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How much crystallography should we teach geologists?

GnsnEI-I-E DoNNIev eNo J. D. H. DoNNev

Department of Geological Sciences, McGill Uniuersity
Montreal, PQ, Canada H3A 2A7

Abstract

A crystallography course, consisting of 24 lectures and l2 three-hour laboratory periods, is

shown to cover the foundations of morphological as well as structural crystallography. It is
meant to give the entering geology student the basic crystallographic understanding on which
to build the solid knowledge of minerals without which no study of rocks is conceivable.
Facing his overwhelming responsibility, the crystallography teacher in a geology department
must select his topics with extreme care and strive to impart the know-why as well as the
know-how. A realistic goal is to bring the student to a point where he can'. morphologically, get
all information from the external form (to be able to find the morphological space group of a
euhedral crystal) and, struclural/y, understand how a crystal structure is built and how it can
be solved by diffraction (to be able to build a crystal-structure model after studying a structure
paper in the l iterature).

Introduction

The teaching of crystallography is on the decline in
geology departments the world over, a fact which
hardly needs documentation in a volume dedicated to
two retiring professors of Harvard University who
will leave very much of a vacancy cluster in crystal-
lography-mineralogy in their department. Among
numerous other universities where retiring crystal-
lographers have not been replaced by specialists in
their field are Massachusetts Institute of Technology,
The Johns Hopkins University, and the University of
California, Berkeley. In Europe too, crystallography
is now being taught to geologists more and more by
non-crystallographers who devote a few lectures to
the subject matter which they "have picked up along
the way."

The purpose of this paper is to point out how much
crystallography, classical as well as X-ray, can be
taught to geology students in as few as 24 lectures and
l2 laboratory periods, the length of a "semester" in
Canada. Since all geologists will deal with crystalline
matter for the duration of their professional lives, it
should be possible to convince the profession that
these few hours are well spent by their students. The
course to be described assumes that the students have
had the equivalent of freshman chemistry, physics,
and mathematics. At McGill University crystallogra-
phy is a required course for entering geology students
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who have had their science preparation in a two-year
junior college programr. The failure rate in the course
is about 9.6 percent: l9 students out of 197 have had
to repeat the course in the last eight years.

Textbook and laboratorY manual

Finding a textbook for the course is an unsolved
problem. The ideal textbook should be directed to
future geologists; it should therefore cover crystal
morphology and crystal structure (crystal optics too,
although at McGill as in many other schools the
optical part of crystallography is taught later in the
curriculum, just before optical mineralogy); it should
present the most basic concepts in depth despite, or
rather because ol the short time allotted to the
course (the smattering technique, which relies on
such subterfuges as putting the name of the new
concept to be introduced between quotation marks in
lieu of explanation or definition and expecting results
to be memorized without first having been proved,
has been particularly sterile in teaching crystallogra-
phv).

Among the books that cover the desired topics, we
may mention one in French by Van Meerssche and
Feneau-Dupont (1973) (750 p.) and two in Italian, by

I This province-wide program was established about ten years

ago by the provincial government; it follows eleven grades of

schooling and leads to a 3-year bachelor's program.
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Bonatti and Franzini (1972) (361 p.) and by Rigault
(1976) (215 p.) .  In Engl ish the book by Sands (1969)
(165 p.) has been reviewed in this journal (v. 56, p.
641 ); it is of the right size, but it is written for chemis-
try students. We have nevertheless selected it and are
supplementing it with a32-page syllabus on morphol-
ogy (Donnay and Donnay, 1972), together with short
appendices on fundamentals that need brushing up
and material not easily accessible: (a) spherical trigo-
nometry and vector algebra (a p.); (b) derivation of
the32 crystallographic point groups (5 p.); (c) twin-
ning (7 p.); (d) complex numbers; (e) intensities of
diffracted beams (2 p.). The students buy their Labo-
ratory Manuql (Donnay and Donnay, 1973) (67 p.),
which comes with plastic copies of five X-ray films
and four charts used to read the films. The Manual
contains ten assignments, which follow a model one,
on "Significant Figures," demonstrating how to fil l in
such recurring sections as: results obtained, con-
clusions, discussion, problems (which have to be
solved), and suggestions (requested from the student)
for improving the given assignment.

