table 2. Reactions and equations of linear dependence in the sys-
tem magnesia-silica-water

RL. (TEQW) T =3 E+Q + W R5+ 3R4 ~ 7 Rl =0
R2, (TFEW) T+ F=5E+W R4+ R7 - Rl =0
R3. (AFEW) A+ F =9 E +W R2- R3- R7=0
R4. (AEQW) A =7 E+Q+W 9R2~ R6-5R3=0
R5. (TAQW) 7T =3A+4Q+4W R& - R3 - RYI =0
R6. (TFAW) 9 T +4 F=5A+4W 9R -7R3- RIO=0
R7. (TEA) T+ 4 E =A 2R6 +5RI0 -9 R8 =0
R8. (TFQW) 2T =3F+5Q+2W R10 - 2 R11 - R8 = 0
R, (EFQ) 2E =F +Q

RIO. (AFQW) 2 A =7F +9Q+ 2W

Rl1. (AFTQ) A=2F +T+20Q
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Table 3. Thermodynamic notation

T,P Temperature (K), Pressure (bars)

HE Standard state enthalpy of formation from the elements
I/ gfw)

SE Standard state entropy of formation from the elements
(J/K-gfw)

Heat capacity of formation from the elements (J/K-gfw)
o A
% Gf’ HZO(T’]') + GHZO(T’P) - GHZO(T’]') (Fisher and Zen, 1971)

T subscript indicating "of reaction".

s subscript indicating "due to solids in reactions".

and if the reactants are stable, the inequality must be
reversed. All values of delta H and delta S satisfying
such an inequality lie in a closed half-space in an en-
thalpy—entropy graph. If at least three such inequal-
ities are available, it is possible to describe a bounded
portion of enthalpy-entropy space that contains all
thermodynamic data sets satisfying the experiments.

The permissible solutions for the enthalpy and en-
tropy of the solids in reaction TEQW (Table 2) are il-
lustrated in Figure 4. The thermodynamic parame-
ters that satisfy the four limiting TEQW experiments
(nos. 1, 2, 5, and 8, Table 4) are restricted to the
shaded region known as a feasible solution space.
The calculation procedures will be discussed in more
detail at a later point in the paper. For now it is only
important to note that vertices a and b in Figure 4
define the maximum and minimum permissible val-
ues of enthalpy and entropy that are consistent with
the experiments. However, these vertices do not de-
scribe particularly useful uncertainty ranges, because
the values of enthalpy and entropy may not be com-
bined independently but must lie only in the narrow
feasible solution space. Because any combination of
enthalpy and entropy along line 8 (Fig. 4) may be
used to calculate a P-T curve passing through limit-
ing experiment 8, a phase diagram calculated using
the coordinates of vertex a would pass through both
limiting experiments 1 and 8. Likewise a diagram
calculated using the coordinates of vertex b would
pass through experiments 2 and 5. Coordinates inside
the feasible solution space could be used to calculate
an equilibrium curve that passes between all experi-
mental brackets without intersecting a limiting ex-
periment.

Gordon (1973) pointed out that the concept of a
feasible solution space is easily extended to accom-
modate problems involving several reactions, and
that it is possible to find coordinates in such multi-
dimensional feasible solution spaces using the tech-

niques of linear programming. Gordon (1973), Day
and Kumin (1977, 1979), and Halbach and Chat-
terjee (1978) have outlined the use of this technique
for thermodynamic problems. Briefly, linear pro-
gramming is a procedure by which a set of linear
constraints such as equation 3 may be analyzed to
find an optimal solution according to an objective
criterion. For our problem this means: find a set of
thermodynamic variables that maximizes or mini-
mizes a linear combination of these parameters. In
the general case, a different optimal solution may be
found for each possible choice of the objective func-
tion.

In order to analyze the feasible solution space in
Figure 4, one might choose the objective criteria
(where Z is known as an “objective function”):

maximize Z = AH(298,1)
or
minimize Z = AS,(298,1)

In the first case, the linear programming algorithm
would locate the coordinates of vertex b, and in the
second, the coordinates of vertex a. The other two
vertices could be located by maximizing and mini-
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Fig. 4. The feasible solution space for the enthalpy and en-
tropy of the reaction T = E + Q + W. The experiments on which
these calculations are based are discussed in the text and listed in
Table 4.
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mizing an objective function having a slope between
those of lines 2 and 8 and between those of lines 1
and 5:

Z = AH,(298,1) + 980 AS,(298,1)

Important advantages of the linear programming
approach are, first, that the entire range of per-
missible thermodynamic parameters is accessible for
inspection by the appropriate choice of objective cri-
teria; second, that any constraint on the thermody-
namic variable, such as calorimetric data, that may
be written as a linear combination of the variables
may be added to the problem; third, that the con-
straints provided by experiments may be examined
independently of additional thermodynamic assump-
tions or with such additional assumptions, depending
on the goals of the investigation; fourth, that no solu-
tion obtained can violate any experimental or ther-
modynamic constraint in the data set.

