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Abstract

The coexisting compositions of coherently exsolved phases are given by the coherent
solvus. Robin's (l974b) method for calculating the coherent solvus has been modi-fied to al-
low a more accurate treatment of the compositional strains. Variations in the input parame-
ters for the calculations are considered, and provided that the hydrostatic solvus is accurately
known and correctly represented by Margules parameters, the lack of knowledge of the unit-
cell parameters at the temperature of exsolution is the principal source of uncertainty for
most mineral systems.

The coherent solvus has been calculated for four binary systems. For the monoclinic alkali
feldspars, one of the calculated coherent solvi agrees reasonably well with the experimentally
determined solvus, except for the Ab-rich limb. The lamellar orientation is predicted to be
about (801). For the iron-free clinopyroxenes, one of the calculated coherent solvi is de-
pressed only a few degrees below the hydrostatic solvus, and the lamellar orientations pre-
dicted are 3o from (001) toward c, and7" from (100) toward a. The calculation for the neph-
eline-kalsilite system requires extrapolation of the unit-cell parameters from nepheline-rich
compositions, introducing a large uncertainty. The calculations predict a 350"C depression
for (100) lamellae, and a greater depression for (CX)l) lamellae. If a critical temperature of
720"C is assumed for the hydrostatic solvus of hematite-ilmenite, the coherent solvus appears
to be depressed about 320'C for (@l) lamellae.

Introduction

There has been considerable recent interest in the
significance of the orientations and compositions of
lamellar intergrowths of minerals resulting from ex-
solution. Some lamellue Lte non-coherent: that is.
there is no lattice continuity across the lamellar inter-
face. For such cases, Bollman and Nissen (1968) de-
veloped a model of optimal phase boundaries which
allows one to find the orientation of least lattice mis-
match between two phases having nearly parallel
crystal axes. Presumably the lamellae boundaries will
adopt this orientation of least interfacial energy.
Robin's (1977) method, using the Mohr circle, is a
sinpler atrd more elegant way of obtaining the orien-
tation of least mismatch, and it also provides the an-
gular deviation of any lattice direction between the
two lattices. For these non-coherent lamellae, the cell
parameters and compositions will be the same as
those for the isolated single-crystal materials.

In contrast, some lamellae are coherent; that is, the
lattice is continuous across the lamellar interface. An
important consequence of this coherency is that both
phases are elastically strained. In this case the orien-
tation of the lamellae will be such as to minimize the
elastic strain energy; this includes considerations
both of lattice mismatch and of elastic anisotropy for
the two phases. Willaime and Brown (1974) have
made calculations of the orientations of coherent la-
mellae for alkali feldspars. However, these calcu-
lations do not include a consideration of the compo-
sitions of the coherent lamellae.

In general, the compositions of coherent exsolution
lamellae, defined by the coherent solvus, are not the
same as those for strain-free non-coherent lamellae
at the same temperature and confining pressure.
These differences arise from the elastic strain energy
associated with lattice continuity between phases of
different compositions. To date, the coherent solvi for
minerals have been investigated only for the alkali
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feldspars. These studies include experimental deter-
minations (Yund, 1974; Sipling and Yund, 1976) and
theoretical calculations (Robin, 197 4a,b).

We have started with Robin's (l97ab) elegant for-
mulation for calculating the coherent solvus and
have made some modifications in how the composi-
tional strains are treated, included new data for the
alkali feldspars, and extended the calculations to
three additional binary systems. Another purpose
was to determine which of the input parameters in
the calculations are the most significant by varying
the values of these parameters within reasonable lim-
its to determine the effect of each on the position of
the calculated coherent solvus. We believe that these
results, together with the additional discussion of the
basic procedure, will help to demonstrate both the
potential and lirnitation of this approach, given the
data available for most binary mineral systems.

Discussion of method

General considerations

Principles of the calculation of a coherent solvus
were first discussed by Cahn (1962), and calculations
for alkali feldspars were made by Robin (1974b). In
order to calculate the position of the coherent solvus,
one would fike to know: (l) the unit-cell parameters
as a function of composition, temperature, and pres-
sure. in order to calculate the elastic strains associ-
ated with coherency at the conditions of exsolution;
(2) the elastic constants as a function of composition,
temperature, and pressure, in order to derive the
elastic stresses associated with the coherency strains
and to calculate the total elastic strain energy; and (3)
the position of the hydrostatic solvus and a suitable
expression for the free energy ofthe solid solution as
a function of temperature and pressure. A brief dis-
cussion of these input factors is presented in the fol-
lowing sections, with an emphasis on the modifica-
tions that we have made in Robin's (1974b) method.

Calculations of the lanice strains

In order to evaluate the elastic strain energy, the
lattice strains associated with the coherency must be
known. The stress-free compositional strains are
those which are required for a lamella of one compo-
sition to match up with a lamella of another compo-
sition, in the absence of external stresses. These may
include longitudinal strains along a lattice direction,
and shear strains associated with changes in lattice
angles. Robin (1974b) used a linear approximation

for the variation of the monoclinic alkali feldspar
unit-cell parameters with composition, choosing his
line tangent to each cell parameter curve at the com-
position of the critical point of the hydrostatic solvus.
He then defined compositional strain coefficients
which, multiplied by the differences in composition
of the lamellae, give the compositional strain (of one
lamella relative to the other). For monoclinic symme-
try these stress-free compositional strain coeftcients
are l/a' da/|X, l/b ' db/dx, l/c ' dc/lX, znd 0B/0X,
where Xis the composition in mole fraction.