The first part of the course: morphological
crystallography

The first half of the term deals with classical crys-
tallography, including the Bravais-Mallard-Friedel
theory of twinning; the second half treats X-ray crys-
tallography. The standard definitions of a crystal,
pre- and post-1912, open the first lecture: "a chem-
ically homogeneous solid, wholly or partly bounded
by natural planes that intersect at predetermined an-
gles" us. "any solid in which an atomic pattern is
repeated periodically in three dimensions, that is, any
solid that diffracts an incident X-ray beam." These
definitions are elaborated upon, with il lustrations of
physical and chemical properties of crystalline matter
that depend on its periodicity-the lattice. Discontin-
uous vectorial properties, such as growth velocity,
when plotted in all directions around a point, yield
representative surfaces characterized by sharp min-
ima in directions normal to faces. The chemical for-
mula of a mineral, no matter how complicated it
looks, can be rewritten with small integral subscripts
once the structure type is known and the elements are
properly grouped.

The second lecture introduces students to symme-
try elements and symmetry operations of the point-
group kind, which they observe on wooden models in
their first laboratory assignment. The symmetry of a
crystal is defined as "the symmetry common to all of
its properties"; the Neumann "principle" is un-

Tabf e L Simplified nomenclature of the 47 crystal forms

The 32 noncub ic  fo f rs :
(The ad jec l i ves  g tve  th€
shape o f  che  ! i8h t  sec t lon
of  the  fom near  t t s  apex . )

! {onpo lar  foms,  u l th  tuo  po la r  cmponents '

tu rned th rough e  u l th  respec t  to  each o ther :

I  +  1 /2  per lod  e  -  1 /2  per tod

Monohedron Para l  le lohedron

Dihedron Rhmblc  te t rahedron

Tr lgona l  I  T r tSona l  I
R h o n b t c  |  , . .  I
Te t ra tona l  I  c r ramias  Tet ragona l  I  

t tePezohedra

Di t r iSona l  )  p r isms I
Hexagona l  I  d ipyran tds  Hexagona l  I
D t te t raSone l  I
D thexasona l

a"a . " * * " f  te t rahedron

Rh@bohedron
Rhonblc )

l sca lenohedra
Dt t r tgona l  )

The 15  cub lc  foms:  (The pr€ f ixes  reca l l  the  face  shape In  the  lon€ fom. )

Cube =  f iexahed lon  Rhonbdodecahedron T€r ra  (Ocre)  hed lon*

I  r r i s o n l  |  |
Drhexa\edron =  Pentagondodecahedron Tet ragon l t r i te t ie  (oc ta )  hedronx

r  I  Pentason l  I  I
Te t rahexahedron D ldd€c : ihedron uexate t la  lo t ta ;  nearon*

*R€ad 
"Tet r .hedron"  o r  "Octahedront  the  der tva t ion  is  che  see fo r  bo th .