. Data and calculation procedures

The eleven possible balanced reactions among wa-
ter and the five solid phases listed in Table 1 are
given in Table 2. Since there are three independent
reactions, the equations describing the linear depen-
dence of the eleven reactions (Table 2) may be used
to derive all other reactions from any group of three
known reactions, provided that the three also contain
all six phases. The enthalpies and entropies of the
eleven reactions are also related in the same way, so
that eight pairs of similar equations place limits on
the permissible reaction enthalpies and entropies.
These have been mentioned by Gordon (1973) as
“theoretical constraints” and must be added to any
analysis that is written in terms of the reaction prop-
erties.

For our initial analysis we used the hydrothermal
experiments reported by Chernosky (1976) and
Chernosky and Knapp (1977), with one additional
pair of experiments from Skippen (1971). The prop-
erties of the synthetic phases have been documented
by these authors, but it is useful to note that TEM in-
vestigations show the anthophyllites used in these ex-
periments to be disordered with respect to silicate
chain width (Chernosky, 1978, personal communica-
tion). The experiments include two or more sets of
brackets on four of the reactions in Table 2: R1, R2,
R4, and RS5. Since all six phases of interest are in-
cluded in these four reactions, thermodynamic pa-
rameters derived from this set of experiments may be
used to calculate the enthalpies and entropies of the

Table 4. Experimental constraints on the thermodynamic proper-

ties of reactions R1, R2, R4, and RS calculated from Chernosky

(1976), Chernosky and Knapp (1977), and Skippen (1971). GE

and LE mean “greater than or equal to” and “less than or equal
to” respectively.

Constraint on enthalpy and entropy of
reaction

Experimental T and P

nominal expanded

°C bars °C bars T(K) Joules

Rl: T=3E+Q+W

L. 648 500 643 510 — AH(L) + 916.15 AS(1) LE -149502.066
2, 672 500 677 490 - AH(1) + 950.15 AS(1) GE -145582.273
3. 684 867 679 884 - AH(1) + 952.15 AS(1) LE -142364.927
k. 718 1200 723 1176 - AH(1) + 996.15 AS(1) GE -135271.112
5. 729 1800 724 1836 - AH(1) + 997.15 AS(1) LE -133304.650
6. 744 2000 749 1960 - AH(1) + 1022.15 AS(1) GE -129506.475
7. 726 2000 721 2040 - AH(1) + 994.15 AS(1) LE -133338.448
8. 740 2000 745 1960 - AH(1) + 1018.15 AS(1) GE -130075.011
R2: T+F=5E+¥W
I. 600 S00 595 510 - AH(2) + B6B.15 A8(2) LE -153859.748
2. 621 500 626 490 - AH(2) + 899.15 AS(2) GE -150032.677
3. 637 1000 632 1020 - AH(2) + 905.15 AS(2) LE -146425.750
4. 657 1000 652 980 - AH(2) + 925.15 AS(2) GE -143743.821
5. 640 2000 635 2040 - AH(2) + 908.15 AS(2) LE -144326.991
6. 663 2000 668 1960 - AH(2) + 941.15 AS(2) GE -139474.104
7. 662 3000 657 3060 - AH(2) + 930.15 A4S(2) LE -140286.918
8. 692 3000 697 2940 - AH(2) + 970.15 4S(2) GE -134191.658
9. 686 4000 68l 4080 - AH(2) + 954.15 4S(2) LE -136171.632
10. 706 4000 711 3920 - AH(2) + 984.15 4S(2) GE -131510.961
Ré: A=TE+Q+W
1. 673 500 668 510 - AH(4) + 941.15 AS(4) LE -144146.095
2. 687 500 692 490 - AH(4) + 965.15 AS(4) OE -141309.174
3. 719 1000 714 1020 - AH(4) + 987.15 4S(4) LE -134668.035
4. 729 1000 734 980 - AH(4) + 1007.15 AS(4) GE -132083.722
5. 748 1500 743 1530 - AH(4) + 1016.15 AS(4) LE -128886.582
6. 754 1500 759 1470 - AH(4) + 1032.15 AS(4) GE -126742.829
7. 772 2000 767 2040 - AH(4) + 1040.15 AS(4) LE -124262.539
8. 778 2000 783 1960 - AH(4) + 1056.15 AS(4) GE -122046.712
RS: 7T=3A+4Q+4W
1. 645 500 640 510 = AH(5) + 913,15 AS(5) LE -605913.143
2. 699 500 674 490 - AH(5) + 947.15 AS(5) GE -590821.837
3. 690 1500 685 1530 - AH(5) + 958.15 AS(5) LE -564214.430
4. 700 1500 705 1470 - AH(5) + 978.15 AS(5) GE -554109.497
5. 702 2000 697 2040 - AH(5) + 970.15 AS(5) LE ~553376.210
6. 712 2000 717 1960 - AH(5) + 990.15 AS(5) GE -542954.324
7. 720 3000 715 3060 - AH(5) + 988.15 AS(5) LE -537272.066
8. 740 3000 745 2940 - AH(5) + 1018.15 AS(5) GE -520761.649

other seven reactions independently of additional as-
sumptions about the properties of the participating
phases.

