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Abstract

It has long been recognised that the Fresnel reflectance equations are ill-conditioned for
measurements at normal incidence, but the l imitations of the two-media method of deriving
the refractive index n and the absorption coefficient k have received too little attention. A
direct geometrical interpretation of the equations leads to a simplified but general treatment of
combinations ol measurement errors and their effects. The worst combination of errors results
when the measured air reflectance is too high and the oil reflectance is too low, and there is
evidence that this is not uncommon in practice. Recommendations are made for a routine
procedure in calculations, using a graphical adjunct to computation, which can also be used to
select cases where the derivation of constants may confidently be undertaken. The future
extension of the two-media method depends on the development of a range of primary
reflectance standards, particularly for measurements in oil.

Introduction

The practical possibil i ty of determining the optical
constants of absorbing media from reflectances mea-
sured in different surrounding immersion media has
been recognised since the pioneering work of Koe-
nigsberger (1913). In addition to the experimental
problems of microphotometry, there are l imitations
inherent in the basic reflectance equations that have
received far less attention (Wright, 1919). Recently,
Pil ler and von Gehlen (1964) have discussed the dif-
ferent sources oferror, and have calculated the effects
of given reflectance errors on derived values of the
optical constants, but their treatment of the latter
lacked generality.

The reflectance equations

The basic relations between reflectances measured at
normal incidence and the optical constants are:

R :  l ( n  -  l ) ' +  k ' l / I @  +  l ) 2  +  k 2 l  ( l )

' -R :  { (n -  N) ,  + k l / l (n  + N)2 + kz l  (2)

where r is the refractive index and k the absorption
coefficient of the absorbing medium, R the reflect-
ance in air, and i-R the reflectance in an immersion
oil of refractive index 1/. The symbols R and r-R for
the two-media reflectances are recommended by the
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Commission on Ore Microscopy of the IMA. Al-
though these relations are generally known as the
Fresnel equations, they appear to have been first
derived in this form by Drude (1890) and later used
by Koenigsberger  ( l9 l  3) .

Equation (2) is readily rearranged to the forms

/ t + r - p \
n 2 t  k 2 - 2 n N  

\ ,  _ , - * /  * M =  0  ( 2 a )

and

| ., / r +'-n-)),, * k,: J M,I+_ (2b)
l,? 

- /v \ I _ ,,,,R // 
-r K- : (r-CCI

In these forms they are immediately recognisable as
the equations of circles with centres lying on the n-
axis. The equations for the air reflectances are ob-
tained by substituting R for r'R, with N : L

Holl (1967) has observed that the reflectance equa-
tions for all angles of incidence, and not merely those
for normal incidence, may be represented by families
of circles. Comparison of equation (2a) with the more
general form x' I y" - 2gx -t c : 0 (Coxeter, 1969)
shows that these families of circles are coaxal JetJ, or
pencils; the points (+1,0) and (*N,0) on the r-axis
are the limiting points of the air and oil sets.

If we define q and h as the distances of the centres
of air and oil reflectance curves, respectively, from
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the origin, we have [from equation (2b)]

"=(++) "no h:N(+iffi) (3)
and the radii of the curves are given by

2.R.
radius (air; : (,5- and

)N  l tmp
radius (oil) : 

6*rb 
(4)

Solving equations (l) and (2) to obtain n and k from
measured reflectances, we obtain'the equations

n(carc):;rc#++RT (s)
/ v ( l

( l  _ ' - R )  \ t  _ R /

k(calc)z = Iftr*t", + tl'- (r,"'t",
( 1  - R )

These are sometimes known as the Koenigsberger
equations. The denominator of equation (5) is the
distance between the centres of an oil and an air
reflectance curve, so we may simplify it [from equa-
tion (3)l to the form

z(calc) : ;(lr - t)/(h - a) (5a)

and by substitution in equation (6) we obtain

k(calc)2 : 1(N2a - h)/(h - a)l

- Li(tf - t)/(h - a)l' (6a)

Pepperhoff (1965) has derived comparable equations
containing both the positions of the centres and the
lengths of the radii of the curves, but they have no
additional advantage for our immediate purpose.