The simplification of a linear variation of cell pa-
rameters with composition can be avoided if one uses
the actual curve for the cell parameter as a function
of composition, and calculates the slope of the
straight line passing through the values for any two
assumed compositions on the coherent solvus. This
compositional strain coefficient will give the true
strain for these compositions. We have adopted this
procedure, and by a process ofiteration described be-
low, designed to minimize the elastic strain energy,
we are able to obtain the actual strain for the coher-
ent lamellae compositions. This represents our first
modification of Robin's (1974b) method.

For most solid-solution series, cell parameters are
known as a function of composition at room temper-
ature and pressure, but data may be lacking for the
higher temperatures and pressures where exsolution
actually occurs. The absolute value of a unit-cell pa-
rameter is not important, because strain involves
only their differences. However, the thermal expan-
sion may not be the same for both ends of a series, or
there may be a structural change in one end of a se-
ries between room temperature and the temperature
of exsolution. Since the compositional strains are the
most important part of the elastic strain energy, this
lack of data on cell parameters can be critical, as will
be shown by some of the examples we discuss.

Calculation of the principal strains

The stress-free compositional strains for the three
lattice directions cannot be used directly to calculate
the elastic strain energy. Instead one must derive
from them the principal strains (the orthogonal direc-
tions of greatest, intermediate, and least composi-
tional strain within the crystal). The symmetry of the
principal strains must conform to crystal symmetry.
For monoclinic crystals one of the principal strain
axes is parallel to the diad axis, usually D, and the
Mohr circle can be conveniently used to determine
the orientations of the other two axes. which lie in
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the a-c plane (Robin, 1974b, 1977). There are two
different cases (Fig. l). In one case (Fig. la), the
Mohr circle does not intersect the y axis. This hap-
pens when all unit-cell parameters in the lamellae of
one composition are larger than the corresponding
parameters in the lamellae of the other composition.
In this case there is a single direction of minimum
strain in the a-c plane. In the other case (Fig. lb) the
Mohr circle does intersect the ), axis. This happens
when some unit-cell parameters in lamellae of one
composition are larger and some are smaller relative
to the same parameters in lamellae of the other com-
position. [n this case there are two directions of zero
strain in the a-c plane. One can determine the value
of the minimum strain, as well as the crystallographic
orientations of the direction of minimum or zero
strain, directly from the Mohr circle (Robin, 1977).

Elastic anisotropy

Coherency requires that the lattice be continuous
between the two coexisting phases, and the lattices of
the two phases are therefore elastically stretched or
compressed. The elastic anisotropy of the crystal will
contribute to determining the interface orientation of
minimum elastic strain energy. If the principal com-
positional strains were all the same, the lamellae
would form parallel to the plane containing more
compliant directions (those directions for which it
takes a lower stress to accomplish the same strain). In
fact the anisotropy of the compositional strain is gen-
erally more important than the elastic anisotropy, be-
cause the compositional strain terms in the ex-
pression for the elastic strain energy are squared. For
many mineral systems the plane of coherent ex-
solution will therefore be close to the plane of mini-
mum compositional strain (Willaime and Brown,
1974).The values of the elastic constants will also af-
fect the magnitude of the strain energy and thus the
depression of the coherent solvus. Stiffer constants
will result in a larger elastic strain energy and a
greater depression of the coherent solvus.

For most solid solution series, the elastic constants
are not known as a function of composition. In
Cahn's (1962) and Robin's (1974b) formulations the
strain energy is calculated for the system as a whole,
and not separately for the two lamellar compositions,
and just one set of elastic constants is used. Ideally
one should use the constants for an intermediate
composition in the calculations, but using the con-
stants for one end member probably does not in-
troduce serious error. The elastic constants have not

Fig. l. Examples of Mohr circle construction for determining
the stress-free compositional strains in the a-c plane for mono-
clinic minerals. Shear strains (r) are plotted on the vertical axis
and normal strains (e) on the horizontal axis. The compositional
strains parallel to a and c (l/a'ila/dX and l/c'dc/0X respec-
tively) are represented by the points A and C. The shear strain in
the a-c plane @P/dX) is represented by the interval B. The inter-
cepts of the circle on the e axis define the maximum (e 1 and the
minimum (e3) normal strains. If both a and c increase on going
from lamellae of one composition to those of the other composi-
tion. then the Mohr circle does not intersect the r axis and there is
one direction of minimum strain, as shown in Fig. la. The alkali
feldspars are an example of this. If 4 increases and c decreases (or
vice versa) on going from lamellae of one composition to those of
the other composition, then the Mohr circle does intersect the r
axis and there are two directions of zero normal strain (D), as
shown in Fig. lb. The iron-free clinopyroxenes are an example of
this. The crystallographic orientations of these zero or minimum
strain directions can be read directly from the diagram.

been measured as a function of temperature and
pressure for most minerals, so we do not know the
values appropriate to the actual conditions of ex-
solution. Again, however, use of room temperature
and pressure constants is likely to introduce only
small errors in the coherent solvus determination.
(See the discussion in Robin, 1974b, p. 1308-1309,
and in Willaime and Brown, 1974,p.326-327.)