Chernosky (1976) estimated that his reported tem-
peratures and pressures are accurate to within 5°C
and 2 percent of the reported pressure. In order to
provide more realistic estimates of the outside limits
on the location of equilibrium curves and in order to
promote interlaboratory comparisons, we have ex-
panded all experimental brackets by these amounts
in opposite directions away from the location of the
equilibrium curves (Table 4). Values of G'(T,P) were
calculated at each modified temperature and pres-
sure, using the data and procedures discussed below.
The 34 experimental temperatures and pressures are
listed in Table 4 along with the values of G’ and the
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Fig. 5. Heat capacity of talc as a function of temperature. The
upper curve represents the equation reported by Krupka et al.
(1977). The lower curve is the Maier-Kelley type equation we
have used.
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implied constraints on the thermodynamic properties
of the reactions.

The molar volumes and high-temperature heat ca-
pacities needed to calculate values of G’ for each ex-
periment are listed in Table 1. The molar volumes
were taken from the references listed in the table.
Most of the heat capacities have been recalculated
from Kelley (1960), but the values for talc and antho-
phyllite deserve special comment.

Krupka et al. (1977) have made new heat-capacity
determinations for talc and have reported their re-
sults for the interval 298.15 K-650 K in the form:
Cp=a+ bT + cT7? + dT? + eT "% Equations of
this form may cause a rapid increase in apparent heat
capacity immediately above the highest temperature
for which data are available, as shown in Figure 5.
Consequently, we have expressed their results as a
Maier-Kelley type equation according to the follow-
ing procedure.

Because we are primarily interested in the integrals
of the heat capacity function (see equation 1), we
made a least-squares regression on values of

i
f CpdT
298
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calculated from the equation reported by Krupka et
al. Unfortunately, the data on which their equation
is based have not yet been published. In order to
provide a better extrapolation above the maximum
reported temperature, we weighted the regression ar-
bitrarily by calculating the integral at 12 equally-
spaced temperatures in the upper half of the reported
interval and at nine equally-spaced temperatures (in-
cluding 298.15 and the mid-point) in the lower half
of the reported interval. Our least-squares fit to these
21 points is reported as a Maier—Kelley function of
the heat capacity in Table 1. Although the weighting
scheme we have used is arbitrary, a different scheme
would not affect our conclusions.

Zen and Chernosky (1976) have pointed out that
the properties of anthophyllite are poorly known.
White (1919) reported six measurements of the gram-
specific heat content at temperatures up to 1160°C
for a material characterized only as “Mag. Sil.,, Am-
phibole.” Goranson (in Birch et al., 1942, p. 230) and
Kelley (1960) have reported Maier-Kelley type heat
capacity functions that fit these six measurements.
Goranson’s function is reported as Joules per gram
and Kelley’s as calories per 100.41 grams (the for-
mula weight for MgSiO,). Either function may be
used to calculate comparable values for the heat ca-
pacity of one formula weight of anthophyllite
(780.874 grams).

The high-temperature entropies used by Zen and
Chernosky (1976) in their analysis of the equilibria in
Table 2 were calculated from the experimental data
of Greenwood (1963) by Mel’nik and Onoprienko
(1969), using the heat capacity function of Goranson.
Hemley et al. (1977b) have used an approximate heat
capacity function that is eight times that reported by
Kelley (1960), implying a formula weight for antho-
phyllite of 803.28 grams. Because the analyzed mate-
rial was so poorly characterized, Hemley ef al. simply
rounded the formula weight ratio, anthophyllite/en-
statite, to eight to derive the approximate heat capac-
ity (Hemley, 1978, personal communication).

Since the studies by Zen and Chernosky (1976)
and Hemley et al. (1977b), new measurements of the
heat capacity of tremolite have been reported
(Krupka et al., 1977) that permit a new estimate of
the heat capacity of anthophyllite. Because of the un-
certainties concerning the procedures and material
used by White (1919), we prefer to use the estimated
heat capacity until new measurements are reported.
The heat capacity of anthophyllite was estimated ac-
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cording to the scheme:
CpIMg;8i;,0,,(OH),]
= Cp [Ca,Mg,Si,0,,(OH),]

+ 4 Cp (MgSiO,)

— 2 Cp (CaMgSi,Oy)

The heat capacity function for tremolite (A =
874.061, B = 149.397, C = —248.112) was derived
from the equation reported by Krupka et al., using
the procedure discussed previously for talc. The heat
capacity functions for clinoenstatite and diopside
were taken from Kelley (1960). The resulting heat ca-
pacity function for anthophyllite is listed in Table 1.
The estimated function produces heat capacities that
are between 10-30 J/°K (2—4%) more positive than
those based on the measurements of White, and are
fortuitously very similar to those based on the ap-
proximate function used by Hemley et al. (1977b).

The values of G'(T,P) (equation 2) were calculated
for each experimentally-determined pressure and
temperature, using a computer program (GPRIMI)
written in FORTRAN (Day, unpublished). The ther-
modynamic effects of the alpha-beta quartz transi-
tion are taken into account by using the heat capacity
functions appropriate for the interval being in-
tegrated and by using the known entropy of the al-
pha-beta transition (1.42256 J = 0.34 cal; Robie and
Waldbaum, 1968). The values of G(T,P) (Fisher and
Zen, 1971) were computed using the subroutines
FFIND and GH20 (Holloway et al., 1971), which are
based on the properties of water measured by Burn-
ham et al. (1969). The calculated values of G,(T,P)
agree well with those reported by Fisher and Zen
(1971) except in P-T regions near the limits of the
polynomial functions used in the subroutines.