masked as a "definition", incorrectly described
throughout the literature-a shock and eye-opener to
all young students! Another definition introduced
here is that of a group, so the students can appreciate
the fact that symmetry operations do form groups:
point groups or space groups (the latter are in-
troduced later in the term). In the second laboratory
assignment the students learn the nomenclature
(Table l) of the 32 non-cubic and the l5 cubic forms
and assign the point-group symmetry (from the list of
Hermann-Mauguin symbols on the board) to
wooden models and to a few well-developed euhedral
crystals. The third laboratory assignment, "Deriva-
tion of the crystal forms in every point group by
means of stereographic projections," helps the stu-
dents to become thoroughly familiar with symmetry
operations, symmetry elements, crystal faces, crystal
forms, and point groups, bringing together, as it
does, all the new concepts introduced thus far.
Double-entry tables are provided on separate sheets
for the various crystal systems; each table has as
many columns of stereographic circles as there are
point groups in the system, each column being
headed by the proper Hermann-Mauguin point-
group symbol. Below the column heading, the first
circle shows the symmetry elements in this point
group. The rows of the table represent the possible
crystal forms, beginning with the general form lhkll
and ending with the most specialized form of lowest
multiplicity. Colored pencils are used to underline
primary, secondary, and tertiary symmetry elements
in the Hermann-Mauguin symbol and to color the
corresponding Gadolin symbols in the top circle. On
each successive circle the student fil ls in the face poles
of one of the various forms that are possible in the
point group. For each crystal system an accom-
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Table 2. Crystal forms in the tetragonal system*

Form
symbo

h)k

Holohedry H e m i h e d r i e s Tefor f  ohedr ies

!2?
mmm lzm l im2 4mm 422 4

m 4 4

hk l
d i t e t r a g o n a  I

d  i  py ramld
1 5  I

te t ragona I
;ca  lenohedron
t l

te t ragone I
sca  lenohedron
R

d i  Ee t  ragona I
pyran ld

a l

te t ragona I
t ra  pezohedron

8 1

teE ragona I
d tpyramtd

n

te t ragone I
te t rahedron
L 1

Eet ragona I
pyramid

hol
tec ragona I
d i pyran id
8 . f

! zz
m m m

tet ragona I
te t rahedron

h  ' m '
pyramid

m

4 z !
m m m

8 I

! ! !
m m m

8 hkl  I
4 m 2

q  N K I  I

4 m m
4 h k r l

hhr
t  e  t  ragona
d ipyramld
8

te t raSona I
t e t r a h e d r o n

. . m

4 2 2
m m m

8 I

L e L r a B o u d r

pyraml-d
4  . ' n

! L Z
m m m

4 z !
m m m

n  h L l
4 2 n

4  hk l
4 m m

4 h k r l

hko
d i tet ragona I

p r l sn
8  m ' .

! .zz
m m m

! L ?
m m m

8 I

! ! !
m m m

8 I

! ?z
m m m

t

te t ragona I
pr  isn

n '4
4 / n 4 / n

toc te t ragona L
p r l s m

4  6 n ) ,

te t ragona I
p r  rsm

! zz
m n m

n

4 t  I

m m m
4 m

pr ism
. 2 .

! .  z
m n m

4  h k O  m .
4 2 n

4

4 2 2

ilo
te l ragona I

Pr  rsm
4  n . m 2

! zz
n  m n

m

t e t r a g o n a l

Pr  rsn
4  . . 2

4 Z Z

n m n
4 . m

teEragona r
p r lsn

. . 2

! z z
m m m 4 m 2 4 2 2

ool Para  I  Ie  Io  -

hedron
2 4 m

p a r a  I  t e  l o -
hedron

2 ' m

Para  I  Ie  IO '
hedron

2 2m.

mononeqron

I 4nm

p a r a  I I e  l o -
hedron

4

P a r E  I  I e  L o

hedron

2 4

P e r a  I  I e  l o

hedron

2 2

mononedron

x  A  s y m e t r y  s y m b o l  l n  a  p i g e o n - h o l e  r e f e r s  t o  t h e  c o l w n - w h e r e ,  i n  t h e  s a m e  r o w ,  t h e  n a m e  o f  t h e  ( l i n i t i n g )
f o r m . a p p e a r s ;  t h e  a d d i t i o n a l  f o m . s y n b o l ,  f o r  e x a n p l e  l t r t t I  i n  p i g e o n - h o l e  4 / g -  l [ 0 1 [ ,  i s  a  r e m i n d e r  t h a t  h r e