Graphical representations of the reflectance equations

The first graphical representations of the reflect-
ance equations were published by Wright (1919), who
plotted curves of constant absorption index (kappa)
on R/n coordinate axes and curves of constant re-
flectance on n/x (kappa) axes. Ponomareva (1958)
plotted curves of constant n and x (kappa), using R/
r-R axes; Piller and von Gehlen (1964) independently
plotted a similar diagram for n and k (kay) contours,
and from the shape ofthe k : 0 curve referred to it as
a cigar. Pepperhoff (1965) published curves of con-
stant R and i^R on n/k (kay) coordinate axes, and
appears to have been the first to recognise them ex-
plicitly as circular arcs (when the units are equal on
the two axes). We shall refer to the latter types of
representation as the n/k diagram and the R/'^R
cigar diagram. Charts of the iso-reflectance curves

have been used to obtain a graphical solution of the
reflectance equations for n and k, and Galopin and
Henry (1972,p.177)have remarked that  a poor ' f tx '

results when the air and oil curves intersect in a

shal low angle (F ig.  l ) .

The n/k diagram

Although the reflectance equations represent cir-

cles, we are only concerned with semicircles in the
first quadrant where n and k are both positive and
real. Circles in the second and third quadrants, with

r negative, correspond to imaginary reflectances
(greater than 100 percent).

For any given pair ofvalues ofn and k, a point P is

fixed which is the intersection of a unique pair of iso-
reflectance curves R and i-R for a given value of N;

but the converse is not generally true. For a given

value of R, only a l imited range of values of t 'R wil l
produce an intersection, and uice uersa. Experimental
data consist of pairs of R and i 'R values, which are
subject to error; if the corresponding curves do not

intersect, the solution for n and k wil l be imaginary.
Even when the corresponding curves do intersect, to
give real values of r and k, these values wil l be in

error.
In Figure I it can be seen that the intersection angle

of a pair of iso-reflectance curves, and the angular
position of the intersection relative to each curve,
may readily be calculated from the reflectance values

which define the centres and radii of the curves. The
loci of these angles radiate from the l imiting points of
the reflectance curves, and are shown for a few values
in Figure 2. Comparison of these loci with the com-
puted error curves of Pil ler and von Gehlen (1964,p.

880) suggests that a 5o intersection angle is near to
the minimum value for the confident derivation of r
and k, with currently attainable accuracy in the mea-
surement of reflectances, and we can see the range of
values of these constants that l ie within that contour.

In Figure 3 we have drawn the intersection of two
reflectance curves, and the region within which a

derived point P'(n', k') must l ie when the measured
reflectances are in error on either side of the true
values. This diagram, with an acute angle of inter-
section, is generally applicable because the region
within which the intersection is obtuse is very small
(Fig. 2). Pil ler and von Gehlen (1964, Table 2) l isted
and considered eight principal permutations of pos-

sible. reflectance errors, which are more clearly seen in

our  d iagram.
Three important conclusions may be drawn from

an inspection of Figure 3: the relative elongation of

(6)
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Fig. l. The relations between the reflectance curves for air (solid)
and oi l  (dashed) and the opt ical  constants n and t  (copied f rom
Pepperhoff, 1965, p. 943, Ftg. l). See also Fig. 3. Reflectances are
shown as decimal fractions, not as percentages.

the region of resultant error increases as the angle of
intersection decreases; error combinations that result
in a displacement of the curves relative to each other
have the most serious effects on derived values of ,4
and k; and, particularly for these largest resultant
errors, the distribution of error between n and k
depends on the position of the intersection on the
reflectance curve of smaller radius (usually that of
t -R) .