The 34 experiments in Table 4 combined with
eight pairs of linear dependence equations (Table 2)
are sufficient to describe the feasible solution space
containing all combinations of enthalpy and entropy
of reaction that are compatible with the experimental
data. This feasible solution space has 22 dimensions
corresponding to the enthalpies and entropies of the
11 reactions. Any point in this feasible solution space
is defined by 22 coordinates, and each such point cor-
responds to an internally-consistent set of thermody-
namic parameters that satisfies the experimental
brackets. The only thermodynamic assumptions im-
plicit in any such feasible solution are those required
to calculate the values of G'(7,P) (equation 2).

i 700 800
TIC)

Fig. 6. Phase diagram having the minimum possible entropy of
reaction TFAW.

We have examined some limiting sets of ther-
modynamic parameters from this feasible solution
space in order to investigate the range of permissible
phase diagrams. For each of the eleven reactions in
Table 2, we defined two objective criteria:

maximize Z = AS,(298,1)
and
minimize Z = AS,(298,1)

These objective criteria were used to locate a feasible
solution, using a linear programming routine devel-
oped and written by H. Halbach. Details of this al-
gorithm will appear as part of his doctoral dis-
sertation at Ruhr Universitit-Bochum, but the
results were found to be compatible with those
reached using other systems available in most com-
puting centers. Some of the 22 objective criteria de-
fined above are satisfied at the same point in the fea-
sible solution space, so that we found only 12 unique
sets of thermodynamic parameters in this fashion.

Each set of thermodynamic data was used to cal-
culate a complete phase diagram from 100 bars to 10
kbar, using a computer program (TEQ) written in
FORTRAN (Day, unpublished). This program uses
the same thermodynamic information as program
GPRIM1 and the values of AH.(298,1) and
AS,(298,1) to calculate the equilibrium temperature
of a reaction at a specified pressure. The computation
is done by an iterative procedure that continues to
test possible equilibrium temperatures until one is
found for which the free energy of the reaction is less
than £1 Joule. Output is a list of equilibrium temper-
atures for the specified pressures.
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6500 700 800

Fig. 7. Phase diagram having the maximum possible entropy
of reaction AEQW.

Results

Some limiting phase diagrams

The 12 unique sets of thermodynamic data pro-
duce only seven phase diagrams that are sub-
stantially different from each other. Five sets of ther-
modynamic data yield phase diagrams that are
topologically identical and geometrically similar to
those shown in Figures 6-12. Each calculated reac-
tion passes between or through the limiting experi-
ments listed in Table 2.

The objective criteria used to find the sets of ther-
modynamic data from which the illustrated diagrams
were calculated are summarized in Table 5. Also
listed are objective criteria that yield the similar
phase diagrams that were not illustrated and criteria

Fig. 8. Phase diagram having the minimum possible entropy of
reaction TFEW.

800

T

Fig. 9. Phase diagram having the maximum possible entropy
of reaction TEQW.

that yield thermodynamic data identical to the 12
unique sets we examined. Note especially that Figure
11 was calculated from a feasible solution that may
be found using any of eight different objective cri-
teria. We have not presented the 12 unique sets of
parameters we located, because these are not in any
sense “best” sets of thermodynamic data but are sim-
ply 12 limiting sets from among an infinite number
that might be found.

Before discussing these diagrams in more detail,
we wish to emphasize that these diagrams are noth-
ing more nor less than possible limiting phase dia-
grams that are constrained only by the experiments
cited and the thermodynamic assumptions in equa-
tion 2. For reasons that will be discussed below, some
of these diagrams are not possible if other geological,
experimental, or theoretical constraints are consid-
ered. The variation in the diagrams reflects primarily
the variability permitted by the width of the experi-
mental brackets.

The limiting diagrams differ primarily in the calcu-
lated location of reaction R7, T + E = A, relative to
the dehydration reactions. Figures 6 and 7 require
that the anthophyllite field terminate at high pres-
sures. Although the calculated pressures of the in-
variant points (Q) and (F) are much lower, these dia-
grams are otherwise similar to the topology proposed
by Greenwood (1963). Figures 8 and 9 are interesting
because they require that invariant points (Q) and
(F) each appear twice in P-T space. In both dia-
grams, invariant point (Q) appears twice in the re-
gion where calculations are possible. Invariant point
(F) appears at very low pressures, in one case slightly
below 100 bars, the lower limit of our ability to cal-
culate using program TEQ. In both diagrams, in-
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TC)

Fig. 10. Phase diagram having the maximum possible entropy
of reaction TFAW.

variant point (F) must reappear at very high pres-
sures of about 15-20 kbar, above the upper limit (10
kbar) of our ability to calculate dehydration reac-
tions.

The upper pressure regions of Figures 8 and 9
have the topology originally proposed by Greenwood
(1963), while the lower portions have the topology
proposed by Hemley et al. (1977b). The complete
topology of these diagrams was originally sketched
by Greenwood (1971).

