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Lattice dynamical study of the a-3 quartz phase transition
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Abstract

The frequencies of the phonon spectrum at zero wave vector, the contribution of the various
model potential terms to potential energy, the dielectric constants, and the mode oscillator
strengths of quartz at 25, 580 and 600°C have been calculated from a polarizable ion model.
The mode softening of the soft mode is attributable to the change of the contribution of
potential energy terms to potential energy. The elastic constants, the contribution of potential
terms to the elastic constants, and the change of internal coordinates due to the elastic stress
have also been calculated. The anomalous elastic behavior near the transition point results
both from the unusually negative contribution of the short-range internal rotation forces to
the elastic constants at 580°C and from the rather large contribution of the strong short-range

stretching forces at 600°C.

Introduction

The long-range Coulomb interactions were first
applied to the lattice-dynamical theory of @ quartz by
Elcombe (1967) who calculated the optical mode fre-
quencies and the phonon dispersion curves on the
basis of the rigid ion (RI) model. The effective charge
of the oxygen ion was —0.98¢. The most elaborate
and consistent lattice-dynamical theory of a quartz
was presented by Striefler and Barsch (1975) on the
basis of the modified RI model. The effective charge
of the oxygen ion obtained by them is —0.475¢ and is
very different from that obtained by Elcombe. Both
calculations neglected the electronic polarizability of
the oxygen ion, which may be expected to play an
important role in the long-range Coulomb inter-
actions. lishi (1976) studied the effects of the elec-
tronic polarizability of the oxygen ion on the lattice
dynamics of & quartz and found that the fit to the
experimental TO-LO splitting is improved by their
inclusion. However, no attempt was made to examine
the validity of the calculated electronic polarizability
by comparison with the calculated and observed di-
electric constants. Thus the first purpose of this paper
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is to reexamine the electronic polarizability and the
effective charge of ions in quartz on the basis of a
polarizable ion (PI) model.

From the work on the Raman spectrum of quartz
from 6 to 900°C, Scott (1968) and Héchli and Scott
(1971) presented evidence that the 207cm~! 4% mode
is a soft mode. By analogy with several ferroelectric
phase changes, Coulomb interactions must play an
important role in the softening of the soft mode. For
this reason, the second purpose of this paper is to
clarify the effect of the Coulomb interactions on the
softening of the soft mode in the a-3 quartz phase
transition.

Some of the elastic constants of quartz have an
abnormally sharp decrease at the transition point.
Yamamoto (1974) interpreted this abnormal behav-
ior qualitatively by considering the contribution
from the soft branch as a deviation from the Landau
theory of phase transitions. Axe and Shirane (1970)
showed that the critical softening of elastic constants
of 8 quartz can be explained in terms of anharmonic
interaction between soft and acoustic modes. How-
ever, nobody appears to have explained this problem
by actual numerical calculation. Thus the third pur-
pose of this paper is to give a quantitative and micro-
scopic interpretation for this abnormal behavior by
numerical calculation of both the elastic constants
and the optical mode frequencies of quartz at 25, 580,
and 600°C.
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Method of calculation

The structure and symmetry properties of quartz
were described by Barron et al. (1976). The lattice
dynamical calculation was performed using a space
group P3,21 for o quartz and P6,22 for 8 quartz. The
temperature variation of the unit-cell dimensions is
taken from Jay (1933): a = 4.9128 and ¢ = 5.4045A at
25°C; a = 4.9962 and ¢ = 5.457A at 580°C; and a =
4.9979 and ¢ = 5.4582A at 600°C. The temperature
dependence of the atomic parameters is taken from
Young (1962): x = 0.4152, y = 0.2678, z = 0.1184,
and u = 0.4705 at 25°C; x = 0.4153,y = 0.2133, z =
0.1527, and u = 0.4922 at 580°C; and x = 0.4137,y =
0.2068, z = 0.1667, and u = 0.5 at 600°C.