Elastic strain energy

From the principal compositional strains and the
elastic constants, the elastic stresses and strains asso-
ciated with coherency on a given plane can be calcu-
lated, and these elastic stresses and strains can be
used to calculate the elastic strain energy. For miner-
als of monoclinic or higher symmetry, there will be
elastic strains both within the coherency plane and
along other directions (including the direction per-
pendicular to the lamellae), but the only two non-
zero principal stresses will be those within the cohe-
rency plane. Some of these elastic stresses and strains
are known, and some must be solved for. Within the
coherency plane, the sum ofthe elastic strains along
each of the two principal directions for the two types
of lamellae should be equal to the corresponding
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stress-free compositional strains between the two dif-
ferent compositions of lamellae. Knowing these two
elastic strains and the (average) elastic constants for
the material, we can use Hooke's law (r, : Cii €i
where r, are the stress components, €j the strain com-
ponents, and C,, the elastic stiffnesses; see Nye, 1957)
to write expressions relating the elastic stresses and
strains. The two unknown principal stresses in the
coherency plane, and the unknsv/1 principal strain in
the direction normal to the coherency plane, can then
be solved for.

Once we know the elastic stresses and strains. we
can calculate the elastic strain energy E, which is de-
fined as:

8,,: Vz r, ei

For minerals of monoclinic or higher symmetry there
are only two non-zero stresses, and this expression
simplifies to:

E : Yz (e.t r, * et rt) (2)

where r21 r31 €3 are the principal elastic stresses and
strains, respectively, within the coherency plane.

Robin (1974b) used stress and strain coefficients
instead of stresses and strains. and included the mo-
lar volume, in order to write the elastic strain energy
in terms of a molar strain energy coefficient k, which
yields the strain energy when multiplied by the dif-
ference in composition between the lamellae and the
bulk:

E:k (x -  x ) ' (3)

where X is the composition of the lamella and Xo is
the bulk composition, and k has units of cal/mole.
We have used this same expression, with the ex-
ception that our strains are exact rather than a linear
approximation. In addition, we have taken (X - X")
to be half the compositional difference between the
lamellae; thus we assume a slightly different bulk
composition for each temperature, if the hydrostatic
solvus is asymmetrical. The coherent solvus varies
slightly for different bulk compositions (Cahn, 1962),
but this should introduce only a slight error into our
calculations. We have preliminary experirnental data
on the position of the coherent solvus for alkali feld-
spars as a function of bulk composition, indicating
that for bulk compositions of Orr. and Ornr, the posi-
tion of the coherent solvus varies only a few mole
percent at 500o and 530"C.

Coherent solvus

In order to calculate the coherent solvus composi-
tions, Robin (1974b) derived a new function (f),

which is equal to the molar Gibbs energy (G ) plus the
strain energy term:

+ :e  +k(X -  Xo)2  (4 )

He then shows that a Margules expansion of p is for-
mally identical to Thompson's (1967) equation (81)
for G, except that W, and W, in Thompson's equa-
tions are replaced by (W, - k) and (% - k). W, and
W, are the Margules parameters for G and are lin-
early dependent on temperature and pressure. Thus
Robin's equations (E2a) and (E2b) can be used to
solve for the coherent solvus compositions which sat-
isfy the expressions for W, and Wr, given some value
of k. The greater the magnitude of the strain energy
coefficient k, the greater the depression of the coher-
ent solvus. Robin (1974b) assumed a linear variation
of lattice parameters and no variation of k with tem-
perature, and hence he calculated a single value for k.

We have modified Robin's procedure in order to
determine both the orientation and the magnitude of
the minimum elastic strain energy coefficient k at
each temperature rather than assuming a single value
at all temperatures. This procedure represents our
second principal modification to his method. Our
procedure requires many iterative calculations, so we
have incorporated the steps into a computer pro-
gram. We first assume compositions for the coherent
solvus at a given temperature, and calculate the re-
sulting lamellar orientation (i.e., thal. of minimum
elastic strain energy) and the elastic strain energy co-
efficient k. We then use this value for k to resolve
Robin's equations (E2a) and (E2b) numerically. If
the compositions which satisfy these equations are
different from the assumed compositions by more
than 0.01 mole percent, the calculation is repeated
using the new values of the assumed compositions.
Each time new values for the compositional strain
coefficients are redetermined from the equations for
the cell parameters as a function of composition, a
new orientation of the lamellae is calculated, and the
elastic strain energy for this orientation is deter-
mined. Details and slight differences in the procedure
for each of the binary systems are given below.

Obviously one uncertainty in calculating a coher-
ent solvus is the accuracy with which the hydrostatic
solvus is known. However, even if the hydrostatic
solvus is known exactly, there is still a question as to
how well the Margules parameters describe the
Gibbs energy for the solid solution. The accuracy of
this representation is not well known, and may be an
important error in the determination of the coherent
solvus for some systems.

( l )
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Applications

Alkalifeldspars

The results for the monoclinic alkali feldspars il-
lustrate many of the practical problems and uncer-
tainties in calculating a coherent solvus. We have
tested the effect of variations in the hydrostatic
solvus, the cell parameters as a function of composi-
tion and temperature, and the elastic constants. We
have compared these various calculated solvi with
that calculated by Robin (1974b) and with that ex-
perimentally determined by Sipling and Yund
(re76).

Considerable experimental work has been devoted
to determining the position of the hydrostatic solvus,
and these studies are discussed and evaluated by Par-
sons (1978). The earlier data were evaluated by
Thompson and Waldbaum (1969), and their estimate
for the solvus (TW solvus) was used by Robin
(19'74b) for his calculations. We have also used the
TW solvus for one set of calculations, but we used
the I bar rather than the I kbar solvus. For the other
set of calculations we used the results of a study by
Smith and Parsons (19'74) (SP solvus), which differs
from the TW solvus principally on the Or-rich limb
as shown by curves a on Figures 2 and3 respectively.
The relations for W, and W, were calculated from
Smith and Parson's (1974) experimental data for run
times longer than 2300 hours and for both homoge-
neous and mixed gel starting materials (curve "C" on
their Figs. 5 and 6). We calculated the solvus for I
bar using their value of l6"C/kbar for d[.,/dP, and
the expressions for W, and W, are given in the Ap-
pendix.