f ! O ! [  t s  p a r t  o f  t h e  g e n e r a l  l h k l l .  T h e  d o t s  i n  a  f a c e - s y r i r n e t r y  o r i e n t e d  s y m b o l  s t a n d  f o r  s y m e t r y  e l e m e n t s  i n
t h e  h o l o h e d r y  t h a t  a r e  g ' ] L  p a r t  o f  t h e  f a c e  s y w e t r y ;  f o r  e x a n p l e ,  t n  @ 2 - 1 1 0 0 f ,  f a c e  s ) m m e t r y  . m .  m e a n s  t h a t
o n e  o f  t h e  t w o  s e c o n d a r y  m i r r o r s  l s  p e r p e n d i c u l a r  t o  t h e  f a c e ,  b o t h  p r i m a r y  a n d  t e r t i a r y  e l e m e n t s  b e i n g  a b s e n t .

panying sheet (Table 2) provides, in the correspond-
ing pigeon-hole of a similar double-entry table, the
name of the form, its multiplicity and its face symme-
try (that is, the symmetry elements normal to it)
expressed in an oriented symbol'z. The product of the
multiplicity by the order of the face symmetry equals
the order of the point group. The form names used
(Table l) follow the simplified nomenclature that
evolved through the efforts of Groth, Rogers (1935),
and Boldyrev (1936), followed by some missionary
work by Donnay and Curien (1958) and Donnay and
Takeda (1966).

The third lecture deals with periodicity in more
detail. Both direct and reciprocal lattices are formally
(and simultaneously) introduced by vector algebra,
which our entering students have already been

' The use of dots to orient symbols goes back to Patterson ( I 959)
(p 31, col.  l ) .  Thissymbolism has been general ized and extensively
used (Fischer er al. ,1973; Donnay and Turrel l ,  1974); i t  has been
adopted, to designate site symmetry in space groups, in the forth-
coming edition of /7.

taught. The basic relation between reciprocal and
direct lattice vectors is immediately accessible to
them:

L*(hkl)'L(uuw) : (ha* + kb* + lc*).(ua* ub * wc)

= h u + k u * l w .  ( l )

If this scalar product is zero, the'row [rzuw] lies in the
net plane (hkl); whence (presto) hu * ku f /w : 0 is
the famous "equation of zone control"! Likewise two
rows [ulul]rlf and lu2u2wzl lie in net plane (hkl) if the
vector product of two direct lattice vectors lies along
the normal to (hkl), that is, if L(u'u'w') X L(ururwr) is
proportional to L*(hkl) or if we have

l l l l , , l
h:k : l : lD ' ' ' 1 ,  l ' '  u ' l  t l " ' ' ,

l D z  W z l  l W z  U z l  l U z  U z l

The students already know the expression for the
volume of the parallelepiped-a X b . c; so much for
the volume of the triclinic cell! From this formula the
cell volume in every crystal system will be calculated
in the laboratory.
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The early laws of observation can now be taught in
terms of either lattice, direct or reciprocal: (l) Faces
grow | | direct-lattice net planes (hkl) [or I recipro-
cal-lattice vectors L*(hkl)], hence the Constancy of
Angles (Rom6 de I 'Isle, 1772;1783). (2) Faces are l l
families of net planes with large d(hkt) lor I short
L*(hkl)1, hence the Simple Rational Indices (Haiiy,
1784).  (3)  The larger  the d [or  the shor ter  the L* ] ,  the
more frequent and the larger the corresponding face
usual ly  is ;  that  is  the Law of  Bravais (1849-1850),
amazingly successful as a first approximation at eluci-
dating crystal morphology from lattice extinctions
only. (The effect of space-group extinctions wil l come
later. )

In the following lectures, Ihe 32 point-group sym-
metries that are possible in crystals are derived by a
combination of Gadolin's stereographic approach
and some additional group theory. We first derive the
5 single rotation axes I , 2, 4, 3,6; then the four direct
products with one 2-axis normal to the singular axis;
finally the two cubic groups 23 and 432, thus reaching
the total of I I holoaxial groups. From them the
remaining groups follow: 10. non-centrosymmetric
ones as "mixed products", and 1l centrosymmetric
ones (the Laue-Friedel classes) as direct products,
wi th the center  I  (Donnay,  1967).