The temperature dependence of the infrared active
TO and LO frequencies and that of the oscillator
strengths of o and B8 quartz are taken from Gervais
and Piriou (1975), and those of the far infrared region
from Russel and Bell (1967). The temperature depen-
dence of the Raman active optical frequencies is
taken from Scott and Porto (1967), Bates and Quist
(1972), and Hodchli and Scott (1971). The temper-
ature dependence of the elastic constants is taken
from Atanasoff and Hart (1941) and Kammer et al.
(1948). The temperature dependence of the high-fre-
quency dielectric constants is obtained by squaring
the observed refractive indices. The static dielectric
constants of a quartz are taken from Bechmann
(1958).

A group theoretical analysis may be carried out on
the symmetry properties of the normal modes of vi-
brations, and the dynamical matrices can be facto-
rized into block matrices using U matrices (Chen,
1967). In this study, the matrices U are chosen both
to satisfy the Ox diad axis (Barron et al., 1976) for the
doubly degenerate modes E of a quartz and E, and E,
of 8 quartz, and to destroy this two-fold symmetry
for E' of a quartz and E] and E; of 8 quartz.

The method of PI model calculations of optically-
active vibration frequencies of ionic crystals was de-
scribed by Yamamoto et al. (1976). Aspects of the PI
model relevant to the present work are briefly given
here.

From Born and Huang (1954), a dynamical matrix
D is constructed by four constituents in the form

D = M(F¥ + F¢ + F! + F*)M
where the notations are those of Yamamoto et al.
(1976) and M denotes the inverse-mass matrix. The
first term arises from short-range non-Coulomb in-

teractions. The second is the Coulomb interaction
part due to the undeformable ion interactions. The
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third is the Coulomb interaction part resulting from
the induced dipole interactions through the electronic
polarizability. The last term refers to the macroscopic
field and is dependent on the direction of the propa-
gation, whereas the first three terms are independent
of the direction of the wave propagation in the long-
wavelength limit.

The modified Urey-Bradley force field (Shima-
nouchi, 1963), which is used in the calculation of the
non-Coulomb interaction part F¥, contains the Si-O
stretching force K, the non-bonded O- - - O repulsive
force F, the Si-Si interactions between neighboring Si
atoms to stabilize the Si-O-Si angles f, and the three
correction terms of the internal rotation force Y, the
intramolecular tension « for the SiO, tetrahedron,
and the bond-bond interaction force p for the adja-
cent Si-O bond pairs.

The Coulomb contribution can be calculated by
means of Ewald’s (1921) method. The effective
charge of an oxygen ion Z, is taken to be —Ze, where
Z is a positive number. The charge of a silicon ion is
obtained under the condition that the crystal is elec-
trically neutral.

The high-frequency dielectric constants ¢, which
are useful to check the validity of the chosen elec-
tronic polarizability values, can be evaluated in the
form (Born and Huang, 1954)

e =1+ 4drvp

where
ap = Oap
Pag = > Raﬂkk’
.22

R=(I-AQ)'A

Aaﬂkk’ = 6”;01,15;2

Iaﬂkk' = 5aﬂ5kk’
The notations are those of Yamamoto et al. (1976). v
is the unit-cell volume, Q the Coulomb coefficient
matrix and a, the electronic polarizability tensor of

the kth atom. The static dielectric constants € are
given by (Born and Huang, 1954)

€ = €e° + 41I'U—1[ZZ{(SMZ)XtiAthtt(MzS)}kk' + p]

ikk!
= ¢ + TAg
J

where
M.agirr = Oagdrnr Lpmy’?
Avopr = Baphes
S=1+(T-AQ) A
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Table 1. Experimental and theoretical optical mode frequencies (in cm™*) and high-frequency dielectric constants of quartz at 25, 580,
and 600°C based on the PI model