We have used two sets of relations for the cell pa-
rameters as a function of composition. The first set is
Orville's (1967) room-temperature cell parameters
for the sanidine-high albite series. Although accu-
rately determined, these are not necessarily the best
values for our purpose. Our calculations assume
monoclinic symmetry for both phases, which is prob-
ably correct at the temperature of exsolution for most
bulk compositions (Sipling and Yund, 1976). How-
ever, Orville's compositions between Oro and Or- are
triclinic at room temperature, because of the non-
quenchable monoclinic-triclinic transformation in
Ab-rich compositions (Kroll and Bambauer, l97l).
Thus the cell parameters in this compositional inter-
val are not strictly applicable for our calculations at
higher temperatures where the Ab-rich compositions
are monoclinic. Robin (1974b) has also used Orville's
(1967) cell parameters for his calculations, although

he has assumed a linear relation, by taking the slopes
of tangents at a bulk composition of Orrr.

Our second set of cell parameters is estimated for
500"C from thermal expansion data. We have used
the data for Or,5o, Oroo, and Orro from Henderson and
Ellis (1976), and the data for Oro from Grundy and
Brown (1969). The cell parameter curves as a func-
tion of composition are essentially parallel at all tem-
peratures, and we have arbitrarily chosen to use the
parameters for 500"C for all solvus temperatures.
These second-order polynomial relations are given in
the Appendix.

Table I illustrates how these two sets of cell pa-
rameters affect the calculations. The first four col-
umns list the stress-free compositional strains for co-
existing compositions of Or,o and Oru,, near the
critical temperature of the coherent solvus, for the
two sets of cell parameters. The high-temperature pa-
rameters give significantly lower strains. Table I also
shows that the direction of minimum compositional
strain varies somewhat with the coexisting composi-
tions and with the cell parameters. (See Willaime and
Brown, 1974, Table 3, for similar calculations.) The
elastic constants for feldspar are poorly known (Will-
aime and Brown, 1974; Robin, 1974b; Tullis, 1975),
but the elastic anisotropy does not strongly affect the
lamellar orientation; the plane of minimum elastic
strain energy is essentially the same as the plane of
minimum compositional strain. Table I gives values
of the elastic strain energy coefficient calculated us-
ing Robin's (19'74b) stiffer set of elastic constants. The
last two columns show how this coefficient varies
with the cell parameters and with the coexisting com-
positions. These values should be compared with the
single value that Robin (1974b) obtained (704.6 cal/
mole), using the linear approximation of the room-
temperature cell parameters.

The results for some of our calculations of the co-
herent solvi are shown in Figures 2 (TW solvus) and
3 (SP solvus). The coherent solvus shown on both
figures as curye b is the one determined experimen-
tally by Sipling and Yund (1976). There is an uncer-
tainty in the location of their solvus, especially the
Ab-rich limb, of probably a few mole percent, be-
cause of experimental error and the fact that the
compositions determined from X-ray data must be
corrected for elastic strain using the method of Tullis
(1975). However, this experimentally determined
solvus is a valuable reference for the calculated
curves, in part because its determination is independ-
ent of the position of the hydrostatic solvus.

Robin (1974b) calculated the coherent solvus for
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Table l. Calculated parameters for alkali feldspars

Stress- f ree
compositlonal stralns

( 7 " ) *

Direction of mlnimum
compos l t lona l  s t ra in

(degrees  f ron  e  toward  a) * *

5zooc aoooc

7 . 7

Stra in  energy
coef f l c ien t  k
(cal/no1e ) 'k**

Szooc, 3ooocb

2 5 o C  c e l l
parameters

500oc ce1 l
parameters

0 . 7 5  0 . 5 2  0 . 2 9

0 . 5 1  0 . 4 8  0 . 1 9

a

t . o t

2 . 9 8

6LA8198 . 6

For  co-ex is t ing  compos i t ions  o f  Or rO and OrUr .

The plane of nlnimum composltional straln lncludes this dlrectlon and the L axis.

S t ra in  energy  ca lcu la ted  us ing  Rob in 's  (L974b)  s t t f fe r  se t  o f  e las t i c  cons tan ts .
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o.o o.2 0.4 0.6 0.8 t.o
Ab Or

Fig. 2. Temperature-composition diagram for alkali feldspar,

showing calculations based on the hydrostatic solvus ofThompson

and Waldbaum (1969), which is shown for I bar by curve a. Curve
b is the coherent solvus experimentally determined by Sipling and
Yund (1976). Curves g and h are the coherent solvi calculated by
Robin (1974b) for the less stitr (g) and stiffer (h) set of elastic
constants. Curves c and d are the coherent solvi we have

calculated using the same room-temperature cell parameters and

the same elastic constants, but calculating the compositional
strains more accurately. Curves e and f are the coherent solvi we

have calculated using the estimated high-temperature cell
parameters and the same elastic constants.

the two sets of elastic constants using the I kbar TW
solvus. We have recalculated his curves, using his ex-
act method except with the I bar solvus data. These
are shown by curves g and h on Figure 2; the stiffer
elastic constants result in a coherent solvus which is
more depressed. Our results for the room-temper-
ature cell parameters, using the same elastic con-
stants but calculating the compositional strain more
accurately and separately at each temperature, are
shown by curves c and d on Figures 2 and 3. Our re-
sults for the 500oC cell parameters, again for the two
sets of elastic constants, are shown by curves e and f
on Figures 2 and3. The 500'C cell parameters result
in lower compositional strains, and thus coherent
solvi which are less depressed.