Figure 10 differs from the others because the cal-
culated location of TEA is at higher temperatures
than the other quartz-absent reactions, so that in-
variant point (Q) no longer appears. The quartz-ab-
sent reaction TFEW is now stable throughout its en-
tire length, while the other quartz-absent reactions
have become entirely metastable.

Figures 11 and 12 are unusual because each per-

-k
B00 700 Bo0
TIC)

Fig. I1. Phase diagram having the minimum possible entropy
of the reaction TEQW (see Table 5).

=)
kbar

600 700 800
TIC)

Fig. 12. Phase diagram having the minimum possible entropy
of reaction AFEW.

mits a stability field for forsterite + quartz. In all pre-
vious diagrams the stability field of this pair is re-
stricted to temperatures higher than those illustrated.
Figure 11 is similar to Figure 9 except for the com-
plexities introduced by the presence of a low-temper-
ature stability field for forsterite + quartz. Figure 12
differs from the other diagrams because the mini-
mum permissible entropy for the reaction AFEW re-
quires a reversal in the slope and curvature of this re-
action. Consequently, AFEW exists as two stable
segments separated by a highly curved metastable
portion at intermediate pressures. This diagram
would also require that enstatite become unstable
above a relatively moderate temperature at all pres-
sures in the crust.

Table 5. Summary of criteria used to derive the thermodynamic
data from which Figs. 6-12 were calculated. In each case, the en-
tropy of solids in the indicated reaction was maximized or mini-
mized. Criteria included within parentheses gave sets of ther-
modynamic data that were identical in every respect.

Diagram Criteria Criteria that yileld

similar diagrams

o

Figure Min TFAW (Max AFEW, Min TEA)

~

Figure Max AEQW

@

Figure Min TFEW

Figure 9 Max TEQW Max TAQW

Figure 10 (Max TFAW, Max TEA)
Figure 11 (Min TEQW, Max TFEW
Min AEQW, Min TAQW
Min TFQW, Min EFQ

Min AFQW, Min AFTQ)
Figure 12

Min AFEW Max EFQ, Max TFQW

(Max AFQW, Max AFTQ)
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Table 6. Thermodynamic coordinates of the “midpoint” of the
feasible solution space and of the feasible solution in “best” agree-
ment with calorimetric data. See text for further explanation.

Minimum
Deviation

Maximum Minimum Midpoint Calorimetric Values

Hf(Q) -908974 -912322 -910648 -910771  -910648

Sf(Q) -182.364 ~182.614 -182.489 -182.489 -182.489

.
h

Hf(F) -2168248  -2172084 -2170166 -2170166  -2170166 + 1918
X

Sf(F) -398.113  -399.877 -398.995 -398.995 -398.995

Hf(E) -1518344  -1574830 -1546587 -1544516

Sf(E) -292.818  -294.446 -293.632 ~291.139  -291.139

2
HE(A) -12061762 -12097434 -12079598  -12083059 -12083059 +

Sf(A) -2647.820 -244B.054 -2447.667  -2447.,750

Hf(T) -5896348 -5916790 -5906569 -5895046  -5916200 + 7200

Sf(T) -1286.267 -~1286.771 -1286.519 -1273.082 -1273.082 + 0.844

Most petrologists would agree that any diagram
predicting a stability field for forsterite + quartz in
the P-T range shown in our diagrams has little pos-
sible relevance for natural assemblages. On this basis
alone we may eliminate Figures 11 and 12 from fur-
ther consideration. Figure 12 may also be rejected by
considering the experimental results of Greenwood
(1963), who reversed reaction AFEW at about 700°C
and 2 kbar and showed that the dehydration reaction
takes place with increasing temperature. The calcu-
lated diagram predicts the wrong direction for the re-
action at 2 kbar.

The rejection of these two diagrams suggests that
substantial portions of the thermodynamic feasible
solution space defined by the experiments we have
analyzed are geologically unrealistic. Stated in an-
other way, parts of the experimentally-bracketed
temperature intervals may be geologically unrealis-
tic. This suggestion is based on the observation that
four of the twelve limiting thermodynamic data sets
we found require the phase diagram topology in Fig-
ure 12 and one additional set requires the topology in
Figure 11. Figure 11 may be derived (see Table 5) by
taking the minimum possible slope (entropy) for the
experimentally-determined reactions TEQw, TAQW,
or AEQW or by taking the maximum possible slope
for the reaction TFEW. The “most probable” location
for these curves must therefore be nearer the maxi-
mum slopes for the first three reactions and the mini-
mum for the last.

Figures 6-10 are very similar, and there is no obvi-
ous choice among them. The calculated locations of
the reactions TFAW and AFEw differ appreciably
from the experimental brackets obtained by Green-

wood (1963). The most significant disagreement
seems to be in Figure 6, where the calculated location
of TFAW differs from Greenwood’s bracket (680°C, 2
kbar) by about 100°C. Using an “anthophyllite” that
differs from that used by Greenwood (1963), Nguyen
Trung et al. (1977) have calculated thermodynamic
parameters from experimental data and have esti-
mated that the reaction TFAW occurs at 560°C, 1
kbar and at 610°C, 3 kbar (no uncertainties cited).
These values are much closer to those calculated
from the experiments analyzed in this study.

