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The use of thermodynamic excess functions in the Nernst distribution law: discussion
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Abstract

Holst (1978) has used thermodynamic theory to derive a Nernst distribution equation in
which nonideal behavior of coexisting phases is represented by excess functions rather than
activity coefficients. This equation was employed in a thermodynamic and geothermometric
evaluation of30 kbar orthoenstatite-diopside solvus data to illustrate a practical application
of the theory. However, Holst did not include crystal structure as a factor in his thermody-
namic analysis.

This paper presents thermodynamic theory which illustrates some of the complexities and
constraints in applications of the Nernst distribution law to crystalline solutions. It is con-
cluded that a strict accounting for the effects of crystal structure is required for a rigorous
thermodynamic assessment of equilibria between coexisting, mutually-soluble crystalline so-
lutions with di-fferent structures.

Introduction

Holst (1978) has derived a Nernst distribution
equation for application to: (l) analysis of solvus
data for binary systems, (2) geothermometry, and (3)
trace-element distribution among coexisting phases.
The main purpose of this communication is to show
that applications of the Nernst distribution law to
coexisting crystalline solutions are usually more
complicated than implied in Holst's treatment.

Basic theory

Thermodynamic theory applicable to the equilib-
rium coexistence of two mutually-soluble binary
crystalline solutions has been discussed in detail by
Blencoe (1977), so only a brief summary will be
given here [thermochemical terms used in this paper
are defined in Table I of Blencoe (1977)1. The chem-
ical potential of a crystalline component i, with the
standard-state conditions Po : P, To : T, and, Xl :
l, is given by the generalized equation

pi.r.r: Fl.,I RTlna,.r,, (l)

[Blencoe, 1977, equation (5)].' For equilibrium be-

t Actually, the equation presented by Blencoe (1977) is: 1tr.".r:
tr?,p,r + aRTln ai,p.v where "a" is the number of mixing sites in
the standard formulae for the components of a crystalline solution
series (Thompson, 1967, p.342). This equation is always appli-

tween coexisting crystalline solutions A and B in a
binary system l-2 at constant P and I we have trr,o :
p," and ltrzs : !12e, and by substituting equation (l)
into each of these relations we obtain

pi" + RTtn an: F?s * RTln a," (2a)

and

pil + R7ln azo: plat RTlnar" (2b)

(Throughout this paper, "A" and "B" will refer to
the two phases of a crystalline solvus-pair in a binary
or multicomponent system at an arbitrary but fixed P
and T, with X," = X".) A and B can be either iso-
structural or nonisostructural,2 and if they are iso-

cable to crystalline solutions with one or more equivalent rntxing
sites, but in other instances its use may be quite improper [e.9., for
binary plagioclase feldspars when the mixing properties of the
crystalline solutions are assumed to conform to certain crystal-
lographic constraints (Kerrick and Darken, 1975)1. With the pro-
viso that ai can be a model-dependent expression ofany appropri-
ate mathematical form, it can be stated simply that equation (l) is
a completely correct but generalized equation for the chemical po-
tential of component i.

2 The term "isostructural" refers to coexisting phases of a single
crystalline solution series (stable, metastable, or unstable) in which
there are: (l) no abrupt changes in crystal structure with changing
composition, and (2) no structural diferences which are independ-
ent of the structural diferences attributable to mixing of the com-
ponents (Blencoe, 1977). [This definition is completely compatible
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structural the mixing properties of both phases are
properly represented by a single equation of state.
On the other hand, for coexisting nonisostructural
crystals it is necessary not only to have separate
equations of state for each phase [because the struc-
tural configuration (state) ofeach phase is differentl,
but also to specify the structure(s) of the crystalling
components in their standard state(s). In this regard
it is useful to consider two alternative standard states;
viz., the standard state of a component can be taken
as: (l) the pure crystalline component with the same
structure as one of the coexisting crystalline phases at
system P and T, or (2) the pure crystalline com-
ponent with the same structure as the crystalline
phase under consideration at system P and Z. For
coexisting isostructural crystalline solutions these two
standard states are equivalent. However, for noniso-
structural crystalline solutions standard state (2)
gives different standard-state chemical potentials for
each component in each phase [a total of four differ-
ent pi terms, two for each component, while stan-
dard state (l) would involve only two pr," terms, one
for each component]. For reasons discussed in detail
by Blencoe (1977), standard state (2) is the more con-
venient of the two alternatives, and with this stan-
dard state we have: (l) for isostructural A-B pairs,

