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Properties of synthetic Cs-dioctahedral hydrous mica, CsGar(Ga, Ger)Oto(OH),
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Abstract

A Cs-dioctahedral gallogermanate mica, CsGar(Ga,Ge3)Oro(OH)r, was synthesized under
hydrothermal conditions: 300'C, l@ kg/cm'z, and 23 days. The cell parameters of this mica
are of the lM type, with a : 5.412(l), b:9.366(3), c: 11.42'l(2)A, P: 101.22(2)", with stan-
dard deviations in parentheses. The infrared spectrum of this Cs-mica is very similar to those
of other gallogermanate K* and Rb* micas. In the far infrared absorption spectrum, out-of-
plane and in-plane stretching vibrations of Cs-O are recognized below 100 cm-'.

X-ray analysis

this Cs-mica is lM, based on the appearance of ll2
and 1t2 reflections (Smith and Yoder, 1956). The
difference in cell parameters between these micas re-
sults from the difference in ionic radii between Cs*
(1.70A), Rb* (1.49A), and K* (1.38A) (Shannon and
Prewitt, 1969) and NH; (1.43A; Goldschmidt, 1954,
p. 89), as is shown for d(001) in Figure 2. The same
linear relation is reported for dioctahedral.hydrous
silicate micas (Eugster and Munoz, 1966). Although
NHo is a nonspherical cation (it is tetrahedral), Fig-
ure 2 casts doubt on the accuracy of either the as-
sumed ionic radius of NHlcation or the cell parame-
ters of NHn-mica.

Scanning electron microscopic analysis

The mica was examined with a HrracHI scanning
electron microscope, 5-450. As shown in Figure 3,
this Cs-mica grows as thin, well-formed plates, ap-
proximately hexagonal in outline. It has a pearly
lustre and is colorless under the polarization micro-
scope. The above characters are common to dioc-
tahedral aluminosilicate micas.

X-ray powder analysis was made with a RIGAKU
Geigerflex diffractometer using CuKc radiation with Infrared absorption analysis

silicon internal standard. X-ray powder data for syn- A spectrophotometer tracing illustrating the in-
thetic Cs-mica are given in Figure I and Table l. frared absorption is shown in Figure 4. The KBr disk
Cell parameters, determined by refinement of X-ray method was used, and measurements were made
diffractometer data with the modified Rsrc-3 of ,with alapanspectroscopiclR-Gdouble beamspec-
UNIcS computer program (Sakurai, 1967) are dis- trophotometer, using a polystyrene standard. The in-
played in Table 2 with those of other gallogermanate frared spectra of K-, Rb- and Cs-gallogermanate
micas, RbGar(Ga,Ger)O,o(OH)r, KGar(Ga,Ger) micas in the range 4000 to 400 cm-' are very similar.
O,.(OH), (Kimata, 1979), and NHoGar(Ga,Ger) Thus OH vibrations appear to be little affected by in-

O,'(OH), (Barrer and Dicks, 1966). The polytype of terlayer cations.

Introduction

In the course of systematic synthesis of hydrous
dioctahedral micas substituted by several cations, a
Cs-mica, CsGar(Ga,Ger)O,o(OH), was synthesized.
There has been, to my knowledge, no report on the
complete substitution of cesium in the interlayer po-
sition of hydrous dioctahedral micas. The present
study gives experimental results on the properties of
this mica, which possesses two kind5 of gallium cat-
ions that are four- and six-coordinated by oxygen.

Experimental

The mica was synthesized from reagent grade
CsrCOr:GarOr:GeO, : l: l :2. Each of these mix-
tures was sealed in a silver capsule with excess dis-
tilled water, homogenized by an ultrasonic washer
for fifteen minutes, and reacted in the Morey-type
autoclave at 300oC, 100 kglcm', for 23 days. The re-
sulting white powder was washed with distilled wa-
ter, dried at ll0oC, and then analyzed.

w03-00/.x/7 9 / I I I 2- l l 84$02.00 I r84



KIMATA: Cs-DIOCTAHEDRAL HYDROUS MICA

Fig. l X-ray powder pattern of synthetic Cs-mica.
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The most noticeable difference between the in-
frared spectra of orthogermanates (Tarte, 1962,
1963a, b) and the layer germanates (Kimato, 1979) is
the shift of bands due to Ge-O stretching vibrations
towards low frequencies. The main Ge-O stretching
vibration is observed at about 800 cm-, in germanate
micas, whereas it is at about 700 cm-' in ortho-
germanates. This shift may be due to structural