Experimental Theoretical
Species 25°c% 580°Cb Species 600°Cb R5°¢C 25°C 580°C 600°C
S & Bc Present work
‘4] 1 1085 1072 Bl 1 (1072)d 1127.3 1095.9 1101.1 1090.7
2 464 464 A] 1 464 p 474.1 487.4 463.8 465.9
3 356 350 Bl 2 (350} 375.0 352.8 336.7 341.9
4 207 43® Bl 3 (30)d’e 203.9 210.4 43.0 30.9
AZT 1 1071 1064.5 AZT 1 1061 p 1134.7 1073.0 1053.9 1067.4
2 777 777 BZT 2 (777) 745.7 783.1 752.0 748.7
3 495 436.5 AZT 2 435 g 531.4 504.4 445.2 439.9
4 363.5 385 BZT 2 (385) 379.8 358.8 408.8 419.8
A2L 1 1229 1230 A2L 1 1227 1153.4 1135.2 1126.4 1127.0
2 790 781 BZL 1 754.8 784.7 752.4
3 551.5 528 AZL 2 527 545.5 504.5 445.2 439.7
4 386.7 397 BZL 2 388.0 358.9 408.1
ET 1 1158 1155 E2T 1 1155 1086.9f 1092.1 1162.0 1161.9
2 1065 1060 ElT 1 1057 ll35.2f 1071.8 1059.9 1056.6
3 797 781.5 EJT 2 779 775.0 795.3 780.5 783.1
4 695 680 EZT 2 680 667.9 691.1 667.7 669.1
5 450 421.5 EJT 3 420 494.6 457.6 429.6 428.0
6 393.5 400 E2T 3 400 378.0 380.2 359.2 361.1
7 265 243 EZT 4 243 256.2 257.9 2551 . 255.0
8 128 98 EJT 4 98 136.3 128.1 94.8 94.8
E’L 1 1155 1154 EZL 1 1154.2 1092.0 1162.0
2 1226 1228 ElL 1 1223 1086.9 1131.3 1127.5 1116.5
3 810 797 EJL 2 796.5 784.0 797.2 782.6 785.1
4 697.6 681 EZL 2 668.5 691.2 668.0
5 510 494.5 EZL 3 492 511.5 457.8 429.7 428.3
6 402 403.7 EZL 3 380.6 380.3 859.73
7 265 243 EZL 4 256.9 258.2 255.8
8 128 928 ElL 4 98 136.4 128.2 95.2 94.8
Einy 2,386 2.350 2.353 1.0 2.392 2.346 2.357
E;’,0 2,415 2.373 2.377 1.0 2.413 2,359 2.377

a: Data are from Gervais & Piriou (1975), except 4, modes data which are from Scott & Porto (1967).

b: Data are from Gervais & Piriou, except Al modes and the two lowest E modes data which are from Bates & Quist
(1972). e: Striefler & Barsch (1975). d: These values are used for aq least-squares fit arnalysis.

e: These values are estimated from Fig. 1 of Hochli & Scott (1971). f: Corrected assignment.  From the

magnitude of obtained TO-LO splittings by them, their assignment seems to be wrong.

The subscript ¢ identifies the transverse mode, and the  of the normal mode of vibration, A the eigenvalue,
summation with respect to i is extended over the and Ae, the oscillator strength of the Jjth vibration.
infrared active modes. X is the atomic displacement  The first term, €®, is the contribution of the ultravio-
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Table 2. Parameter values of quartz at 25, 580, and 600°C in the
best-fitting PI model

Parameter Units 25°C 580°C 600°C
X mdyn/A 4.6696 4.9606 4.9666
F mdyn/A 0.6409 0.5461 0.5409
k2 ndyn/A 0.4820 0.5192 0.5224
% mdyn-A 0.0011 0.0005 0.0032
K mdyn-A 0.2024 0.2348 0.2462
P mdyn/a -0.3708 -0.0391 -0.0026
Z, e -0.349 -0.335 -0.335

a.L(0) a’ 1.37 1.37 1.37
ay (0) A 1.38 1.38 1.38
x* 3 1.69%* 2.52 2.56

* Longitudinal optical mode frequencies are not included
in the quality-of fit parameter.
** Striefler & Barsch's model has the value 4.86.

let and the second, 2 ; A¢,,of the infrared polarization.

The elastic constant has been calculated by the
method established by Shiro and Miyazawa (1971).
The contribution of the potential term to the elastic
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Fig. 1. Contribution (percent) of potential terms in the
theoretical frequencies of 4, species of quartz at 25, 580, and
600°C.
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constant (PED)?,, and the change in the internal
coordinates due to the elastic stress have also been
calculated by the method of Yamamoto et al.
(1974a). The short-range parameters based on a
short-range (SR) model have been refined by the
least-squares fit both to the observed optical mode
frequencies and to elastic constants (Yamamoto et
al., 1974b).

