Low-temperature heat capacities and entropies of feldspar glasses and of anorthite

RICHARD A. ROBIE, BRUCE S. HEMINGWAY AND WILLIAM H. WILSON U.S. Geological Survey, Reston, Virginia 22092

Abstract

The heat capacities of glasses near the feldspar compositions KAlSi₃O₈, NaAlSi₃O₈, and CaAl₂Si₂O₈, and of crystalline anorthite were measured between 12 and 380 K by means of an adiabatic calorimeter. Difference plots, $C_p^o(\text{glass}) - C_p^o(\text{crystals})$, show pronounced maxima at 30 K for KAlSi₃O₈, at 50 K for NaAlSi₃O₈, and at 35 K for CaAl₂Si₂O₈, similar to maxima previously observed for other inorganic glass-crystal pairs (e.g., As₂O₃ and SiO₂). The entropy changes, $S_{298}^o - S_0^o$, for KAlSi₃O₈, NaAlSi₃O₈, and CaAl₂Si₂O₈ glasses and for anorthite based on our measurements are 224.3 \pm 0.3, 213.8 \pm 0.3, 198.7 \pm 0.3, and 199.3 \pm 0.3 J/(mol·K), respectively.

Approximate values for the zero-point entropies, S_0° , of NaAlSi₃O₈, KAlSi₃O₈ and CaAl₂Si₂O₈ glasses were calculated from our heat-capacity data combined with (1) the high-temperature $H_T^\circ - H_{298}^\circ$ data for these glasses and their crystals; (2) the low-temperature heat capacities of analbite and high sanidine; and (3) the enthalpy changes, obtained by HF(aq) solution calorimetry, for the transformation crystals \rightarrow glass, ΔH_{223}° .

Our calculated values for the entropies of KAlSi₃O₈ glass, NaAlSi₃O₈ glass, and CaAl₂Si₂O₈ glass at zero Kelvin, that is, the residual or zero-point entropies, are 37.3 \pm 2.5, 38.1 \pm 1.5, and 38.6 \pm 2.2 J/(mol·K), respectively. The entropies of fusion at the melting points of high sanidine, analbite, and anorthite are 33.8, 42.6, and 44.3 J/(mol·K), respectively. The Debye temperature, θ_D , of CaAl₂Si₂O₈ glass is 210 \pm 10 K, and that of anorthite is 227 \pm 15 K.

Introduction

As part of a continuing study of the thermodynamic properties of the feldspar-group minerals, we have used adiabatic calorimetry to measure the heat capacities of KAlSi₃O₈ and NaAlSi₃O₈ glass between 12 and 385 K and of CaAl₂Si₂O₈ glass and anorthite between 6 and 385 K to obtain their standard entropies. K. M. Krupka, R. A. Robie, and B. S. Hemingway (1977) have measured the heat capacities of these same samples of glass and of anorthite between 350 and 1000 K by differential scanning calorimetry.

White (1919) measured the heat contents, $H_T^{\circ} - H_{273.15'}^{\circ}$ of anorthite and of the three feldspar glasses. The upper limit of White's measurements was 1373.2 K for KAlSi₃O₈ glass, 1173.2 K for NaAlSi₃O₈ glass, 973.2 K for CaAl₂Si₂O₈ glass, and 1673.2 K for anorthite. King (1957) measured the heat capacity of synthetic anorthite between 53.4 and 295.9 K. Ferrier's (1969b) measurements of $H_T^{\circ} - H_{298}^{\circ}$ for CaAl₂Si₂O₈ glass to 1500 K and of anorthite to 1800 K have an accuracy of about \pm 2.0 percent.

Materials

The samples of KAlSi₃O₈ and NaAlSi₃O₈ glasses used for our heat-capacity measurements were prepared by the Corning Glass Company, Corning, New York. Chemical analyses of these glasses are given in Table 1.