Ffo: Fi", Iti": Fi" and, consequently, a,o: ar" and
ozs: azs) and (2) for nonisostructural A-B pairs, p,oo
* p?", lti" * p,l" and, consequently, aro I ar" alrd ato
# ar".Furthermore, for subsequent discussion it is
useful to define AGi : pl" - pi^ and AGr" : Flo- Fl",
so we also have: (l) for isostructural A-B pairs, AGi

with discussion presented by Navrotsky and Loucks (1977, p. ll9),

who describe such crystalline solution series as being characterized

structurally by "a continuous set of distortions of bond lengths,

bond angles, and positional parameters."] Accordingly, the term
"nonisostructural" refers to coexisting phases which do not con-

form to either or both of the conditions (l) and (2) listed above,

and in this situation the phases should be treated as belonging to

separate crystalline solution series. In the present discussion, the

terms "isostructural" and "nonisostructural" will be used as adjec-

tives to describe not only coexisting mutually-soluble crystalline

solutions (A-B pairs), but also the miscibility gap (solvus) de-

scribed in P-T-X space by the equilibrium coexistence of these

phases. Using this terminology, any miscibility gap (at a given

pressure) which shows a continuous increase in mutual solubility

of the coexisting crystalline solutions with increasing temperature

is conveniently and definitively described as either an isostructural

solvus or a nonisostructural solvus (c/. Navrotsky and Loucks,

1977, p. ll9). A fundamental difference between these two types

of solvi is that, owing to the different structures of the coexisting

phases, a nonisostructural solvus cannot have a stable or metas-

table critical point.

: 0 and LGi. :0; and (2) for nonisostructural A-B

pairs, AGi * 0 and LGi + 0. By selecting standard

state (2), the nonzero values of AGi and AGro for non-

isostructural A-B pairs are directly attributable to

and completely account for the different free energies
of the crystal structures of the coexisting phases.

Moreover, with this standard state the activity terms
in equations (2) are relative activities by definition
(Guggenheim,1967, p. l8l), and this is convenient
because many of the commonly-used formulations
for the excess properties of binary crystalline solu-

tions [e.g., the two-parameter Margules formulation
described by Thompson (1967)l yield relative activi-
ties for the components in the phases. Consequently,
for a binary isostructural solvus, the compositions of
A and B (and, therefore, the symmetry of the solvus)
are dictated by the "activity-equivalence conditions"
ctrt: (tB and a2^ : azs, and these activities are a
function of P, T and X. However, when A and B are
nonisostructural, the symmetry of the binary solvus
is a function of not only the activities of the com-
ponents in A and B, but also AGi and AGi, the latter
two quantities being a function of P and Zbut not X.

Discussion

The Nernst distribution law for isostructural binary A-
B solvus-pairs

Defining a,:y,X,andp''f : RZLn y'r, where the
subscript f indicates a phase (either A or B), equa-
tion (2a) may be rewritten for isostructural A-B pairs

AS:

p?A + Rf h X,o * pil: p,'"+ RZln X," + trii (3)

where Fi" : Fl" [Holst, 1978, equation (8)]. Following
Holst (1978), we may also define Ko: X'o/X,, and
AG;. : pil - pii, so from equation (3) we have the
following thermodynamic definitions of the Nernst
distribution law for isostructural binary A-B pairs:3

ln /(D : h (y,"/y,") : -(ril - tt'f)/nf : -LGi-/ RT

(4\

[Holst, 1978, equation (9)]. Furthermore, equation

3 Since "AGxs," *AH^"," and "A.S*"" as defined by Holst (1978)

refer only to component l, it is appropriate to add the subscript

"1" to these terms. Therefore, for example, AG*" (Holst, 1978) :

AGf. (this paper) AGi. should not be confused with G'^ which,

for binary crystalline solutions, is defined by the relation G'* :

RT(Xs ln y1* X2ln72)
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(4) (ln K" : -AGi. / RT') can be used to derive the re-
lation

aci': a/Ii- - zaff' (5)