The n/k diagram is very useful for qualitative pre-
diction, as the following examples show, but the R/
i-R cigar diagram is better for quantitative use. Ex-
perimental points taken from von Gehlen and Piller's
work on covelline (1964) and on hexagonal pyrrho-
tine (1965) may be plotted on Figure 2.The point for
covelline lies near the 60' intersection contour, where
the error region is small (Fig. 3); resultant errors in z
and k arc thus small, despite the relatively large er-
rors in measuring low reflectances. The pyrrhotine
point lies on the curve ofB : 90o, which accounts for
the authors' observation that n was much more liable
to error than k.

The Rli-R cigar diagram

The principal features of the R/t'R cigar diagram are
shown in Figure 4. Contours of constant absorption
are closed curves radiating from the point (R - r-R

100 percent), and lie wholly within the cigar
boundary, k : 0. Contours of constant absorption

coefficient (kay) are displaced to the low-i-R side of
the diagram, whereas those of constant absorption
index (kappa) are symmetrical about the diagonal
R : imp (Ponomareva, 1958). The region inside the
cigar is the field of real intersections ofthe reflectance
curves and of real values of n and k; the region
outside is the imaginary field. Curves of constant n
also radiate from (R - r-R : 100 percent), but they
cut the cigar; the portions of the r-curves outside the
cigar correspond to solutions of equation (5), but
have no physical meaning. The curve labelled n :ta
marks the discontinuity beyond which n(calc) is nega-
tive. Contours of constant intersection angle may
also be drawn on this diagram, and are symmetrical
about the diagonal line, radiating from and joining
the points where the cigar touches the coordinate
axes. The 90o contour is an almost straight line be-
tween these points and, as in the nf k diagram, en-
closes a very small region of obtuse intersection an-
gles (cl Fig. 2).

The cigar diagram may be used for the direct deter-
mination of n and k from measured reflectances, pro-
vided that it has been drawn for the appropriate value
of N, and for this reason equations for its construc-
tion are given in the Appendix. Because the n and k
contours are badly crowded at higher reflectances

Fig. 2. Contours ofconstant intersection angle ofthe reflectance
curves for air and oil (lf = 1.515), and of the angular positions of
the intersection on the two curves, a (air) and d (oil). The
intersection contours should all meet at n : 1 and n = .l{. The
dashed quarter-circle is the locus of intersections of curves for
which R : t-R; the equation is n'z * k2 : N. The locus of
intersections of curves of equal radius lies between the curves a =
90o and B : 90". but is not shown.
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Fig.  3,  The posi t ion of  a point  P(n,k)  aL the intersect ion of  the

true reflectance curves R and i-R, and its angular position on the

curves (a and p) .  The intersect ion angle is  the (acute)  angleB -  a,

and a and & are the distances of the centres of the true curves from

the or ig in [see text ,  equat ion (3) ] .  A der ived point  P' (n ' ,k ' )  l ies in

the region bounded by arcs of curves for which the measured

ref lectances are in error ;  l imi t ing points of  th is region are label led
(+o) and so on ( l .e.  R too high, l 'R no error ,  etc.) .

near the k : O boundary envelope, an inevitable
consequence of the arithmetical sensitivity of the re-

flectance equations in this region, it is advantageous
to draw a small area to an enlarged scale.

Graphical demonstration of errors in deriued n and k
ualues

Figure 5 shows an enlarged area of the cigar dia-
gram in the immediate vicinity of points A (53.5

percent R, 40.5 percent i*R) and B (54.5 percent R,
39.0 percent i-R), which we may take as measured
values for  pyr i te ,  wi th N:  1.515.  Let  us a lso suppose
that A (n 2.34, k 3.00) is the 'true' point, without
error of measurement; in practice, however, we
would have no means of knowing this. Errors of *0.5
percent in R, and - 1.0 percent in i 'R, take us to A'(n
4.45, k 3.00); 0.5 percent more in each, in the same
directions, bring us to B (r 11.44, k 7.36i) which is

clearly in the imaginary field. We thus see the rapid
increase in the rate of change as errors take the point

towards and across the k :0 boundary, and the slow
initial change in k on passing through 0 : 90' (cf.