Results and discussion

Electronic polarizabilities

The least-squares fit has been carried out to obtain
the best fit between the observed and calculated opti-
cal mode frequencies by changing the effective charge
and six short-range interaction parameters. The elec-
tronic polarizability of a silicon ion ag is assumed to
be isotropic and fixed at 0.02A® according to Tess-
mann et al. (1953). The electronic polarizability of
an oxygen ion ao is determined to reproduce the
obtained high-frequency dielectric constants. In
Table 1 the optical mode frequencies and the high-
frequency dielectric constants, €? and €%, are com-
pared with the experimental data at 25, 580, and
600°C. The calculated results for & quartz of Striefler
and Barsch (1975) are also listed in Table 1. The
obtained model parameters for the best-fitting model
are shown in Table 2. The model presented here for a
quartz gives considerably improved agreement for
the overall optical frequencies and moderately im-
proved agreement for the TO-LO splitting for the
stretching vibration mode as compared with Striefler
and Barsch’s RI model and Barron et al.’s E3(RI)
model. The obtained small effective charge of
—0.349¢ for the oxygen ions apparently confirms the
weak ionic bond nature in quartz, and the present
value is only a little smaller than the value —0.472e of
Striefler and Barsch and is almost the same as the
value of —0.35¢ of Barron et al., in spite of their
neglecting the electronic polarizabilities. The ob-
tained electronic polarizabilities a;;(0) = a3(0)
[designated as a1 (0)] = 1.37A° and as(O) [desig-
nated as a(0)] = 1.38A% for a quartz are smaller
than those of ap = 1.7A3 reported by Tessmann et al.
(1953).

207c¢cm™! soft mode A}

The contribution of the potential energy term to
the potential energy at 25, 580, and 600°C is pre-
sented in Figure 1. At 25°C, the strong stretching and
repulsive forces, K and F, contribute mainly to the
potential energy of the soft mode 43. On the other
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Table 3. Experimental and theoretical (PI model) oscillator
strength (A¢) of quartz at 25, 580, and 600°C

Experimental* Theoretical
Species 25°C 580°C Species 600°C 25°C 580°C 600°C
AZT il 0.66 0.74 AZT il 0.73 0.096 0.114 0.098
2 0.11 0.033 BZT il 0.0005 0.0002
3] 0.65 LS A2T 2 1.58 0.125 0.230 0.255
4 0.67 0.40 BBT 2 0.132 0.043
ET 1 0.01 0.003 E2T L 0.0005 0.0002
2 0.65 0.695 EZT 1! 0.695 0.092 0.105 0.099
3 0.11 0.13 EZT 2 0.145 0.0009 0.002 0.003
4 0.02 .01 E2T 2 0.0016 0.0000
5 0.83 1.30 EZT 3 1.30 0.194 0.244 0.245
6 0.133 0.22 EZT 3 0.035 0.00%9
7 0.05 EZT 4 0.022 0.009
8 0.0006 E 4 0.004 0.0014 0.031

-
=

‘
Data are from Gervais & Piriou (1975), ewxcept the two lowest E modes,
which are from Russel & Bell (1967).

hand, at 600°C, the weak internal rotation force Y
and Coulomb interaction part contribute to potential
energy in the soft mode 4% and, moreover, the latter
contributes negatively. The potential energy of the
soft mode 41 at 580°C has the mix character between
that at 25° and that at 600°C. The short-range force
constant, the ““dynamically effective” ionic charge
and the “dynamically effective’” electronic polariza-
bility at 25°C are only a little different from those at
580 and 600°C. The contribution of the strong
stretching repulsive forces to the potential energy,
however, decreases in contrast to the increasing con-
tribution of the weak internal rotation force Y. The
frequency of the soft mode decreases as a whole by
this effect of the short-range interaction part (Iishi
and Yamaguchi, 1975). The mode softening is also
attributed largely to the Coulomb interaction part,
whose effects become negative while softening. The
latter effects were found for the first time by consid-
ering the electronic polarizability of ions. More de-
tailed explanation of the mode softening of the soft
mode, of course, requires explicit inclusion of anhar-
monic effects. The neglect of anharmonic effects
shows the limitations of the present model.