Two theorems are proved here: (l) a lattice has a
center at any node, and (2) if a lattice has an r-axis
with r > 2, it also has n 2-axes perpendicular to it.
This information enables the class to pick, out of the
32 point groups left on the blackboard, the 7 symme-
tries possible in lattices. These lattice symmetries form
the basis of the classification into our 7 crystal sys-
tems. Such a system embraces all the crystals that
possess the same lattice symmetry; the symmetry of
the crystal itself is either the same as, or lower than,
the symmetry of the lattice-the two cases are re-
ferred to as the holohedry and one of the mero-
hedries, respectively. (These are old concepts, once
reviled, now revived.) For examples of merohedries,
take point group 3: as 3 1, it is the tetartohedry of 32/
ra (rhombohedral lattice) and, as 3ll, the ogdohedry
of 6/m2/m2/m (hexagonal lattice). The students are
warned that this classification, which goes back to
Mal lard (1879) i f  not  to  Bravais (1849),  and was
admirably presented by C. Hermann in IT (1935, p.
54-60), is unfortunately no longer used in later Ta-
bles (Henry and Lonsdale, 1952); these adopt a divi-
sion based on a purely formal criterion: any axis 6 or
6 (as long as it is not called 3/ml) makes the crystal
hexagonal ;  a  s ingular  3 or  3,  on the other  hand,
brands it as "trigonal." A so-called "trigonal system"

is thus erected, in disregard of the primordial impor-
tance of the lattice symmetry. As a homework assign-
ment the students are asked to emulate the IT and
split the cubic system into two systems, according as
the point-group symmetry of the crystal begins with a
4 or a 4, or with a 2 or a 2/m. This exercise shows
them the triviality of the IT criterion that splits our l2
hexagonal point groups into 7 hexagonal classes and
5 trigonal classes. A "trigonal" crystal should be
placed in the rhombohedral system if its lattice is
rhombohedral, into the hexagonal system if its lattice
is  hexagonal  (Donnay,  1977).

The last two lectures before midterm are devoted
to the lattice relations that govern twinning according
to observations (Friedel, 1926) and the classification
of twins (Friedel, 1926; Donnay and Donn ay, 1974).
In the meantime, in the laboratory, the students have
learned how to use the Wulff net, in plotting the
stereographic projection of chalcanthite, for which
they have been given a full set of goniometric data
taken from the l iterature. They have measured syn-
thetic chalcanthite crystals on the two-circle go-
niometer. They have also spent part of one afternoon
identifying the plane groups of two Escher drawings
(MacGillavry, 1965), so as to familiarize themselves
with glide reflections and the problem of choosing an
origin. In class, glide planes, screw axes, and finally
space groups are introduced in sufficient detail to
enable the students to find their way through 17,
volume I (1969). In the laboratory, crystal data for
chalcopyrite are provided, and the students are in-
structed to draw the crystal structure in plan and
elevation. A ball-and-stick model of the structure is
placed at their disposal. This very popular assign-
ment insures their understanding of the role space
groups and point-positions play in structural crystal-
lography.