[see Holst, 1978, equarions (9)-(15)].
From equation (4) we have the equalities Aq- :

-Rf h (X,n/X,,): -Rf h (y,"/y,o), and because R
and Zare positive quantities, and I > Xt^> Xr, > O,
we also have, at any given subsolvus p and T, l*)
yrn &rd AG- < 0. Furthermore, because AG;- : f(7,
X,o, X,,), X,o : f (T), and X," : f (T'), it is evident
that values of AGi. [and (dAGi./dZ)"] will be strongly
dependent upon the symmetry of the solvus. But re-
gardless of the form of the solvus, Xr^/ Xrr: I at the
upper-consolute point (high-temperature critical
point), so from equation (4) we have at this point
ac i . :0 .

The Nernst distribution law for nonisostructural binarv
A-B solvus-pairs

Mathematical expressions of the Nernst distribu-
tion law for nonisostructural binary A-B solvus-pairs
can be developed using thermodynamic analysis sim-
ilar to that described for isostructural A-B pairs.
Thus, with the definitions of a,, p,'j and Ko given pre-
viously, equation (2a) may be rewritten for noniso-
structural d-B pairs as:

Rrh x,o + pli : aG?+ RZln X," + trr;i, (6)

where AG,' : lri" - Ir,'o # 0.By substituting and rear-
ranging terms in equation (6), we derive the follow-
ing definitions of the Nernst distribution law for non-
isostructural binary A-B pairs:

ln 1(" : LGi / RT + ln(y,"/y,^)

: [AGi - @",1 - ttill/Rr
: (aci _ LGi-)/Rr Q)

Comparison of equations (4) and (7) shows that the
effect of A and B having different crystal structures is
expressed thermodynamically by A,G? / RT in equa-
tion (7).

From equation (7) we have the equality AG;' :

AGi - RTh(X,"/X,"), and this relation shows that
AGi- is now partly a function of AGi. This result is
not attributable to the standard state adopted here
because, as noted previously, AG,o represents the dif-
ference between the free energies of crystalline com-
ponent I in the structures of A and B. Therefore, de-
fining AGi. by the relation AGi-: -Rf h (X,^/X,")

[Holst, 1978, equation (9)] is invalid for noniso-

structural crystalline solutions. However, the other
definition of AGi' given by Holst, 1.e., AG;. : ,;- -

pifi [Holst, 1978, equation (9)], is valid for both iso-
structural and nonisostructural crystalline solutions,
and this definition [or the equivalent relation, AG;" :
RTlut (y,"/y,")l will be used in the remaining dis-
cussion presented here.

The Nernst distribution law applied to MgrSiroo@n)-
CaM gSirO 

"(di) 
orthoenstatite-diopside solvus-pairs

Equation (3) is identical to equation (8) of Holst
(1978), so it is evident that his thermodynamic rela-
tions for crystal-pairs at equilibrium [Holst, 1978,
equations (8)-(16) are applicable only to coexisting
isostructural crystalline solutions.o Furthermore, he
has applied these equations, and the relation AG;':
-Rf h (X,"/X,") in particular, in a thermodynamic
analysis of binary orthoenstatite-diopside solvus
data, and these crystalline solutions are noniso-
structural (diopside is monoclinic). These observa-
tions, along with thermodynamic theory presented
here, have the following implications regarding the
validity of the thermodynamic analysis presented by
Holst (following Holst, in this paper MgrSirOu is
component l, CaMgSirOu is component 2 and, con-
sequently, X;1" : X,o and X.!i- : X,"):
(l) AGi- values for nonisostructural solvus-pairs can-
not be derived from solvus data alone. Rather, these
data give values for AGi. - AGi I: -RTln (X,o/
X,")], and it is these values for 30 kbar ortho-
enstatite-diopside solvus data that Holst (1978) has
plotted in his Figure l. Furthermore, because R and
Z are positive quantities, and X;l- > Xff^, "excess
free energy" (here AGi" - AGi) values on the ab-
scissa of Figure I in Holst (1978) should be negative
rather than positive, and his orthoenstatite-diopside
geothermometric equation (Holst, 1978, p. 85) should
be:

-Rrh 6::-/x:i-):4800 - 18.9r+ o.oo829T2

(2) The form of an isobaric -RZln (X,o/X,") vs. T
curve [e.9., as in Fig. I of Holst (1978)] is a function
of values of AGi-, AGi and their derivatives with re-
spect to temperature. For most nonisostructural solvi,
AGf'values increase continuously toward zero with
increasing temperature.s On the other hand, AGi val-

a Equation (16) of Holsr (19?8, p. 85) is mislabeled as equarion
(6).