Oscillator strengths and dielectric constants

The infrared-active mode oscillator strengths,
which are related to the TO-LO splittings, are also
evaluated to examine the appropriateness of the nor-
mal modes of vibrations and the model parameters
determined in the present work. The calculated oscil-
lator strengths are compared with the observed data

IISHI: QUARTZ PHASE TRANSITION

in Table 3. The magnitude of the calculated oscillator
strengths of the present PI model is five or eight times
smaller than the experimental values. The theoretical
oscillator strength ratios among modes and temper-
ature dependence are, however, in fairly good agree-
ment with the experimental ones.

The theoretical static dielectric constants in the
present model are compared with the experimental
data (Gervais and Piriou, 1975) and the results of
Striefler and Barsch in Table 4. In Table 4 both sides
of the Lyddane-Sach-Teller (LST) relation

€’ (wro)t
€ H (wro)
are also given to check the correctness of the calcu-
lated static dielectric constants by using the present
PI model. As was expected from the small value of
the calculated strengths and the small magnitude of
the calculated T7O-LO mode splittings, the theoreti-
cal static dielectric constants are very small compared
with the experimental ones. On the other hand, the
static dielectric constants calculated by Striefler and
Barsch interpret the experimental values better than
the present PI model, in spite of their neglecting the
electronic polarizability. Their calculated results,
however, do not satisfy the LST relation. As is well
known, the static dielectric constants are divided into
“high-frequency” contribution related to the elec-
tronic polarizabilities and “oscillator strengths” con-
tribution related to TO-LO splittings. In the case of
€® of o quartz, for example, the former is 2.415 and
the latter is 2.225, respectively. Striefler and Barsch’s
model neglecting the electronic polarizability neces-
sarily gives the ‘high-frequency” contribution the
value 1.0. Their dielectric constant ¢ = 3.94, there-
fore, means that the “oscillator strengths” contribu-

Table 4. Experimental and theoretical dielectric constants and
both sides of LST relation of & quartz

Experimental® Theoretical
Present work S & B**
&Y 4.43 2.71 3.82
e 4.64 2.72 3.94
1@ 2 1.13 1.16
P 2
i, )2 4 1.91 1.13 1.16
10'i,  “ou
edses 1.86 1.14 1.65
o
EN/Ey 1.92 1.13 1.63

* Gervais & Piriou (1975). ** Striefler & Barsch (1975,
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Table 5. Theoretical optical mode frequencies* (in cm~!) of
quartz at 25, 580, and 600°C based on the SR model
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Table 7. Parameter values of quartz at 25, 580, and 600°C in the
best-fitting SR model

Species 25°¢C 580°C Species 600°C
A] 1 1126.6 1129.3 BJT 1 1138.9
2 490.2 472.3 AZT 1 439.1
3 353.0 336.5 BZT 2 341.7
4 208.9 42.7 B]T 3 30.6
A2T 1 1118.0 1108.2 AZT al 1116.9
2 731.9 687.1 BZT 1 682.5
3 501.6 449.7 AZT 2 452.5
4 367.7 407.6 BZT 2 411.5
ET 1 1130.4 1173.9 EZT 1 1058.2
2 1113.8 1109.3 EJT 1 1117.2
3 736.6 709.3 ElT 2 716.2
4 606.5 622.7 EZT 2 598.5
5 463.6 428.0 EZT i) 426.7
6 373.3 371.1 EZT 3| 365.4
7] 252.7 255.7 EZT 4 248.1
8 131.0 100.1 ElT 4 97.5
Experimental data are shown in Table 1.

tion in their model amounts to the large value 2.94.
This value 2.94 seems too large when we consider the
very small magnitude of their calculated TO-LO
splittings.

According to Szigeti (1949), the infrared polariza-
tion term in the static dielectric constant equation
contains two factors,

(e‘” a2 )2
3

and s? which are not present in Born’s equation. The

Parameter* 25°C 580°C 6005
K 4.1143 4.1865 3.7872
F 0.6377 0.5850 0.5624
f 0.4099 0.3918 0.3430
Y 0.0000 ~-0.0003 0.0007
K 0.2292 0.2516 0.2483
P 0.0002 0.2064 -0.2750
e 4.01 5.54 6.55

* %
Units are the same to Table 2. Elastic constants
are not ineluded in the quality-of-fit parameter.