The second part of the course: structural (X-ray)
crystallography

X-ray crystallography is launched with the deriva-
tion of the Laue conditions for diffraction. We re-
mind the student of the condition for a one-dimen-
sional diffraction grating (that he studied in Optics)
to give constructive interference,

( s  -  so ) .a  :  i l r  o r  ( l / IXs  -  so ) .a  :  & ,

where a is the spacing of the grating, s and so are unit
vectors directed along diffracted and incident beams,
and I is any integer. The same relation applies to the
a, b, c repeat vectors in a crystal, which at this point is
just a lattice of diffracting points. The random in-
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tegers are called h, k, l. The three equations are
multiplied by x, y, z, respectively, these three quan-
tities being any real numbers; e.g., the trimetric
coordinates of a point in the cell. The equations are
then added; they give

( l / IXs -  so).(xa + yb * zc):  t r"  - t  ky I  lz (2)

or

( l / \Xs -  s).r(xyz) -  L*(hkl) .r(xyz) (3)

in which the RHS of equation (2) is interpreted in the
light of equation (l). The single Laue condition

(l/IXs - so) : L*(hkl) (4)

results, not because {xyz) can be "cancelled" from
both sides of equation (3), but because the position
vector {xyz) stands for any vector, so that the only
way equation (3) can be satisfied for more than one r
vector is for the first vector in the dot products to be
one and the same vector, as expressed by condition
(4). This proof is one of the trickiest points to put
across in the whole course. It is not difficult, on the
other hand, to make the students independently re-
discover Ewald's construction as the geometric ex-
pression of condition (4); for young students this is
an exhilarating feat, in view of the elegance of the
results, which they will not soon forget. From
Ewald's construction they also derive Bragg's law on
inspection (another kudo!):

sin d : (L*(hkt)/2)/(l/I) or 2d(hkt) sin d : tr. (5)

Here we point out that the h, k,l were introduced into
equation (4) as any integerc. If coprime, they are
Miller indices of a "reflecting" plane; if not, their
common factor is n, the order of the reflection-the
confusing n that students now thoroughly understand
and can henceforth serenely omit, as in equation (5).
The class is now ready to understand the geometry of
all the experimental diffraction procedures, for single
crystal and powder alike.

In the laboratory, to bridge the gap between mor-
phological and structural crystallographies, we begin
with the precession method. The students receive
their copies of two zero-level films, (001)f and (010)t,
and a c cone-axis film of chalcanthite. They are
shown how to identify the Laue class and crystal
system. They then index the reflections on inspection,
after they have been shown the positive directions of
a*, b*, and c* on the zero-level films. They measure
the films on home-built l ight-boxes equipped with
ruler and vernier that permit reading to i0.05mm;
for angular measurements they use the standard pre-
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cession film readers. They obtain values for a*, b*, c*,
B*, and 7*. Knowing the recorded dial settings at
which the two axial reciprocal-lattice nets were irra-
diated, they find the angle a through which the crys-
tal has been rotated and, using a relation given in
Appendix a,

cos a* : cos 0* cos y* - sin B* sin 7* cos a,

they compute a*. They are now ready to plot the
edges of the reciprocal-lattice cell on a stereographic
projection by means of the Wulff net and to find, on
the same projection, the edges of the direct-lattice
cell. By comparing this plot with the one previously
obtained from morphological data, they draw con-
clusions as to relative accuracies: the goniometric
data are good to a few minutes of arc; the film mea-
surements are accurate to t0.3 percent (lengths) and
t5' (angles) at best. All but one of the interfacial
angles they had previously been given are also mea-
surable on the two films. The identity between inter-
facial angles, measured on the goniometer, and inter-
row angles, measured on precession films, is well
understood by now. So is the usefulness of the recip-
rocal lattice for morphological as well as structural
studies.

The cone-axis film is measured to obtain the c
repeat, which is compared with the c value calculated
from the reciprocal-lattice cell dimensions. A com-
puting form, dating back to pre-computer days, once
used for refining the cell dimensions of triclinic alkali
feldspars from powder data (Donnay and Donnay,
1952, Table 3, p. 120) is included in the Manual; it
permits checking, by hand, each step in the calcu-
lation from reciprocal to direct triclinic cell ot uice
uersa.