The problem of a “best” phase diagram

Figures 6-12 represent an analysis of the uncer-
tainties in thermodynamic data permitted by the ex-
perimental data that is conveniently displayed by
showing the permissible variation in phase diagrams.
These diagrams have been calculated using the ther-
modynamic coordinates of some of the extreme cor-
ner points of the feasible solution space defined by
the experiments. It is clear that the “best solution”
from an experimental point of view is not a diagram
that lies at the extreme limits of the uncertainty inter-
val. We might argue that the phase diagram best de-
scribing the materials used in the experiments should
be one that passes through the “center” of the experi-
mental brackets corresponding to a point in the “cen-
ter” of the feasible solution space.

In order to examine the problem of finding a “cen-
ter” of a multi-dimensional feasible solution space,
we first redefined the feasible solution space in terms
of the thermodynamic properties of the individual
minerals by adding constraints having the form:

AH(TEQW) + H(T) — 2H{(E)— H(Q)=0

Substitution constraints of this form simply sub-
stitute the properties of the phases for the property of
the reaction. The properties of only three phases may
be derived independently because there are only
three independent reactions in Table 2. Since the
properties of quartz and forsterite are probably the
best known and least controversial, we added the two
standard error uncertainties of the entropies and en-
thalpies of these minerals to the set of constraints
provided by the experiments. The feasible solution
space defined by the experiments (Table 4), the equa-
tions of linear dependence (Table 2), and the proper-
ties of quartz and forsterite were analyzed, as de-
scribed below, in order to find a “center” of the
feasible solution space.

Starting at the top of the list of mineral properties
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in Table 6, we performed sequentially a series of 20
linear programming computations in which we found
the maximum and minimum value of a variable. The
midpoint of the range was fixed as a constraint on the
possible values of the parameter to be determined
next in the list. Because this procedure clearly is not a
unique definition of a “center” and because the “cen-
ter” located in this manner must depend on the se-
quence in which the midpoints are determined, we
arranged the computations so that the best known or
least controversial minerals were determined first
and the more problematical minerals later. Since the
uncertainties of quartz and forsterite were included
as constraints, the results in Table 6 show that the ex-
periments permit the parameters to reach the maxi-
mum and minimum values allowed by the calorimet-
ric constraints.

The derived thermodynamic parameters agree
fairly well with the calorimetric data, with the ex-
ception of the entropy of talc. The entropy of ortho-
enstatite derived agrees fairly well with the calori-
metric entropy of clinoenstatite, considering that the
estimated uncertainty is simply a guess to allow for
differences in the polymorphs. The enthalpy of talc
derived is about three standard errors from the ca-
lorimetric value, but the entropy differs by 32 stan-
dard errors! The phase diagram calculated from the
midpoint data set is shown in Figure 13.

Although Figure 13 may represent a “best esti-
mate” for the phase diagram, in the sense that it
passes through the “middle” of the experimental
brackets, the thermodynamic consequences implied
by this choice are severe. Although we cannot rule
out the possibility that major differences exist be-
tween the talc used in the experiments and the talc
used to determine the low-temperature entropy, a so-
lution in better agreement with the calorimetric data
is clearly desirable.

Thermochemical parameters measured by stan-
dard calorimetric means are available for several of
the minerals considered here (Table 2), and complete
agreement between these data and the parameters
derived from the experiments would be very satis-
fying. In order to entertain this possibility, we added
the two standard error uncertainty limits of all the
enthalpies and entropies in Table 2 to the set of con-
straints provided by the experiments. We were un-
able to find a feasible solution for this revised prob-
lem. That is, no choice of the thermodynamic
variables, within their stated two-standard-error un-
certainties, satisfies the experimental data. This must

Fig. 13. Phase diagram calculated from the “midpoint” of the
feasible solution space defined by the experiments in Table 4 and
the calorimetric limits on the properties of quartz and forsterite
(see Table 6).

be true regardless of the enthalpies or entropies as-
sumed for those parameters that have not actually
been measured.

It is not possible to determine uniquely which min-
eral or minerals might be the cause of this discrep-
ancy, but our results suggest that talc is a good possi-
bility. When the determined properties of talc (Table
1) are removed from the constraint set, feasible solu-
tions are possible. The removal of any other single
phase does not permit feasible solutions. We exam-
ined the experimental data of Greenwood (1963) in
the same way and were led to the same conclusion.
When the properties of talc are included in the con-
straints, no feasible solutions are possible, and when
they are removed feasible solutions are found.

Day and Kumin (1979) have discussed an objec-
tive criterion that is useful for finding a feasible solu-
tion that is in close agreement with the available ca-
lorimetric data but which remains consistent with all
the experimental data. The objective criterion (where
Z is the objective function) is:

Wl X —-X’
minimize Z = S L
g Ux;y

where X/'is a calorimetrically-determined enthalpy or
entropy of mineral i, UX/is the uncertainty associ-
ated with the measured value, and X; is a value of en-
thalpy or entropy of mineral / that is consistent with
the experiments (i.e. that lies within the feasible solu-
tion space). The sum is taken over all available ca-
lorimetrically-determined enthalpies and entropies,
so that Z is a measure of the total deviation between
a feasible solution and the calorimetric data. The op-
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Fig. 14. Phase diagram calculated from the thermodynamic
data (Table 6) that has the “minimum deviation” from the calori-
metric data set that is permitted by the experiments in Table 4.

timal feasible solution is considered to be the one
having the smallest possible value of the total devia-
tion.