5 It has been d€monstrated that y," = y,o for isostructural bi-
nary A-B solvus-pairs, and without elaboration it wiu b€ assumed
here that this is also true for nonisostructural binarv A-B solvus-
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ues may either increase or decrease with increasing
temperature. It is likely that AGi values will display
an approximately-linear variation with temperature,
because this is true for p values of most pure crystal-
line components, but significant curvature in an iso-
baric AGi vs. T function remains a theoretical possi-
bility in the absence of definitive phase-equilibrium
and/or calorimetric data. For any nonisostructural
solvus, however, @LG":/AT), and, @AG?/dl)" must
be continuous functions, and the writer agrees with
Holst (1978, p. 84) that a discontinuity in the slope of
a AGi- - AG,' curve indicates a first-order phase
transformation or a reaction. The writer also agrees
with Holst that inflections in AGi- - AG," cruwes gen-
erally can be attributed to inaccuracies in solvus ex-
perimental data, but it should be recognized that
such inflections are not intrinsically invalid. Several
different unusual circumstances can produce in-
flections in AG;'- AGi curves, but the most likely is
the situation in which AGi- increases toward zero
with increasing temperature and reaches a value of
zero (or near zero) at a subsolvus temperature. In this
regard, it may be noted that the 30 kbar ortho-
enstatite-diopside solvus of Mori and Green (1976) is
consistent with an inflection in the AGi- - AG,o curve
for that solvus near 1900K. Holst (1978) attributes
this inflection to experimental error (which is a dis-
tinct possibility), but an alternative schematic ex-
planation is illustrated in Figure l. Obviously, addi-
tional accurate 30 kbar orthoenstatite-diopside
solvus data in the range 1700-2000K are needed to
settle this matter.
(3) The orthoenstatite-diopside geothermometric
equation listed by Holst (1978, p. 84), which is attrib-
uted to Wood and Banno (1973), is not equivalent
(theoretically) to the equation presented by these in-
vestigators [Wood and Banno, 1973, equation (22)].
The equation listed by Holst is

ln(x:i-/x::.): -LH/RT + AS/R

: -10202/T + 5.35 (8)

while the equation presented by Wood and Banno is

ln(atX'/a!X-): -LH"/RT + AS'/R
: -|O2O2/T + 5.35 (9)

Because the terms on the left-hand side of equation
(9) are activities and not mole fractions, we have

pairs. Therefore, from the relation AGf' : RT ln (yrelyrn), we
have Afi^ = 0 for both isostructural and nonisostructural binary
A-B solvus-pairs.
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Fig l. Semi-schematic diagram illustrating: (l) hypothetical 30
kbar orthoenstatite-diopside AGi^-f and -AGi-Z relations; and
(2) a AGi' - AGi vs. Z curve based upon the 30 kbar ortho-
enstatite-diopside solvus data of Nehru and wyllie (1974), Mori
and Green (19'15, 1976'), and Lindsley and Dixon (1976). The
sharp inflection in the AG* - AGi curve occurs at l9l0K because
ortho€nstatite-diopside solvus-pairs are coexisting ideal, noniso-
structural crystalline solutions at this and higher temperatures
(that is, 6'f": l, y:R^ : I and, therefore, ACi' :0 at 7> l9l0K).
The AG!* and AGi vs. T curves in this figure (as well as the in-
flection in the AG!" - AGi curve at 19l5K) are entirely schematic,
and they are illustrated simply to demonstrate that il is theoreti-
cally possible to have inflections in AG!. - AG! curves for noniso-
structural solvi.

from equation (2a) (using the notation of Wood and
Banno)

lni(at!^/4,tl-): -LG" / RT (10)