For calculations based on the TW solvus (Fig. 2),
the difference between Robin's (1974b) calculated
coherent solvi and ours is small. Our curves for the
room-temperature cell parameters are only slightly
closer to the experimental coherent solvus, despite
our more accurate calculation of the compositional
strains at each temperature. This suggests that im-
provements in the calculated coherent solvus must
involve chaqges in the other input parameters.

For the TW solvus, it is interesting that the 5@oC
cell parameters provide a much worse fit to the ex-
perimental solvus. In addition, for the room-temper-
ature cell parameters, the less stiff elastic constants
provide a better fit to the experimental solvus, for
both Robin's calculations and ours. It would seem
more reasonable for the high-temperature cell pa-
rameters and the stiffer elastic constants to provide a
better fit, and this is seen to be the case for our calcu-
lations based on the SP solvus (Fig. 3, curve f). This
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calculated curve provides a good fit for the depres-
sion of the crest and the position of the Or-rich limb,
compared to the experimental coherent solvus (curve
b). However, the Ab-rich limb is too wide on this (as
well as all other) calculated coherent solvus. Changes
in the elastic constants cannot improve the fit on this
limb. One possible explanation is the uncertainty in
the Ab-rich cell parameters, as already noted; this af-
fects both the corrections applied to the experimental
compositions on this limb, as well as the calculations
of the coherent solvus. In addition to the uncertainty
in the hydrostatic solvus compositions, there is a
question as to how accurately the Margules parame-
ters represent the Gibbs energy as a function of com-
position.

Another factor, probably less significant, is related
to a fundamental aspect of Robin's (1974b) and
Cahn's (1962) formulation. The elastic strain energy,
and hence the coexisting compositions, are independ-
ent of the bulk composition only if the elastic con-
stants and the compositional strain coefficients do not
vary with composition. As the volume fraction of one
phase decreases it will be strained more relative to
the dominant phase, and this will result in an overall
increase in the total elastic strain energy ifthe phases
have different elastic constants. A completely new
formulation would be necessary to take this into ac-
count, and given the present uncertainty in the data
it is not worthwhile to attempt this.

I ron-free clinopyroxenes

The hydrostatic solvus for iron-free pigeonite is
not well known. We have used the one-bar solvus
from Kushiro's (1972) Figure 2. The diopside-rich
side of the solvus is largely from Boyd and Schairer
(1964). We assume that the iron-free pigeonite in
Kushiro's diagram has the diopside structure (C2/c)
at high temperature. We have extrapolated the solvus
metastably above the incongruent melting temper-
ature (-1388"C) and below the breakdown to pro-
toenstatite and diopside (1200-1300"C) by using the
"r-s" method of Thompson and Waldbaum (1969).
This is shown as curve a on Figure 4. The relations
for W, and W, are given in the Appendix.

Cell parameters for clinopyroxenes as a function of
composition at room temperature were reported by
Turnock et al. (1973). New cell parameters were re-
cently published by Newton et al. (1979); their values
are in good agreement and would not significantly
change our results. The Mg-rich compositions prob-
ably do not have the A/c structure. Smith (1969a)
and others have shown that there is a significant dif-
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Fig. 3 Temperature-composition diagram for alkali feldspars,
showing calculations based on the hydrostatic solvus of Smith and
Parsons (1974), which is shown for I bar by curve a. Curve b is the
coherent solvus experimentally determined by Sipling and Yund
(1976). Curves c and d are the coherent solvi we have calculated
using the room-temperature cell parameters; c represents the less
stiff elastic constants, and d the stiffer set. Curves e and f are the
coherent solvi we have calculated using the estimated high-
temperature cell parameters and the same elastic constants.

ference between the room- and high-temperature cell
parameters for these compositions. Thus we have
used three sets of cell parameters. One is a third-
order polynomial fit to the room-temperature data
from Turnock et al. (1973). Second is a linear fit to
only the diopside-rich compositions, extrapolated
into the Mg-rich regions. We believe, however, that a
third set is best even though it is based on only two
compositions. These are the ll00'C values for Mg,n
Cao,SirOu reported by Smith (1969b),  and the
I100"C values for diopside calculated from the high-
temperature thermal expansion data of Cameron et
al. (1973). We will refer to these as the third-order
polynomial, the linear, and the high-temperature
data sets, respectively. The equations describing the
cell parameters for these three data sets are given in
the Appendix.

In contrast to the alkali feldspars, the Mohr circle

500

400
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Fig. 4. Temperature-composition diagram for iron-free
clinopyroxenes. Curve a is the hydrostatic solvus, taken from
Kushiro (1972) and Boyd and Schairer (1964), and extrapolated
metastably to higher and lower temperatures. Curves b, c, and d
are the coherent solvi we have calculated based on the room-
temperature cell parameters ofTurnock et al. (1973); curve b is for
the orientations of zero compositional strain, l7o and 48o from a
away from c; curve c is for (001) orientations; and curve d is for
(100) orientations. Curve e is the coherent solvus we have

calculated based on the linear fit to the room-temperature cell
parameters, for the two directions of zero compositional strain,
(100) and 7o from c toward a. The coherent solvus we have

calculbted based on the high-temperature cell parameters is

essentially indistinguishable from the hydrostatic solvus, and so is

also represented by curve a.

for the compositional strains for the iron-free clino-
pyroxenes intersects the y axis, as shown in Figure
la. Thus there are two directions of zero longitudinal
strain in the a-c plane, rather than a single direction
of minimum strain as was true for the alkali feldspars.
In fact the compositional strains in any direction

within the a-c plane are small, and thus the particu-
lar values of the cell parameters are very important
for predicting the lamellae orientation. This is shown
clearly in Table 2. However, the coherency strain and
the depression of the coherent solvus are due primar-
ily to the misfit along D. The compositional strains
for coexisting compositions of Dir" and Dirr, for the
three sets of cell parameters, are given in Table 2.
The high-temperature cell parameters give lower
strains and hence a coherent solvus which is less de-
pressed.