Fig: 2). These extreme changes in r and k result more
from the signs of the errors in measurement than
from the size of those errors. Different combinations
of the signs, with the sizes of the errors remaining the
same, would have produced the points B'(n 1.30, k
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2.38) ,  C (n 2.68,  k  3.00) ,  or  D (n 2.07,  k  2.96)  in
Figure 5. Errors of the same sign, and of roughly the
same magnitude, displace the true point in nearly the
same direction as the run of the contours with l itt le

change in n and k, as we have already seen from

Figure 3.
The computed value of n, although a real number

for the point B in the imaginary field, is demonstrably

as false as that for ft (which is complex); the maxi-

mum values of n, for a real point lying close to the

k : 0 contour, are near 6.6 (as shown on the dia-
gram).

A uqriant of the Rli^R cigar diagram

The basic cigar diagram may be projected in other

ways, so that the crowding of the contours is reduced

by selective distortion. The most obvious method,

which we have drawn but not reproduced in this
paper, is to expand the cigar while retaining its

length. Another method is to project the lower k : 0

contour so that it is a horizontal straight l ine (Fig' 6);

Fig.  4.  The R/r 'R c igar d iagram (drawn for  N :  1.515).  The

field of real values ofn and /< (absorption coefficient) lies inside the

k : 0 contour. Above the cigar, and between it and the curve

n(calc)  = +- ,  f t (calc)  is  complex and n(calc)  real  but  fa lse;  below

the curve n(calc): *-, &(calc) is complex and r(calc) negative.

The short line joining the points where the cigar touches the axes

(bottom left) is the 90o intersection contour, the only one shown;

the small region of obtuse intersections lies between it and the

origin inside the cigar, and contours of acute intersections lie in the

remainder of the cigar. The locus of intersections between

ref lectance curves ofequal  radius (not  drawn) jo ins the'b lunt  ends'

of the k contours;  the curves a = 90" and 0 :  90 '  l ie  on ei ther s ide

of  i r  (c f .  F ig.2) .

d t  h-
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Fig. 5' An enlarged portion of the R/r-R cigar diagram (l/ = 1.5 I 5). The points ,4 and B represent measured values for pyrite, and ,4 is
assu med to be near the true value. 8', C, and D are points with the same size errors as B, but of different sign combinations; l, and A', lie
between A and B, with smaller errors than B (see text). Intersections of n contours with k : 0 are indicated bv the value of n.
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the abscissa is R, and the ordinate is the distance of a
point from the outer cigar, measured in units of the
oil reflectance t'R. We have selected this variant
projection because we found that, when we plotted a
large number of measured points on the cigar dia-
gram, a majority lay close to the edge of the cigar;
this observation seemed to be best demonstrated by
reference to a straight line. The diagram is not suit-
able for the direct demonstration of the effects of
measurement errors, because although errors in l-R
cause a simple vertical displacement of a point, errors
in R affect both coordinates.

Reflectance errors and their causes
The reflectance data plotted in Figure 6 are taken

from the IMA/COM Data File 1977, and are the 194
data points for which there are both air and oil re-
flectances at 589 nm. The file did not contain derived
values of n and k, a COM policy decision taken
because an investigation is to be made of the accuracy
of microphotometric reflectance measurements. It is
not at present possible to assess the accuracy ofthose
points lying in the real field, but nearly a quarter of

the total lie in the imaginary field and are thus obvi-
ously wrong. We have seen from Figure 5 that al-
though positive errors in R alone, or negative errors
in r-R alone, are capable of putting a point in the
(lower) imaginary field, much smaller errors in com-
bination can achieve the same result.

The nature of reflectance errors

The causes of errors in reflectance measurements
under the microscope have been considered by Piller
and von Gehlen (1964), who divided them into those
arising in the equipment and those arising in the
specimen itself. Another classification of errors may
be made, into random and systematic. We shall not
attempt a complete listing of all possible sources of
error, of which the most important appear to be:

Random errors. Instability of the photometric opti-
cal train; instability of the light source and mono-
chromator; inhomogeneity of the reflectance stan-
dard; and focussing errors (which may also be
systematic for a particular observer).