[Wood and Banno, 1973, equation (20)]where AG' is
equivalent to AGi in this paper. Therefore, as in-
dicated by Wood and Banno (1973, p. l l7), and by
the superscript "o" in AG", A.F/o and AS", equations
(9)-(10) refer to the transfer of MgrSirOu from ortho-
pyroxene to clinopyroxene rn the standard state (pure
MgrSirO. at system P and T). Consequently, nonzero
values of AG", A-FI" and AS" in equations (9)-(10)
are ostensibly due entirely to the different free
energies of the orthorhombic and monoclinic struc-
tures of pure MgrSirOu. In contrast, the terms on the
left-hand side of equation (8) are mole fractions, so

P = 30 KBAR
soL lDUS o  NEHRU ANo wYLLtE ( ie74)

A I\ , IORI AND GREEN (1975'1976)

t r  L INDSLEY AND D IXON (1976 )



BLENCOE: DISCUSSION

the Af1 and A^S terms in this equation are not equiva-
lent (theoretically) to AIlo and ASo, respectively, in
equation (9). According to thermodynamic analysis
and notation presented by Holst, AH n equation (8)
should be Af1.", and AS should be AS^", but even with
these modifications equation (8) would still be in-
valid because orthoenstatite and diopside are noniso-
structural.

Although equation (8) is thermodynamically in-
valid and not equivalent to equation (9) (which is
valid), theoretical treatment by Wood and Banno
yields "idealized" activities which are equivalent to
mole fractions, and in this instance equations (8) and
(9) give identical numerical results. According to
Wood and Banno (1973, p. ll8), aifl. and a!1. in
equation (9) can be estimated from the generalized
relation

/ Mq'* \ / Ms'* \n  : t  -  |  . t  -  r  ( l l )-en 
\Mg" + Ca,' l*, \Mgr- + Cur,).,

thereby yielding (using the notation of Wood and
Banno)

a::-: (xW.x#J).".
and

d."f.: (xffi.XMJ).'.

[Wood and Banno, 1973, equations (21)]. However,
Wood and Banno assume that Ca2* in orthopyroxene
and clinopyroxene is restricted to the larger M2 site
li.e., (i[lg2*/(Mg'* + Cu'*))r, : I in binary Mg-Ca
orthoenstatite and diopside], and with this assump-
tion equation (l l) reduces to

/ Ms'* \n  : t  - - - l  :  x"" (Raoul t 's law)
\Mg'' + Cz'*J-,

Thus, although the form of equation (9) is valid ther-
modynamically, the numerical evaluations of ln
(aiX-/a!X) [at 950 = ('C) < 1400] by Wood and
Banno are based upon the assumption that ortho-
enstatite-diopside solvus-pairs can be treated ap-
proximately as coexisting'ideal crystalline solutions.
Consequently, since the nonideality of the crystalline
solutions has not been accounted for in the activity
terms in equation (9), the values of Aflo and ASo in
this equation (20.27 kcal/gfw and 10.63 cal/deg-gfw,
respectively) are a function of not only the diferent
free energies of the crystal structures, but also the ex-
cess properties of the crystalline solutions. However,
because these values are only partly a function of the

nonideality of the crystalline solutions, AIlo and ASo
in equation (9) cannot properly be described as ther-
modynamic excess functions (c/ Holst, 1978, p. 84).
(4) Phase relations of coexisting, nonisostructural
crystalline solutions are dictated in part by the values
of AGS and relative activities for the components cal-
culated from solvus data will be inaccurate if these
values are not taken into account. This is well ex-
emplified by the phase relations and thermodynam-
ics of the Mg.SirOu-CaMgSirOu system, because or-
thoenstatite-diopside solvus-pairs are stable and
show continuously-increasing mutual crystalline so.
lution to extraordinarily high temperatures.6 At 20
kbar, orthoenstatite + diopside is stable up to at least
l600oc, and Mori and Green (1976) report that, at
th is  P and T,  Xro:0.1048 and Xr" :  0 .208.  At
1600"C it is probably valid to assume that the pyrox-
enes are nearly ideal and, accordingly (provided that
Mori and Green's solvus data are accurate), from
equations (2) we obtain the following maximum val-
ues for AGiand AGi at this temperature:

AGI = RTln (X,"/ X,") : 456 cal/Bfw

and

AGi = RThr (X,"/ X2") : 2552 cal/ gfw

The result AGi >> AGi suggests that the unusual to-
pology of the orthoenstatite-diopside solvus (that is,
the marked shift of the diopside limb of the solvus to-
ward MgrSi,Ou aI high temperatures) is attributable
to the extreme instability of orthorhombic diopside,
and this is in complete accord with the fact that this
phase has never been observed in either natural rocks
or experimental samples.