The last and most time-consuming laboratory as-
signment deals with powder patterns. The students
may bring their own unknown or they are given a
cubic phase, which they X-ray in Debye-Scherrer (or
Gandolfi) cameras. They measure the film, correct
for shrinkage with the help of sharp shadow steps
appearing every l0o0' on the film, and convert the
measurements to d values by using appropriate Ta-
bles (Fang and Bloss, 1966). They use l.* (:l/d)
values to index the lines of the cubic patterns. For
tetragonal or hexagonal samples, indexing charts are
provided; for lower symmetries, no indexing is re-
quired. The more ambitious students are given mix-
tures of high-symmetry phases, but of different grain
sizes, and so learn about "chemical fractionation by
diffraction." Actual determination is carried out
from strong lines by means of the Powder Data File,
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and from the axial ratios by means of Crystal Data
(Donnay and Ondik,  1973).

The lectures are now turning to the weighted recip-
rocal lattice, whose importance in Laue-class deter-
mination has been realized in the laboratory. The
displacement x, corresponding to phase angle ,p in
s imple harmonic mot ion (SHM) wi th ampl i tude A,
can be written x : Aeip (Appendix e). X-rays prdpa-
gate with SHM and, if they are scattered by one
electron at the origin, say, and another atapointx,y,
z in the cell, we derive (Fig. l)

e/2r  =  6 /d (hk t ) :6 lL* (hk t ) l  (6 )

and (omitting the hkl)

6  =  r . u ,  w i t h  u  :  L * / l L * 1 ,  s o  t h a t d  :  r . L x / l L * 1 .

Substituting d into equation (6), we obtain a phase
angle,pl for theTth atom

e1 : 2nlr(xgiz;)'L*(hkl)l = 2r(hx1 * ky1 1- lz).

With scattering factor f the contribution of the lh
atom to the amplitude of the scattered wave is thus
fleiei . The sum of the contributions of all N atoms in
the cell is the structure factor

N

F(hkl)  :  
Ef  , ,u e2t i (hr i+hvi+tz i )  e-Bi(s inb/) '  Q)
j : 1

The isotropic temperature factor B is explained quali-
tatively, as are anisotropic factors, so that the student
will know what these parameters mean when he runs
across them in a structure paper.

The structure factor exists in the complex plane
and can be written as the sum of its real and imasi-
nary parts (Appendix d):

where the summations are taken fromT : I tol : N.
It is seen that the phase angle e : arctan B/A.For
centrosymmetric crystals the student derives a phase
angle of0 or l80o and structure factors that are real.
He must satisfy himself that the systematic ex-
tinctions he has derived geometrically for morphol-
ogy can also be derived analytically here by sub-
stituting coordinates of symmetry-related atoms into
the structure-factor expression.

The concept ofthe electron-density function p(xyz)

Fig I . Caf culation of F(hkl). The interplanar distance is d(hkl),
where i, k, i may contain a common factor n, so that it corresponds
to a phase difference of2a-. The phase p of an atom at point (x/z) is
to 2tr as 6 is to /.

is presented as the Fourier transform of weighted
reciprocal space:

p ( * y 4 = 1  
D  E r o r e - 2 r i ( h r + h r + t z ,  ( 9 )

There is no time to go into details of Fourier summa-
tions or least-squares refinements, but the old Patter-
son-Tunell strips (1942) are shown in class to demon-
strate the calculation of a one-dimensional Fourier
series.

The final lecture

The final lecture tells of some exciting recent devel-
opment in the field of mineralogical crystallography.
This year the class learned of an "absolute" electron-
density determination carried out on low-quartz by
R. F. Stewart, of Carnegie-Mellon University (pri-
vate communication). It shows the Si-O bond to be
75 percent covalent and only 25 percent ionic; the 50/
50 description of the past 50 years, which was based
on the electronegativity difference between Si and O,
is incorrect.

The emphasis at the end of the course is placed on
the fact that mineralogical crystallography is very
much alive and going places! Anybody who tries to
tell you otherwise has lost touch with reality.
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