We have used the room-temperature elastic con-
stants for diopside (composition not given) measured
by Aleksandrov et al. (1964), with the correction that
C,r, Crr, C:s, &rd Cou are positive (Baker and Carter,
1912). We have also done calculations for the case
where each of these stiffnesses is multiplied by l.l
and by 1.2. In addition we have done calculations us-
ing the room-temperature constants for augite mea-
sured by Aleksandrov et al. (1964). In all cases the
planes of minimum elastic strain energy are essen-
tially the same as the planes of zero compositional
strain listed in Table 2. and the differences between
the various coherent solvi are negligible.

Some of our calculated coherent solvi are shown
on Figure 4. For the third-order polynomial data, the
coherent solvus for the directions of zero composi-
tional strain (orientations given in Table 2) is shown
as curve b. For comparison, we have calculated the
coherent solvus for two fixed orientations, (001)
(curve c, k is approximately 650 callmole) and (100)
(curve d, k is 1060 callmole). The coherent solvi for
these orientations are depressed more than twice as
much as that for the zero strain directions. and thus
one should not expect to see coherent lamellae with
these orientations in slowly cooled rocks. Fletcher
and McCallister (1974) calculated the crest of the co-
herent spinodal, which must be tangent to the crest of
the coherent solvus, for (001) orientations for iron-
free pyroxenes, using room-temperature cell parame-
ters. They calculated a depression of I l0oC, which is
in good agreement with our value of 120"C.

For the linear cell paraqreter data, the coherent
solvus for the two orientations of zero stress-free
compositional strain is shown by curve e on Figure 4.
For the high-temperature cell parameter data, the co-
herent solvus for the two orientations of zero stress-
free compositional strain is only depressed below the
hydrostatic solvus by a few degrees, and hence is not
shown on Figure 4.

There is no experimentally determined coherent

r300

r200
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Table 2. Calculated parameters for iron-free clinopyroxenes

t07l

Stress- f ree
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( % ) *
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Strain energy
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( 16  )

( 16  )

x l 'o r  co-ex ls t ing  compos i t ions  o f  D i rn  and D i r ,  (MerS i rOU and CaMgSi rOU end menbers) .

x*A l1  d i rec t lons  l ie  be tween pos i . t i - ve  a  and c .  The p lanes  o f  zero  compos i t iona l  s t ra in
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us ing  the  room tempera ture  s t i f fnesses  fo r  aug i te  (A leksandrov  e t  a l . ,  L964)

inc lude these

were  ca lcu la ted

solvus for the iron-free clinopyroxenes, so we cannot
say which set of cell parameters yields the best coher-
ent solvus. However, McCallister and Yund (1977)
have observed coherent lamellae parallel or within a
degree or two of (001) in experimentally exsolved
iron-free clinopyroxenes. This orientation is close to
one of the directions of zero stress-free compositional
strain for the high-temperature cell parameter data
(see Table 2), and thus we believe this set of calcu-
lations is preferred. Further refinements would re-
quire more accurate high-temperature cell parameter
data as well as better data for the elastic constants.
However, no matter what the exact values. the de-
pression of the coherent solvus will be smaller for
these pyroxenes than for the alkali feldspars, because
they have directions of zero strain in t}ire a-c plane.
This probably explains why the coherent solvus has
not been recognized in phase equilibria studies em-
ploying exsolution experiments (r.e., Boyd and Schai-
rer,1964).

It should not be assumed that the coherent solvus
for iron-bearing pyroxenes will have the same de-
pression as that for the iron-free system, because
both the cell parameters and elastic constants will be
different. Given the uncertainty in the hydrostatic
solvus and cell parameters for the iron-bearing py-
roxenes, we do not believe that calculations of the co-

herent solvi would be worthwhile. The orientation of
exsolution lamellae in iron-bearing pyroxenes has
been discussed by Robin (1977) and Robinson et al.
(re77).

Nepheline-kalsilite

The equilibrium solvus and cell parameters for
nepheline-kalsilite have been recently redetermined
by Ferry and Blencoe (1978). However, the crystal
structure of P6, nepheline (a = l0A) is not the same
as P63 kalsilite (a = 5A), and hence the critical point
(-1240"C at 0.5 kbar) is metastable. Because of this
structural difference, we have extrapolated the room-
temperature cell parameter data from the nepheline-
rich compositions to the kalsilite-rich compositions
(see Appendix). This introduces an unknown but po-
tentially large error in the calculations of the coher-
ent solvus for this system.

Within the limitations noted above, there is no di-
rection of stress-free compositional strain, and the
strains along c and c are both about 2 percent. We
have calculated coherent solvi for both (100) and
(001) lamellar orientations; the crests of the two solvi
are at about 750" and 570"C, respectively. These cal-
culations are based on the less stiff of two sets of elas-
tic constants (Ryzhova and Aleksandrov, 1962). Us-
ing the stiffer set lowers the coherent solvus only
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about 20"C, which is probably much less than the
uncertainty originating from the compositional
strains.