From equations (2) it is also apparent that AGiand
AGr"values should be accounted for in calculations of
relative activities for the components in the pyrox-
enes at low temperatures where the phases must be

6 It is inappropriate here to discuss the controversy regarding
the existence of an "iron-free pigeonite"-diopside solvus in the
Mg2Si2O6-CaMgSi2Ou system (for comprehensive discussions, see
Mori and Green, 1975, 1976, and Navrotsky and Loucks, 1977).
To simplify the discussion, it will be assumed that the ortho-
enstatite-diopside miscibility gap is a nonisostructural solvus up
to solidus temperatures at 20 kbar (Mori and Green, 1976). If, on
the other hand, a "pigeonite"-diopside solvus is stable at this pres-
sure, then analysis presented here will be partly invalid. In partic-
ular, if this solvus is present and stable up to the solidus
(=1650"C) as suggested by Kushiro (1969), this would indicate
(contrary to analysis given here) that Mg-rich MgrSirOu-
CaMgSirOu pyroxenes are appreciably nonideal at 20 kbar,
1600"c.



appreciably nonideal. For example, for diopside in
equilibrium with orthoenstatite we have from equa-
tion (2a)

RTln at|-: -AGi+ RIln a3l^

and this relation shows that, because AGI is positive,
a""f- is always less than d."f- by a factor of exp(-AGi/
RT). However, because AGi decreases with decreas-
ing temperature, the difference between 4l* and a?"*
also will decrease with decreasing temperature.
(5) Holst (1978, p. 85) calculated a!i' and ffl. for
diopside in equilibrium with orthoenstatite at 30
kbar and I 100"C, but his results are erroneous for
several reasons. First, the value of '(AGxs" that he
used in his calculations should have been -5275 cal/
gfw rather than 5275 cal/gfw. Furthermore, it can be
shown that his activity equation reduces to

a."f- : X!l- (Raoult's law)

Therefore, his method of estimating a.'f- fails to ac-
count for not only the different free energies of the
crystal structures of pure orthoenstatite and cli-
noenstatite (AGf, but also any nonideal behavior of
the MgrSirO6 component in diopside.

The Nernst distribution law for multicomponent A-B
solvus-pairs

The mathematical (thermodynamic) definitions of
the Nernst distribution law for isostructural and non-
isostructural binary A-B pairs listed previously
[equations (4) and (7)] are also valid for multi-
component A-B pairs, but applications of these
equations are more complicated for multicomponent
crystalline solutions. When A and B are binary, X,o,
X," and Ko are fixed values. However, when A and B
are multicomponent crystalline solutions, X,^ and
X," are a function of the bulk composition of the sys-
tem, and Ko may or may not be constant depending
upon the thermodynamic properties of the crystalline
solutions. For example, suppose A and B are non-
ideal ternary crystalline solutions each containing a
trace amount of component l. If the amount of com-
ponent I in each phase is sufficiently small to be in
the compositional range of Henrian behavior, then
Tre, yrs and Ko will be essentially constant with small
changes of X, in A and B (for nonisostructural crys-
talline solutions, AGI is always consiant at a fixed P
and 7). However, if component I is present in A and
B in greater than "Henrian quantities," then 7rn, yrn,
and Ko will be a function of the bulk composition of
the system. For additional discussion of Henrian be-
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havior of trace elements in crystalline solutions, and
precautions required in interpretation of trace-ele-
ment data, see Dowty (1977), Mysen (1978), and
Navrotsky (1978).

Crystal-structure effects also must be considered in
a thermodynamic analysis of trace-element distribu-
tion between coexisting crystalline solutions. For ex-
ample, when component I is a trace component in
multicomponent and isostructural phases A and B
coexisting at equilibrium at a fixed P znd T, we have
from equation (4), ln KD : ln (I,u/fro), so equiparti-
tioning (K" : l) can occur only when y,o : 7,". On
the other hand, if A and B are nonisostructural, then
we have from equation (7), ln ,KD : LG?/ RT + ln
(f,r/y,o), and in this instance equipartitioning can
occur only when y,o : y,s €xp (LG?/RT) (cl Holst,
1978, p. 85).