Systematic errors. The nature of the polished sur-
face (which may also be random if the polishing or



858

cleaning routine is variable); the accuracy of glare
and other allied corrections; and the accuracy of the
reflectance standard(s).

Modern instruments have been developed to the
stage where reflectance measurements are highly re-
peatable and, if care is taken, reproducible on the
same instrument. Considerable trouble is taken by
some authors (e.g., Lopez-Soler and Bosch-Figueroa,
1970) to reduce random error by repeated measure-
ment, but it is possible to be too careful over random
errors if real systematic errors remain neglected.

The errors recognisable from Figure 6 are, for the
most part, too large to be attributable to random
causes; we must look elsewhere, and the first objects
of our attention must be the reflectance standards.

Reflectance standards

"The procurement of material standards of suit-
able quality is a major limitation of the art" (Clarke'
1972) and considerable efforts have been made in this
direction (Hallimond, 1970, p. 152; Galopin and
Henry, 1972, p. 159 et seq.). Apart from having the
necessary physical properties, the materials chosen
must be sufficiently large and homogeneous for pri-
mary calibration in a standards laboratory; an area of
about I cm2 is often considered adequate, although
the National Physical Laboratory prefer 25 cm2 for
the most accurate work (Clarke, 1972). These re-
quirements, size in particular, have greatly reduced
the number of materials available, and Piller 09741.
1977) lists three that are approved by the Commis-
sion on Ore Microscopy: neutral glass; single-crystal
silicon carbide; and homogeneous mix-crystal tung-
sten titanium carbide. The crystals available of the
last of these are too small for the most accurate
primary calibration. Piller (1977) has also recom-
mended liquid surfaces as reference standards in the
ultra-violet or near infra-red.

There is a large gap in reflectance in air between
SiC (20 percent) and (W,Ti)C (47 percent), and there
are as yet no accepted air standards for higher reflect-
ances; but the position is much worse for oil reflect-
ance standards. At present these are all derivative
standards, calibrated indirectly by computation from
the air reflectance and the refractive index of the oil
(Piller, 1974, p. 38; 1977, p. 126) for silicon carbide,
assuming zero absorption, and higher reflectances are
measured under the microscope by extrapolation
from this. There is thus an urgent need for primary
standards for reflectances measured in oil; the state of
the art has not yet caught up with experimental re-
quirements, and to say this is no criticism of the
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careful development work that has already been

done.

M eusurement errors: conclusions

Corrections for glare in the optical system are

made nowadays as a matter of routine, following the

work of Pil ler (1967) and earlier authors, and these

are different for measurements in oil from those made

in air. These corrections, however carefully they are

calculated, can only be tested for accuracy by actual

comparison between two or more primary standards

of differing reflectance.

Of the many errors that can adversely affect the

two-media derivation of the optical constants, leav-

ing aside those cases where the properties of the

surface layer are different from those ofthe substrate,

we conclude that the most serious probably l ie in the

standards for oil reflectance measurement, due to

their current lack of primary calibration and the large

extrapolations required from the oil reflectance of

sil icon carbide (i-R about 7 percent). A potential

source of additional error in the oil reflectance lies in

the oil i tselt if the oil used for the measurements is

different from that used for the calibration calcu-

lations, the values of r-R for the standard wil l be

wrong unless recomputed for the new oil. Errors in

the measurement of air reflectances, as we have seen,

are less l ike ly  to be ser ious.
Unfortunately, we do not yet have the means to

test our hypothesis; but we suggest that reflectance

measurements may well tend to be in error in the

worst possible directions: air high, oil low.

Immersion oil and accuracY

It is easily shown that small errors in the refractive

index of the immersion oil have litt le effect compared

with those in reflectance. Much larger errors may be

caused by the presence of suspended dust or air bub-

bles. Use of a different oil, with a higher refractive

index, increases the spacing of the n and k contours

on the cigar diagram and enlarges the area of the n/ k

diagram enclosed by a given intersection angle con-

tour. The improvement is small, however, for any oil

that might be used in practice: if 1{ is 1.70, for ex-

ample, the 5o contour touches n: 3.9 compared with

3 .3  when  N  :  1 .515  (F ig .  2 ) .