“s” represents the short-range interaction of elec-
tronic and atomic displacements, while the factor

<e°° + 2 )2

3
appears because the long-range interaction does not
vanish when it receives transverse waves. The large
discrepancy between the theoretical static dielectric

constants in the present study and the experimental
ones might be caused by ignoring these two factors.

Elastic constants

The theoretical optical mode frequencies obtained
by the least-squares fit of both the elastic and the
optical mode frequencies based on the SR model are
listed in Table 5. The theoretical elastic constants are
compared with the experimental results in Table 6.
The theoretical best-fit short-range parameters are
given in Table 7.

Of the various changes in physical properties asso-
ciated with the a—8 quartz phase transition, the most
striking occurs in the elastic constants, as is shown in
Figure 2 (Yamamoto, 1974). The Jacobian matrix

Table 6. Experimental and theoretical elastic constants (in 10® dyn/cm?) of quartz at 25, 580, and 600°C based on the SR model
Experimental Theoretical
25°¢* 580°c*  e00°C** 25°C 580°C 600°C

Cqq 87.55 61 136 47.2(4;) + 33.8(F) = 8.0 17.5(4;) + 41.8(8) = 59.3 121.5(4;) + 42.6(F,) = 164.1
Crr 106.8 68 124 64.0(4,) = 64.0 64.8(4) = 64.8 162.7(4,) = 162.7
Cys 57.19 28 38.6 48.6(E) = 48.6 28.1(K) = 28.1 29.0(E)) = 29.0
Css 57.19 28 38.6  48.6(E") = 48.6 28.1(E") = 28.1 29.0(E1’) = 29.0
Cop 40.74 47 51.6  33.8(E") = 33.8 4l.8(E") = 41.8 42.6(E)) = 42.6
Cig 6.07 -33 33 47.2(4,) - 33.8(F) = 13.5 17.5(4)) - 41.8(F) = -24.4 121.5(4)) - 42.6(Fy) = 78.9
13 13.3 -8 48 11.8(4,) = 11.8 3.8(4;) = 3.8 107.2(4) = 107.2
Cla 17.25 7 13.9(8) = 13.9 8.4(E) = 8.4

* Atanasoff & Hart (1941). ** Rammer et al. (1948).
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Fig. 2. The temperature dependence of the elastic constants of
quartz. Data are from Yamamoto (1974). The elastic constant Ce,
was calculated from the equation of Ces = 1/2(Cy; — Cuo).

elements at 25, 580, and 600°C, i.e. the partial deriva-
tive of elastic constants with respect to force con-
stants, are listed in Table 8. This table shows that the
Jacobian matrix elements of the elastic constants C,,,

Table 8. Jacobian matrix elements (in 107°A"1), i.e., the partial
derivatives of elastic constants with respect to force constants of
quartz at 25, 580, and 600°C

c c 4 4 c (C C
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Table 9. Contribution (percent) of potential terms to the
theoretical elastic constants of quartz at 25, 580, and 600°C

‘1 Cs3 C4 Ce6 C13 €13 C14
25°C
K Qoenl?. 0.5 4.2 0.9 6.0 5.0 2.8
F 50.8 50.5 74.6 65.0 -20.4 -198.8 137.5
i 46.4 53.8 11.6 24.8 154.6 268.7 -45.1
Y 0.0 0.0 0.0 0.0 0.0 0.0 0.0
K 1.1 -4.9 9.6 9.3 -40.2 25.0 4.8
r 0.0 0.0 0.0 0.0 0.0 0.0 0.0
580°C
K 1.4 0.2 5.6 1.9 3.2 -1.4 4.5
F 75.1 90.4 50.9 88.2 120.1 -256.2 137.8
f 69.9 64.9 37.4 5.0 =153.0 1081.6 -44.1
i -48.4 -43.7 -3.9 -0.1 117.2 -757.1 2.9
K 1.9 -11.8 10.3 530/ 12.5 33.4 -1.0
P 0.0 0.0 -0.3 0.0 0.0 -0.2 -0.1
600°C
K 29.7 34,1 4.7 2.4 59.1 48.0
F 67.0 66.4 38.1 92.9 39.2 44,8
f 13.0 13.9 34.7 2.4 24.4 20.0
Y 0.0 0.0 9.0 0.0 0.0 0.0
< ~-3.4 -7.0 132 2.4 -9.6 -2.4
Y4 -6.4 -7.4 0.3 -0.1 -13.1 -10.5