Conclusions

It has been demonstrated that applications of the
Nernst distribution law to coexisting crystalline solu-
tions can be considerably more complex than in-
dicated by Holst (1978). In particular, Holst did not
consider the complexities and constraints introduced
when the coexisting phases are nonisostructural. A
strict accounting for the effects of crystal structure is
particularly important in a thermodynamic analysis
of orthoenstatite-diopside equilibria because these
phases have significantly diferent structures.

Acknowledgments
I am indebted to R. T. Cygan, G. A. Merkel, B. L. Schmidt, and

M. K. Seil for reviewing an earlier version of the manuscript and

offering numerous valuable suggestions for its improvement.

However, the responsibility for any errors or ambiguities that re-

main lies squarely on the shoulders of the writer.

References
Blencoe, J . G. (1977) Computation of thermodynamic mixing pa-

rameters for isostructural, binary crystalline solutions using
solvus experimental data. Computers & Geosciences, J, 1-l 8.

Dowty, E. (1977) The importance of adsorption in igneous parti-

tioning of trace elements. Geochim. Cosmochim. Acta,4l,1643-

1646.
Guggenheim, E. A. (1967) Thermodynmics. North-Holland, Am-

sterdam.
Holst, N. B., Jr. (1978) The use of thermodynamic excess functions

in the Nernst distribution law. Am. Mineral.,6J, 83-86.
Kerrick, D. M. and L. S. Darken (1975) Statistical thermodynamic

models for ideal oxide and silicate solid solutions, with appli-
cation to plagioclase. Geochim. Cosmochim. Acta, 39, l43l-
1442.

Kushiro, I. (1969) The system forsterite-diopside-silica with and
without water at high pressures. Am. J. Sci., 267A (Schairer
Yol.\.269-294.

BLENCOE: DISCUSSION



l  128 BLENCOE: DISCUSSION

Lindsley, D, H. and S. A. Dixon (1976) Diopsid€-€nstatite equi-
libria at 850oC to 1400'C, 5 to 35 kb. Am. J. Sci.,276, t2BS-
1 3 0 1 .

Mori, T. and D. H. Green (1975) Pyroxenes in the system
Mg2Si2O6-CaMgSi2Ou at high pressure. Earth Planet. Sci. Leu.,
26.277-286.

- and _ (19j6,) Subsolidus equilibria berween pyrox_
enes in the CaO-MgO-SiO2 system at high pressures and tem-
peratures. Am. Mineral., 6l, 616-625.

Mysen, B. O. (1978) Limits of solution of trace elements in miner-
als according to Henry's law: review of experimental data. Geo-
chim. Cosmochim. Acta, 42, 8'7 1-885.

Navrotsky, A. (1978) Thermodynamics of element partitioning:
(1) systematics of transition metals in crystalline and molten sil-
icates and (2) defect chemistry and "the Henry's law problem."
Geochim Cosmochim. Acta, 42, 887 -902.

- and D. Loucks (1977) Calculation of subsolidus phase re-

lations in carbonates and pyroxenes. Phys. Chem. Minerals, l,
109-t27.

Nehru, C. E. and P. J. Wyllie (1974) Electron microprobe mea-
surement of pyroxenes co€xisting with HrO-undersaturated liq-
uid in the join CaMgSi2Ou-MgrSi2O6-H2O at 30 kilobars, with
applications to geothermometry. Contfib. Mineral. Petrol., 48,
22t-228.

Thompson, J. B., Jr. (1967) Thermodynamic properties of simple
solutions. In P. H. Abelson, Ed, Researches in Geochemistry,
Vol. 2, p. 340-361. Wiley, New York.

Wood, B. J. and S. Banno (1973) Garnet-orthopyroxene and or-
thopyroxene-clinopyroxene relationships in simple and com-
plex systems. Contrib. Mineral. Petrc|., 4 2, lW-124.

Manuscript received, September 5, 1978;
acceptedfor publication, April 26, 1979.