Deriving the oPtical constants

The most direct method of deriving the optical

constants n and k is by calculation, using the Koe-

nigsberger equations (5) and (6). Desk and pocket

prbgrammable calculators have made the use of
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F i g  6 . V a r i a n t o f  t h e c i g a r d i a g r a m ( d r a w n f o r l / =  1 . 5 1 5 ) . T h e l o w e r p a r t o f t h e f t = 0 c u r v e i s t h e h o r i z o n t a l  s t r a i g h t l i n e f r o m t h e
or ig in,  and the locus ofR :  imR is the dashed curve (cf  F ig.4) .  Hor izontal  uni ts are in R percent ;  ver t ical  uni ts in l *R percent  above the &
= 0 boundary,  i .e t^Rn,h -  ' *R*-0,  and al l  points below /< :  0 are in the imaginary f ie ld.  Al l  k  contours are terminated 0.1 percent  above
the k :  0 datum. The plot ted points are for  194 pairs of  a i r  and oi l  ref lectances at  589 nm, and are taken f rom the IMA/COM Data Fi le
1977 .
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nomograms (Volynskii and Yasnopol'skii, 1959) and
printed reflectance curves (Pepperhoff, 1965) obso-
lete; these, in any case, needed ideally to be con-
structed individually for each value of the refractive
index of the immersion oil. The cigar diagram is the
easiest of the graphical methods to use, but does not
yet appear to have been recommended. This is prob-
ably because the whole diagram is tedious and diff i-
cult to draw by hand for closely spaced intervals of n
and k. A small portion of the diagram, however, is an
invaluable adjunct to calculation since it also shows
clearly and directly the effects of measurement errors.

Calculation of errors in n and k

Pi l ler  and von Gehlen (1964,p.881) have st ressed
that a discussion of errors should accompany all pub-

l ished reflectance measurements, especially when r
and k are derived from them, but they did not recom-
mend any guidelines for such discussions.

It is tempting to use the differential calculus to
obtain rates of change of the optical constants for
changes in the reflectances, and this has been done
(Koenigsberger, 1913; Vierne and Brunel, 1977),but
a simple approach is only valid when the rates of
change are small and nearly steady. In the neighbour-
hood of the k : 0 boundary, however, where k is
small in relation to r, the rates of change of both n
and k accelerate rapidly and it becomes necessary to
use Maclaurin's theorem to incorporate second- and
higher-order differentials into the calculation. In the-
ory there is no objection to this method of procedure,
but in practice it is a cumbersome waste of elegance

\

N
2
1
0
-1
2
-3
-4
-5
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because we do not know the probable size of our
reflectance errors sumciently accurately. tt would be
a different matter if we had only the small random
errors to consider, but the larger systematic errors
invalidate this approach.

It is far easier, and more realistic, to proceed by
applying probable errors to our measured reflect-
ances, calculating their effects from the Koenigsber-
ger equations, and appending a diagram such as that
of Figure 5 but with an error circle or ellipse drawn
round each measured point. It should also be appar-
ent that the errors in n and ft should be expressed in
the form n I x - y, and not n t z, because although
the reflectance errors may be symmetrical the effects
on r and k almost certainly are not.

The n/k contour diagram (Fig. 2) is useful, both as
a guide to the expected distribution of errors before
the detailed calculations are made and for plotting
the nlk points, to indicate the change in the errors at
each wavelength in a spectral run. If a computer or
programmable calculator is used in the calculations,
it is easy to calculate the angles a, B, and the inter-
section angle as part ofthe routine. It is also desirable
to calculate the position of the point in relation to the
k : 0 curve, since this gives an immediate warning if
the point is so close that it cannot be distinguished
(within the limits of error) from a point on the
boundary. For this purpose, we may use the follow-
ing equations obtained from that for the general k-
contour (see Appendix):

h: iaQr" + l) - l(AP - r)\/(TT Qa)

a: Lh(tf + l) + i(t'|" - t)\/(nz- (7b)

where a and h are related to the reflectances R and
t-R by equations (3).