Css, Cip, and Cy5 with respect to the internal rotation
force Y are extremely large at 580°C. This fact is
attributable to the negative elastic constant value of
C,, and C,, and to the decrease of the values of Cy;
and Cs,, because the internal rotation force is very
weak but negative (Table 7) at 580°C.

The contribution of all the potential terms to the
calculated elastic constants (PED)%,;, is shown in
Table 9. The O. . .O repulsive force F and the Si-Si
interaction force f contribute mainly to the elastic
constants Cy;, Cs3, C1a, and Cy5 at 25 and 580°C. On
the other hand, the strong Si-O stretching force K
contributes considerably to them in addition to the
repulsive force F at 600°C. The particular behavior of
the elastic constants C,;, Css, Cip, and C,;, which

Table 10. Change of internal coordinates (in A®>/mdyn)* due to
elastic stress of quartz at 25, 580, and 600°C

S S 8 S S S

rx Yy 22 ya 2 zy
. ;

a g 4, E 4, E E E’

25°C
Si-0 < ) 3 [o] 2 7 3 5
0-0 13 =33 13 33 34 -24 42 15
si-si 54 -10 54 10 71 32 57 =97
Torsion 128 -64 128 64 168 137 -244 285

580°C
§i-0 0] 1 (4] -1 1 12 4 5
0-0 -17  -93  -17 93  -48 18 4 40
Si-Si 118 2 118 -2 89 -86 143 -40
Torsion 2207 6 2207 -6 1636 56 -1124 77
r 1]
4 By 4 B, 4 By ) By

600°C
Si-0 13 o] 13 ] 19 5 o 6
0-0 a5 -51 a5 51 23 58 -26 10
si-si 23 -7 23 7 32 -1 111 -16
Torsion 2 11 2 -11 =5 -73 -1016 5

11 33 44 66 12 13 14
25°C
K [¢] 0 0 (0] 0 ] o
F 64 51 57 34 -4 =37 30
b 91 84 14 20 51 77 =15
prg 1116 1087 509 344 427 915 -417
K* 4 -14 20 14 ~24 13 3
2 3t 0 0 0 0 0 0
580°C
K 0 0 0 0 0 0 o
F 76 100 24 63 =50 -16 20
f 105 107 27 5 95 104 -9
y* 95573 94514 36346 184 95206 94949 -812
K* 6 -38 13 10 -14 6 0
P 0 0 0 0 0 0 0
600°C
X 12 15 ) o] 12 14
F 195 192 20 70 55 85
i 62 66 29 3 56 63
Vi 5 1 3721 ) -5 -1
K* -22 -46 15 4 -30 -10
p 38 44 0 0 38 a1
* 3 3 -39-3
Units of Y and k are in 10 “A ",

* o
Units of torsion coordinates are in md-AZ/mdyn.
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decrease critically at the transition point and increase
rapidly in the § phases (see Fig. 2), is attributed to
this large change of the contribution of the potential
terms to the elastic constants. The contribution of the
potential terms to the elastic constants C,, and Ce,
on the other hand, is always almost the same. Both
elastic constants vary only a little through the phase
transformation, as is also shown in Figure 2.

Table 10 shows the change in the internal coordi-
nates due to unit elastic stress of quartz. Except in the
E mode the internal rotation coordinate becomes
surprisingly sensitive to the S,., Sy, S.., and S,,
stresses at 580°C. The internal rotation coordinates
at 600°C are sensitive only to the stress S,,. There is a
large variation of the thermal expansion coefficient in
the vicinity of the transition point (Fig. 4 of Yam-
amoto, 1974). This variation may bring about the
stress in the quartz structure near the transition
point. We conclude now that the sensitive phase tran-
sition between the « phase and the 3 phase is caused
through the sensitive £} mode internal rotation
coordinates due to stress S,,.
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