CaAl₂Si₂O₈ glass was prepared by James Woodhead, Department of Geological and Geophysical Sciences, Princeton University, by direct fusion of a stoichiometric mixture of CaO, Al₂O₃ (Research Organic/Inorganic Chemical Corporation, reagents A-12 and Al-21), and SiO₂ glass (Spectrosil, Thermal American Fused Quartz Company) at 1850-1875 K for 2 hours in a platinum crucible. Anorthite crystals were prepared from a portion of the CaAl₂Si₂O₈ glass crushed to pass a 35-mesh sieve (0.42 mm). The material retained on a 150-mesh (0.104 mm) screen was divided into two separate batches and heated in platinum crucibles. The first batch was heated for 17 hours at 1375 K and then for 1 hour at 1675-1700 K and then was removed from the furnace to air-cool. The second batch was heated for 4½ hours at 1375 K

Table 1. Chemical analyses, in weight percent, of calorimetric samples of feldspar glasses

	1	2	3	4	5	6
SiO ₂	64.76	64.75	68.74	66.89	43.19	42.09
^{A1} 2 ⁰ 3	18.32	18.03	19.44	20.71	36.65	37.05
Fe ₂ 0 ₃		0.02		0.00		
Na ₂ O		0.07	11.82	12.41		
к ₂ 0	16,92	16.52		0.00		
Ca0				0.02	20.16	20.18
H ₂ O-		0.19				
H ₂ O+		0.59		0.15		
					-	
Total-	-100.00	100.17	100.00	100.18	100.00	99.32
Specif: vity 25°C	ic gra- at	2.378		2.395		

- 1. KAlSi308
- 2. KAlSi $_3$ O $_8$ glass 95GQA 2 Prepared by Corning Glass Co. Analyst J. J. Fahey, U.S. Geological Survey (70-WC-8).
- 3. NaAlSi308
- NaAlSi₃O₈ glass X95GQB¹ Prepared by Corning Glass Co.
 Analyst J. J. Fahey, U.S. Geological Survey (69-WC-8).
- 5. CaAl, Si, O.
- 6. ${
 m CaAl_2}{
 m Si_2}{
 m 0_8}$ glass #75015 prepared by James Woodhead, Dept. of Geology, Princeton University. Microprobe analysis by Toby Wiggins, U.S. Geological Survey.

and for 1 hour at 1675–1700 K. The furnace was shut off and the sample was allowed to cool to room temperature for a period of 6 hours. The material that passed the 150-mesh screen was heated for 5 hours at 1375 K and for 1 hour at 1675–1700 K and was then removed from the furnace. The three batches were combined for the heat-capacity measurements.

The refractive indices (measured in white light) of the glasses were 1.487, 1.489, and 1.575 for KAlSi₃O₈, NaAlSi₃O₈, and CaAl₂Si₂O₈, respectively. These values agree well with the values of Schairer *et al.* (1956)—1.487, 1.489, and 1.575. The densities for KAlSi₃O₈ glass and NaAlSi₃O₈ glass, measured on powders by J. J. Fahey (for explanation of technique, see Fahey, 1961) of the U. S. Geological Survey, were 2.378 ± 0.003 and 2.395 ± 0.003 g/cm³, respectively. These values agree to within 0.9 percent with those given by Berman *et al.* (1942). The density of the NaAlSi₃O₈ glass was also determined from the volume and mass of a right-circular cylinder of the glass (1.8285 \pm 0.0028 cm diameter by 0.9289 \pm 0.0025

cm length, and 5.8164 ± 0.0003 g) to be 2.384 ± 0.004 g/cm³. The density of the CaAl₂Si₂O₈ glass was obtained by pycnometer at 23.4° C on coarse fragments of the glass as 2.69 ± 0.02 g/cm³.

Unit-cell parameters for this anorthite sample, measured by J. S. Huebner (U. S. Geological Survey) at 23.5°C using BaF₂ ($a=0.61971\pm0.0001$ nm) as an internal standard, were $a=0.8189\pm0.0006$ nm (1 nanometer = 10 angstroms), $b=1.2870\pm0.0007$ nm, $c=1.4167\pm0.0007$ nm, $\alpha=93^{\circ}$ 4.1' \pm 3.8', $\beta=115^{\circ}$ 50.9' \pm 4.1', and $\gamma=91^{\circ}$ 6.3' \pm 3.6'. The cell dimensions are in reasonable agreement with the values determined by Kroll [as reported by Smith (Table 7-6, p. 309, 1974)], on crystals grown at 1703 K for 3 hours