This last calculation is more important than ap-
pears at first sight, as an example shows. The point
A" (Fig. 5) has R 54.20 percent, r'R 39.30 percent,
for which n = 5.890, k : 1.992, but the intersection
angle is only L25o. From equat ions (7a) and (7b) we
find that if R is constant, t-R atthe k : 0 boundary is
39.159 percent; if i 'R is constant, R at the boundary
is 54.325 percent. In other words, changes ofonly (f )
0.23 percent (relative) in R, or (-)0.36 percent in
r-R, will reduce k(calc) from nearly 2 to zeto; and a
relative accuracy ofone percent is considered reason-
ably good for reflectance measurement (Piller and
von Gehlen, 1964, p. 872). Even smaller errors in
both R and t-R, of the same signs as before, will give
an imaginary point; thus (*)0.15 percent in R to-
gether with (-)0.3 percent in r'R, both relative, lead
to values of 7.001 for r(calc) and l.66li for k(calc).

Limiting uslues of n and k

For any measured value of reflectance, air or oil,
there are maximum and minimum values of both n
and k that are compatible with that reflectance, and
these are defined by the geometry of the reflectance
curve (Fig. l). The maximum value of n is obtained
from (l) or (2) when k : 0: it may readily be shown
that n-n* (oil) : N(l + "'F$ttt - 1./4|:1, and that
nmax.nmtn: AP, with corresponding relations for air
reflectances. The maximum value of k is at the top of
the semicircular reflectance curve, and is equal to the
length of the radius [equation (4)]; k*t", of course, is
zefo.

Cervelle et al. (1975) have used two-media reflect-
ances to obtain n for sphalerite, and have recom-
mended the method as generally applicable to miner-
als of low absorption provided that Koenigsberger's
equation (5) is used for the calculation. This recom-
mendation requires qualification, because errors in
oil reflectances are likely to be larger than those in air
and the combined effect can be very large. The Koe-
nigsberger equation may be used with caution when
the reflectances lead to a real point and the calculated
refractive index is not much greater than 3, but it
must never be used when the point is in the imaginary
field because of the very rapid increase in r(calc)
beyond the boundary. In such cases a weighted mean
between the values of r-'* for air and oil will give a
much closer approximation to a probable true value.

A minimum value of the absorption index (kappa),
below which a mineral may be considered trans-
parent in thin section, was calculated by Wright
(1919). If we repeat the calculation for the absorption
coefficient (kay), and the standard value of 0.03 mm
for the thickness of a modern thin section, we obtain
values ofk ofabout 0.015 at 400 nm and 0.026 at 700
nm. Merwin (1915) used immersion methods to mea-
sure the refractive index of covelline, for which the
minimum absorption coefficient is near 0'3, but only
succeeded becau'se the cleavage flakes that he used
were extremely thin.

Smoothing techniques

Many authors have used a smoothing technique to

obtain low values of k, by making adjustments to
experimental dispersion curves for reflectance until
the dispersion curves for n and k are also smooth.
Vierne and Brunel (1977) have shown that smooth
dispersion curves for reflectance must lead to smooth

curves for the two optical constants, but it does not

follow that low values of k (nor high values of n )
obtained in this way arc necessarily reliable unless the
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intersection angles are favourably large. When the
reflectances give points near the k : 0 boundary,
equally probable smooth curves can be obtained for a
wide range of values of n(calc) and especially of
k(calc).

Discussion

Two general statements on the two-media method
by previous authors are worth quoting. Von Gehlen
and Pil ler (1965) said: "Although the errors of n and
k vary widely, depending on their absolute values, it
is often possible to calculate n and k with reasonable
accuracy" (p. 335), and "Generally, our experience is
that the relative errors of reflectivity measurements
are much larger than normally accepted, even under
favourable circumstances, although sometimes the
'reproducibil i ty' of a single set-up may be rather
good. But this does not give the real error" (p. 3a0).
F.  E.  Wr ight  (1919,  p.446) ,  on the other  hand,  was
more pessimistic: "The above equations show that it
is in general not possible to measure both the refrac-
tive indices and the absorption indices of an opaque
body by means of the phenomena resulting on the
reflection of vertically incident l ight waves."