We have applied this criterion to the feasible solu-
tion space defined by the experiments. The en-
thalpies and entropies that minimize the total devia-
tion are listed in Table 6. The phase diagram
calculated using these data is shown in Figure 14.
The most interesting feature of this set of derived
data is that all of the calorimétric data with the ex-
ception of the enthalpy of talc are consistent with the
experimental data. Virtually all the difference be-
tween the feasible solution and the calorimetric data
has been assigned to the enthalpy of talc, and this is
equivalent to about six standard errors in the mea-
sured value. Although other distributions of the de-
viations among the minerals that might not require
such a large deviation for talc are possible, this may
occur only at the expense of increasing the total dif-
ference. The solution reached by this procedure is a
thermodynamic best fit in the sense that the sum of
deviations is minimized.

Comparison with other sets of experimental data

Unfortunately, and for different reasons, it is not
possible to analyze the experiments of Greenwood
(1963) and Hemley et al. (1977a,b) together with the
experiments in Table 4.

Greenwood (1963) obtained one or more brackets
on each of the first six reactions listed in Table 2.
Comparison of his brackets, expanded as described
earlier, with the experiments in Table 4 suggests that
no brackets are incompatible. The brackets for reac-

tions AEQW and TFEW would be incompatible or
nearly so if the unexpanded brackets were consid-
ered. This suggests that a feasible solution space
might exist that satisfies both sets of experimental
data. We combined 26 experiments from Greenwood
(1963) with the constraints of Table 4, and were un-
able to find feasible solutions, which suggests that the
two sets of data are truly incompatible. Our results
do not indicate how serious this disagreement is.

Greenwood’s experiments and the eight pairs of
linear dependence equations are not sufficient to de-
scribe a completely-bounded feasible solution space.
Consequently it is not possible to explore the bound-
aries of the feasible solution space in a way that will
permit us to define limiting phase diagrams. A wide
variety of phase diagrams would be permitted by
Greenwood’s experiments, but it is clear that the
topology of the diagram he presented (Fig. 1) is com-
patible with those calculated from the experiments in
Table 4. In addition, we performed a calculation to
find the thermodynamic data set that satisfies Green-
wood’s experiments and the thermodynamic con-
straints on quartz and forsterite, and that also mini-
mizes the total deviations from the calorimetric data
as previously described. The phase diagram calcu-
lated from these data has a topology similar to Figure
9, in which invariant point (Q) occurs at 705°C, 6.4
kbar and at 662°C, 1.1 kbar and invariant point (F)
at 657°C, 0.5 kbar and at T < 850°C, P > 10 kbar.

It is also not meaningful to treat the experiments of
Hemley et al. (1977b) in the way we have done here,
but for somewhat different reasons. The first is that
their experiments are isobaric. In order to define a
thermodynamic feasible solution space or to calcu-
late a polybaric phase diagram independent of addi-
tional thermodynamic assumptions, polybaric data are
required. The second reason is based on the way the
authors interpreted their experiments. They per-
formed experiments to determine the location, in iso-
baric log m(Si0,) vs. 1/T diagrams, of reactions such
as: 2T + 8H,0 = 3F + 5H,Si0,. The temperature at
which two or more reactions intersect is the equilib-
rium temperature of an orthosilicate-free dehy-
dration reaction such as those we have studied. Hem-
ley et al. (1977b) have determined preferred
temperatures for these intersections at 1 kbar by fit-
ting linear least-squares regression curves to the ex-
perimentally-determined silica concentrations and
temperatures for individual reactions, or by visual
fits to the same data (Hemley, 1978, personal com-
munication). The uncertainties assigned to the pre-
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ferred temperature of each intersection are reason-
able estimates of the location of the dehydration
reaction, but they are not absolute limits in the sense
required by linear programming analysis. Standard
deviations derived from regression analysis are essen-
tially confidence intervals at some specified level of
probability. In addition, regression curves are not
necessarily constrained to lie between experiments
approached from opposite sides of equilibrium. The
uncertainties associated with intersections of curves
fit by visual inspection may also not be absolute lim-
its. For these reasons, it is not possible to examine the
maximum range of phase diagrams permitted by the
experiments in a straightforward way.

The preferred temperatures and associated errors
reported by Hemley et al. (1977b) give estimates of
the locations of the equilibrium curves that for the
most part appear to be compatible with the experi-
ments in Table 4. In order to compare their results
with those obtained here, we have extended their cal-
culated phase diagram to 10 kbar, using our pro-
grams and their preferred thermodynamic data
(Hemley et al., 1977b, Table 3) (see Fig. 15).