Table l. X-ray powder data for CsGa2(Ga,Ge3)Oro(OH),
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changes in the linking mode of the GeOo tetrahedra.
The characteristic frequency range, which is 800-700
cm-' for GeOo tetrahedra in orthogermanates, falls to
650 cm-' or below for GeOu octahedra (Tarte and
Ringwood, 1964). This drop in frequency caused by
change of coordination number is expected to be vis-
ible in the Ga-O vibrational range. This Cs-mica has
four Ga atoms in the octahedra of its unit cell and
two Ga atoms in the tetrahedra, from which it is rea-
sonable to conclude that the stretching vibration of
Ga"'-O is stronger in absorption percent than that of
Ga'u-O. Accordingly the band at 925 cm-' may be
assigned to the Ga'"-O stretching vibration, while
that at 833 cm-' to that of Ga"'-O. Farmer (1972, p.
8) summarized the effect o( coordination, especially
tetrahedral and octahedral coordination. on stretch-
ing frequencies. Such a difference in wavenumber
between Ga''-O and Ga''-O stretching vibrations

Table 2.  Crystal lographic data for  gal logermanate micas
(standard errors in parentheses)

Barrer and
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C s - m l c a ;  C s G a 2  ( G a , c e 3 ) O I 0  ( O H )  
2 ,

Rb-mica ;  Rbca2 (ca ,ce3)010 (OH)  
2 ,

K - m i c a ;  K G a 2  ( c a , c e 3 ) o t O  ( o H ) 2 ,

NH4-mica  ;  NH4ca2 (ca ,ce j )01O (OH)  
2 .

*  the  ca lcu la ted  dens i ty .

K i n a t a  ( 1 9 7 9 )
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Fig. 2. Spacing of (001) for assumed lM polymorphs of

synthetic dioctahedral micas as a function of the ionic radius of

the interlayer cation.

seems probable by reference to the effect of coordina-
tion number on stretching vibrations of Al-O and
Fe'*-O as reported by Farmer. The splitting of the
absorption band at approximately 900 cm-' inptes
the deformation of the tetrahedral sites of Ga cat-
10ns.

Fig.  3.  Scanning electron micrograph of  synthet ic  Cs-

dioctahedral mica. Bar is 5 microns.

Far infrared absorption analysis

The far infrared (FIR) study was made by the
polystyrene plate method, in which a small amount
of specimen powder was placed between two films.
The measurements were made with a HnlcHt FIS-
070 vacuum spectrophotometer in the frequency
range from 50 to 400 cm-'. The resulting curve is rep-
resented in Figure 5. The vibrations of the interlayer
cations occur from 50 to 200 cm-'.

In the FIR spectrum of pollucite, CsAlSirOu ' HrO
(Kimata, unpublished data), there is a very strong
absorption band near 100 cm-'. This band is assigned
to Cs-O stretching vibration, and so the stronger
band at 95 cm-' of this synthetic Cs-mica may also
be assigned to Cs-O stretching. Kimata (1979) as-
signed the out-of-plane and in-plane vibrations
of Rb-O and K-O in hydrous dioctahedral gallo-
germanate micas. Their relationship is shown in Fig-
ure 6, with the FIR data for Cs-mica. This figure sug-
gests that out-of-plane and in-plane vibrations of Cs-
O in this mica are at 95 and 65 cm-' fespectively.
This assignment is based on the assumption that if
the ion is similar in its charge, the bands related to
the larger ionic radius and larger ionic mass are in a
lower frequency region than the bands related to the
smaller ionic radius and smaller ionic mass.

Differential thermal analYsis

The DTA and TG curyes of these micas were mea-
sured in air with a RIceru thermoflex under the fol-
lowing conditions: thermoflex Pt-PtRh; reference,
AlrOr; mean heating rate, lO"C/min; sensitiv-
ity(DTA), 1250 pV; sensitivity(TG), 5 mg; sample
weight, about 17 mg; temperature range l5-1000"C.
This Cs-mica has one broad endothermic peak at
545"C accompanied by a weight loss, which is inter-
preted to be due to loss of octahedral OH. The dehy-
drat ion temperature of synthet ic Cs-mica is
stghtly lower than those of Rb- and K-gallogerma-
nate hydrous micas (Kimata, 1979). Since IR data
suggest that the OH-bonding state in these micas is
very similar, this difference in dehydroxylation tem-
perature may be due to the particle size of synthe-
sized crystals.

Conclusion

The properties of hydrous Cs-dioctahedral gallo-
germanate micas are very similar to those of hydrous
Rb-dioctahedral gallogermanate micas. The IR data
for these Cs-, Rb-, and K-micas show that the bond-
ing state of the OH anion in these micas makes little
difference.
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Fig. 4. The infrared absorption spectrum of synthetic Cs-mica.
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Fig. 6. The relation between stretching vibrations of alkali
cation-oxygen and the ionic radius ofthe interlayer alkali cation.
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