Instruments, and particularly microphotometers,
have been greatly improved since Wright's day, but
his remarks remain broadly true. The largest obstacle
to accurate microphotometry is the absence of a good
range of primary reflectance standards. In Figure 6
we have shown that more than half of a large sample
of measurements l ie within one percent of the oil
reflectance value at the boundary of the imaginary
field, a region in which the derived constants, espe-
cially k, are extremely sensitive to measurement er-
rors. Better oil standards wil l extend the range of
reflectance values for which the constants may con-
fidently be derived, but there must remain many sub-
stances for which no conceivable improvement in the
accuracy of measurement can produce reliable de-
rived constants by the two-media method. We believe
that our recommendations for the calculation of re-
sults wil l enable other workers readily to distinguish
between feasible and practically impossible cases. De-
spite our analysis, we feel strongly that the two-media
method has much to offer in favourable circum-
stances, and that even when the absorption is too
small to be derived there is considerable scope for
refractive index and dispersion determination on
transparent and translucent minerals.

Appendix

We have recommended the use of the n/k diagram
with intersection angle contours (Fig. 2), and the R/

' 'R cigar diagram (Figs. 4 and 6), as adjuncts to the
calculation of n and k and the errors in both. The
equations for the curves are collected here to avoid
cluttering the text; all have been derived from the
reflectance equations (l) and (2).

Inte rsection angle contours

Figure 2 was constructed from tabulated values of a,
B, and t6 - 

") 
by interpolation. The explicit equa-

tlons are not compact.

tanot  :2nk/(n ' -  k"  -  l )
tan1 : 2nk/(n' - k' -lV)

The intersection angle may be obtained directly from
the measured reflectances; application of the cosine
rule leads to the equation

R + ' - R _  2 f i . F n . c o s ( $ - a )
( l - R X l - ' ' R )

:  ( N  
= , 1 ) '  F  M )
4N

which is easily rearranged as required. Solution as a
quadratic in /mR enables a contour of constant (p
- a) to be plotted directly on the R/t^R cigar dia-
gram by the equation

f *  f i ' c o s ( B - a )
!  ^ :  

M ( _ R ) + l

1 , .  M ( t  -  R )  -  R
i  ! l l s t t e r m l '  +  

r r z l r  -  4 y  *  t

Both equations are symmetrical in R and t-R, which
may thus be substituted for each other. From these
reflectance values we can calculate n and k to plot a
contour directly on the n/k diagram.

Constant-k (kay) curues on the cigar diagram

These equations, derived from equation (6a) in the
text, are:

n:g ipV iY l_D,  (M- t )  n *" 2(k' + l) + 
ffi'l(a' 

- k' - l)

h (2k ,+M+l ) .  (M- l \  r ;_a:'-Ooff+ ftTffi'l(h" 
- k2 - N2

where a and h arcas given in equation (3) in the text.
The explicit equations in R and r'R are clumsy.

Constant-x (kappa) curues on the cigar diagram

h : ia(N' + I ) + i(N' - I)J@=-** t)
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h ( N 2 + l ) , ( t t r z - r \ . -a: f f+V, l lh ,_  N, ( r , r l ) l

The curves of constant absorption index, unlike those
for constant absorption coefficient, are symmetrical
about the diagonal R : tm4.

Constant-n cun)es on the cigar diagram

EMBREY AND CRIDDLE: ERROR PROBLEMS

We use this form of the equation so that r-R is
calculable when n is infinite.

In each case where the equations are expressed in a
andh, we obtain the reflectances from R: (a - I)/(a
* l)  and i-R - (h -  N)/(h + N).
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* r * " - t )+ (a -N)

* r r ' - l )+(a+N)

wherec : (i+"- ̂)