Most of the differences between their diagram and
Figure 15 can be attributed to small differences in
calculation procedures, but our location of AEQW,
calculated using their thermodynamic data, differs
significantly from their calculated position. In spite
of this difference, which we are unable to explain, it
is clear that their data predict a topology that agrees
with the “mid-point” of the “Chernosky” data set in
Table 4.

Discussion and conclusion

Figure 13 may be described as a good summary of
the experimental data analyzed, because it has been
derived in such a way that the calculated reactions
pass through the “middle” of the experimental
brackets. Figures 6-12 show the experimental uncer-
tainty associated with this diagram. It should not be
assumed, necessarily, that Figure 13 represents the
“correct” phase diagram.

It is clear that most of the variation in Figures 6-
12 is caused by large fluctuations in experimentally
unconstrained curves. The truly discouraging range
of phase diagrams consistent with the experimental
data could be substantially reduced if there were
even one experimental bracket for each stable or me-
tastable reaction that can be determined in the labo-
ratory. Two brackets, widely separated in pressure,

800

Fig. 15. Phase diagram calculated using the thermodynamic
data preferred by Hemley et al. (1977b).

for each of three independent reactions would also
contribute to a further reduction in the variability.

Some of the permissible variation may be elimi-
nated if thermodynamic constraints are added to the
problem, but often this may not be much help. Even
when a full set of thermodynamic parameters is
available, the feasible solution space defined by the
two standard error uncertainties may permit much
more variation in the phase diagrams than the fea-
sible solutions defined by the experiments them-
selves. If unconstrained thermodynamic variables are
present in the problem, the linear programming al-
gorithm tends to assign as much “error” to the un-
constrained variables as is necessary to reach the
limits permitted by the experiments alone. Con-
sequently, when such unconstrained parameters are
present, the range of phase diagrams permitted may
be nearly as large as the range permitted by the ex-
periments alone. In general, however, the thermody-
namic and experimental feasible solution spaces do
not coincide exactly, and some improvement in the
“error” may be found.

Figure 13 was calculated using an entropy of talc
(see Table 6) that is very different from the value de-
termined by calorimetric methods. We have no way
of deciding whether there are large differences be-
tween the natural talc used in calorimetry and the
synthetic talc used in Chernosky’s experiments or
whether there might be an error in the calorimetric
measurements, but the apparent difference seems
unacceptably large. The necessity for such a great
difference in the two talcs would be greatly reduced if
Figure 14 were accepted as a description of the ex-
periments. This diagram is consistent with all the ex-
periments and all the calorimetric data, except for a
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difference between the derived and measured en-
thalpy of talc amounting to about six standard errors
in the measured value. This agreement might be
made even better by accepting a solution that has a
higher total deviation but which distributes some of
the “error” to the other derived parameters. In addi-
tion, the calorimetric enthalpy for talc may be in er-
ror by a small amount. The close agreement of the
experiments using synthetic talc (Chernosky, 1976;
Chernosky and Knapp, 1977) and those using natu-
ral talc (Hemley et al., 1977b) suggests that this might
be the case. The effects of such small shifts in ther-
modynamic parameters on the calculated phase dia-
gram are impossible to predict without performing
the calculations.

We have emphasized here the apparent dis-
crepancies between the calculated and observed
properties of talc. Veblen et al. (1977) have recently
discussed the observations of new classes of silicate
chain structures, with special emphasis on their evi-
dence for extensive disorder of chain types in amphi-
boles. In particular, they mention their observations
of synthetic anthophyllites (including those of Cher-
nosky used as a basis for this paper) show extensive
structural disorder “in some cases consisting of in-
timate mixtures of chains of many widths.” The ef-
fect of such structural disorder on the thermody-
namic and phase equilibrium interpretation of
hydrothermal experiments is debatable, but cannot
be ignored. Our results suggest that a detailed elec-
tron microscope investigation of natural and syn-
thetic talc might also be in order. The uncertainties
attending our ignorance of the thermodynamic ef-
fects of possible structural disorder must be added to
the already large range of possibilities due to experi-
mental and thermodynamic uncertainties.

Our results and a comparison of these results with
other experimental data suggest that a phase diagram
similar to Figure 14 or Figure 13 may ultimately
prove to be correct. Our results show a large range of
uncertainty that prohibits a definitive answer, and a
direct experimental determination of the reaction T
+ E = A may be the only way to discriminate among
all the possibilities. The difference among the per-
missible phase diagrams may have an important
bearing on the interpretation of natural occurrences
of enstatite plus talc (e.g. Evans and Trommsdorff,
1974).

Our results have sobering implications concerning
the possibilities for estimating equilibria that have
not been experimentally determined, and even, it

seems, the reliable estimation of complete phase dia-
grams from incomplete information. It seems to us,
however, that mathematical programming tech-
niques, such as the linear programming method we
have employed here, will be useful aids for identi-
fying the range of uncertainty in a body of experi-
mental data, for identifying agreement and dis-
agreement among bodies of experimental and
thermodynamic data, and for finding internally con-
sistent solutions that satisfy the available thermody-
namic, experimental, and geological observations in
the most agreeable way. Much additional work re-
mains in order to develop useful criteria by which
such solutions may be found, but it is clear that this
approach is a useful means for analyzing existing
data and planning new experiments.
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