Although the (001) coherent solvus is calculated to
be the more depressed, in nature one observes only
basal orientations of lamellae, ranging from 'crypto-

perthites' to coarse blebs and lamellae (Sahama,
1960). To our knowledge there are no observations
regarding the coherency of these 'cryptoperthite' la-
mellae. Almost all the kinetic data for exsolution in
this system reported by Yund et al. (1972) were ob-
tained at 600"C, but they did not determine the ori-
entation of the exsolved phase, or whether it was co-
herent or not. Nevertheless, exsolution appears to be
very rapid in this. system at all temperatures above
600" C, and coherent nepheline-kalsilite intergrowths
in nature would be unlikely except in the most rap-
idly cooled volcanic rocks.

Although our calculations suggest that the coher-
ent solvus would be accessible to experimental deter-
mination, the relative ease of diffusion of all species
in nepheline-kalsilite compared to feldspars and py-
roxenes suggests that coherent lamellae (if they ever
form) might staft to lose coherency even in labora-
tory experiments. In fact, this might be a suitable sili-
cate system to study how the loss of coherency oc-
curs.

Hematite-ilmenite

Within the constraints set by Lindsley (1973), we
have arbitrarily guessed a hydrostatic solvus with a
critical temperature of 720"C at 46 mole percent il-
menite. Thus our calculations are useful only for
showing the relative depression of the coherent
solvus. Elastic constants for hematite were measured
by Voight (1907), although Birch (1965) believes the
values to be somewhat suspect. The expressions for
W, and W, and the cell parameter data are given in
the Appendix. The stress-free compositional strain is
greater parallel to c than to a; hence the lamellar ori-
entation is expected to be (001). For this orientation,
we calculate the crest of the coherent solvus to be de-
pressed by 320"C.

Natural hematite-ilmenite solid solutions have ex-
solution lamellae parallel to (001) in both metamor-
phic (Rumble, 1976) and igneous (Haggerty, 1976)
rocks. Lally et al. (1974) reported that the lamellar
interface of a natural sample consisted of an array of
dislocations and that the phases were semi-coherent.
Further studies are needed of intermediate hematite-
ilmenite compositions which appear optically ho-
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mogeneous, to determine whether they have a coher-
ent lamellar microstructure. The relatively large de-
pression of the coherent solvus indicates that it is
probably not accessible to experimental study, be-
cause the diffusivities of the Fe and Ti ions would be
too low to achieve exsolution in laboratory times at
these low temperatures (<400"C). Thus studies con-
cerned with how this exsolution microstructure forms
may be restricted to examination of natural speci-
mens.

Conclusions

A knowledge of the coherent solvus is important
for understanding the exsolution behavior of miner-
als. The three principal factors which enter into a cal-
culation of the coherent solvus are: the average elas-
tic constants for the mineral; the cell parameters as a
function of composition; and the position of the hy-
drostatic solvus and its representation by Margules
parameters.

Although the elastic constants for many minerals
are only poorly known, an uncertainty of20 percent
in these values changes the depression of the coher-
ent solvus by only about 20"C, as shown for the al-
kali feldspars and iron-free clinopyroxenes. This sug-
gests that use of room-temperature and -pressure

elastic constants for one end member of a solid-solu-
tion series, instead of those for an average composi-
tion at the temperature and pressure of exsolution,
should not introduce serious error.

Uncertainty in the cell parameters as a function of
composition at the exsolution temperature is a major
source of error, because the compositional strains are
the dominant term in the strain energy expression.
For example, quite different results are obtained for
the iron-free clinopyroxenes depending on whether
one uses the room-temperature cell parameters or the
estimated high-temperature data. This problem is es-
pecially critical when there is a structural discontinu-
ity in the solid-solution series at the temperature
where the cell parameters were measured. This is the
case for the monoclinic alkali feldspars and for neph-
eline-kalsilite, and introduces a potentially large but
unknown uncertainty in the calculated coherent
solvus for these systems.

Clearly any uncertainty in the position of the hy-
drostatic solvus is critical, and for a system such as
hematite-ilmenite in which the hydrostatic solvus is
not known, only a relative depression ofthe coherent
solvus can be calculated. Another error, of unknown
magnitude, concerns how well the Margules parame-
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ters represent the Gibbs energy as a function of com- subject to one or more of the above uncertainties.
position and temperature. Our modification of Hence, at present, an accurate evaluation of the co-
Robin's method does not significantly improve the fit herent solvus for most systems requires experimental
to the experimentally determined coherent solvus for verification. However, calculations of the coherent
the alkali feldspars, using the Thompson-Waldbaum solvus are useful as a guide for experimental studies,
data for the hydrostatic solvus and the room-temper- or for qualitatively predicting and interpreting ex-
ature cell parameters. However, use of the recent solution behavior in minerals.
Smith-Parsons hydrostatic solvus together with the
500'C cell parameters significantly improves the fit, Acknowledgments
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A. Alkal l  Feldspars

1. hrBul€s parareEers for 1 atdosphere solvus

a. fronpson and waldbaun (1969)

g t =  6 3 2 7 ' o  -  4 ' 5 3 2  T

w 2  =  7 6 7 2 - 0  -  3 . 8 5 7  r

b. Smilh and Parsons (1974)

w l  =  2 0 0 4 , 0  +  0 . 4 6 9  T

w 2  -  7 6 3 8 ' 6  -  4 ' 0 2 3  T

2. Celt  paramerers as a funct ion of conposit ion ( in nole percent or)

a. Roon tenperature data (Orv1l le,  1967)

a  =  8 . 1 5 3 2 8  +  o . 3 6 7 4 9 x r o - 2  x  +  0 . 2 5 8 7 x 1 0 - 4  * '  -  0 . r 8 6 8 8 * t 0 - 6  *

b  = t 2 . a 5 1 2 2  +  0 . 4 0 8 7 7 x r 0 - 2  x  -  0 . 3 1 5 6 x 1 0 - 4  x 2  +  o . l 2 t t x t o - 7  x 3

c  =  7  l f r 5  t  0 . 1 6 8 0 5 x 1 0 - 2  x  -  0 . 1 5 0 6 7 x 1 0 - 4  x 2  *  0 . 4 9 3 7 * t o - 7  
" 3

B  =  u 6 . 4 7  -  0 . 3 1 7 7 6 x 1 0 - 2  X  -  1 . 2 5 0 3 x 1 0 - 4  
" 2  

*  1 . t z z * t o - 6  
" l

l .  SOO"C parareters froD therml expansion data of Henderson
and E11ls (1976),  and crundy and Brom (1969).

a  - -  a . 2 o 2  +  5 . 1 5 8 7 x 1 0 - 3  x  -  4 . 1 4 4 5 x t o - 6  x 2

b  = t 2 . 9 o t  +  3 . 0 4 8 * 1 0 - 3  x  -  t . 8 t 0 5 x r 0 - 5  x 2

c  =  l . t z g +  1 . 3 1 4 6 x r 0 - 3  x  -  8  2 8 0 4 x 1 0 - 6  x 2

g = a16.32 - 8.oxro-3 x + a.zuto-5 x2

B. Iroo-free cl lnopytoxenes

1. Margules paraneters for I  acnosphere solvus, f ron Kushiro (1972) and
Boyd and schairet (1964)

u ]  =  1 8 0 4 . 7  +  2 . 6 7 9  T

w 2  =  1 0 , 6 9 1 . 1  -  1 . 7 9 1  T

2. CeI l  paraneters as a funcEion ot conposit ion ( in Dole Percent Di)

a. Room remperature daca (Tumock 4 d.,  1973)

a  =  9 . 5 g l j  +  0 . 4 4 1 1 x 1 0 - 2  x  -  0 . 5 4 1 2 x 1 0 - 4  x 2  *  o . z 5 8 z * t o - 6  x 3

b = 8.8111 + 0.2338x10-2 x -  o L721x1o-4 x2 * o s55a*to-7 x3

g  -  5 . 1 s 6 6  +  o . 2 4 8 3 x r o - 2  x  -  0 . 1 7 1 2 x r 0 - l  
" 2  

*  o . r : 6 2 * 1 0 - 7  x 3

B =  1 0 8 . 1 6  +  0 . l 6 o o x 1 o - l  X  -  0  t 2 9 5 x 1 0 - 2  x 2  +  o  z o 5 a * t o - 5  x 3

b. RooD Eenperature data for dioPside (straighl  l ine f l t  to
coDposiElons > 58 4 nole percent D1)

a  =  9 . 6 1  +  o . 8 x f 0 - 3  X

b  =  8 . 8 6  +  0 . z x t 0 - 3  x

c  =  5 . 2 5

B  =  1 0 9 . 1 5  -  0 . 1 3 5 x 1 0 - 1  x

c. 1100oc daca fron sni th (1969b) and caDeron 9!41. (1973)

a  =  9 . E 7 0  -  o , 4 x 1 o - 3  x

b  =  8 . 9 5 2  +  3 . z x t 0 - 4  x

c  =  5 . 3 3 8  -  s . z x t o -  
 x

B  =  1 1 0 . 4  -  4 . 3 x 1 0 - 2  x

C. Nephel lne-Kalst l i te

1, hrgules paraneEers calculated fron rhe 0 5 kbar data of Ferry and
B r e n c o e  ( 1 9 7 8 )

\ ] L  =  7 4 6 2 ' 2  -  2 ' 2 9  T

u 2  =  3 o o 5 ' o  +  1 ' 7 7  T

2. ce1l paradelers as a funcEion of mole percent Ks INarK(AlSiOa)a
- K /  r A I S i O / ) /  L  b a s e d  o n  c o m p o s l t i o n s  f r o m  3 .  l - 2 2 . 9  m 6 l e  p e r c e n t
K s - ( F e r r y - a ; d  B t e n c o e ,  l C 7 8 )

a  =  1 0 . 0 0 2 3  +  . 0 0 3 1 9  X

c  =  8 . 3 8 7 7  +  . 0 0 1 8 1  X

a * =  . u 5 4 4  -  3 . 6 5 x 1 0 - 5  x

D. Hemrlte- l lneniEe

1. MarSules paraneters for 1 atmosphere solvus, guessed given the
constralnts of Lindsley (1973)

U l  =  9 7 0 . 3  +  2 . 8 0 4  T

v 2  =  1 5 5 . 8  +  3 . 3 7 6  T

2 Cel l  paraneE€rs as afunct ion of conposit ion at roon teDperature! f ron
Lindsley (1965) ( ln mole percent l ln)

a  =  5 . 0 3 5  +  0 . 3 6 0 6 x 1 0 - 3  x  +  0 . 3 2 8 4 x 1 0 - 5  
" 2  

-  o . t 5 o 5 * t o - 7  
" 3

a * =  . 2 2 8 9  -  0  3 9 2 9 x 1 0 - 4  x + 0  t 7 8 6 x 1 o  
o  x 2  -  o . z 9 o 9 * t o - 1 9  x 3

c  =  1 3 . 7 4 t +  0 . 2 8 4 8 x 1 0 - 2  x  +  0  t 2 2 9 x t 0 - 4  x 2  -  o . t 7 : 6 * t o - 6  
" l
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