The peaks on the diffractometer pattern for our anorthite are considerably broader than those from another synthetic anorthite (sample ANS-305, Stewart, 1967) used as a standard; the ANS-305 anorthite was crystallized from a glass at 1333 K for 2 hours at 10 kbars H₂O pressure. The large uncertainties in the refined cell parameters are a consequence of the broadened lines. Our anorthite was also examined by Gordon Nord of the U. S. Geological Survey using a 200-kV electron microscope. His examination showed that the individual grains were multiply twinned (albite law) and twin widths were between 3 and 20 nm. This is presumably the cause of the line broadening observed in the X-ray diffractometer pattern of our anorthite sample. From his electron-diffraction observations, Nord (written communication, 7/22/76) concluded that "short-range order is >20nm for the Al-Si framework and less than 3 nm for positional ordering of calcium. The weak intensity seen in the type (b) reflections as compared to slowly grown anorthite suggests that Al/Si order is incomplete."

The samples of the glasses used in our heat-capacity measurements were in the form of shards 1–10 mm long. The KAlSi₈O₈ and NaAlSi₈O₈ glasses were heated at 775 K for 2 hours in a forced-air furnace and cooled in a desiccator over Drierite prior to being loaded into the calorimeter. Unpublished studies by J. J. Fahey have shown that this treatment is necessary to remove absorbed surface water.

Apparatus

The cryostat used in these studies has been described in detail by Robie and Hemingway (1972). The calorimeter and data acquisition system used for our measurements have been described by Robie et al. (1976).

After the measurements on KAlSi3O8 and

NaAlSi₃O₈ glass had been completed, the resistance of the platinum thermometer (Minco type S-1059, serial number 68) was measured at the normal boiling point of helium, 4.215 K, using a current of 0.004 amperes. The resistance at the boiling point of helium was 0.04725 ± 0.00005 ohms. The helium calibration point together with the resistance and dR/dT at 13.0 K from the earlier National Bureau of Standards calibration data on IPTS-68 (International Practical Temperature Scale of 1968) between 13 and 500 K were substituted into the equation given by Mc-Crackin and Chang (1975) to generate a provisional resistance-temperature relation for the temperature range 3 to 13 K. The value of $R_{4,215}/R_{273,15}$ for our thermometer, 4.72×10^{-6} , is in the middle of the range of values considered acceptable by McCrackin and Chang. The value of $R_{373.15}/R_{273.15}$ for this ther-

Table 2. Experimental specific heats of KAlSi₃O₈ glass

TEMP.	SPECIFIC HEAT	TEMP.	SPECIFIC HEAT
K	J/(G.K)	K	J/(G.K)
SF.	RIES 1	SER	IES 6
302.68	.7588	184.20	.5405
311.62	.7717	191.50	.5566
319.36	.7826	198.65	.5722
326.71	.7925	205.87	.5876
334.21	.8022	213.15	.6028
341.74	.8115	220.42	.6176
	RIES 2	227.66	.6318
349.32	.8212	234.90	.6457
356.84	.8311	242.04	.6589
364.31	.8405	249.18	.6716
371.73	.8483	256.41 263.74	.6843 .6972
379.09 386.51	.8559 .8668	271.07	.7096
	RIES 3	2/1.0/ SER	
54.66	.1609	266.43	.7017
58.66	.1755	273.84	.7141
63.45	1924	261.16	.7264
69.28	.2125	288.50	.7378
76.08	.2357	295.96	.7488
83.65	.2611	303.44	.7597
91.69	.2874	310.74	.7700
ŞE	RIES 4	SER	
80.09	.2493	13.30	.01111
85.30	.2666	14.31	.01357
90.74	.2844	15.75	.01737
96.15	.3017	17.50 19.39	.02244
101.80	.3196	21.37	.03523
113.96	.3569	23.40	.04242
	RIES 5	25.52	.05020
113.80	.3564	27.77	.05858
120.70	.3768	30.28	.06814
127.74	.3970	33.06	.07910
135.38	.4181	36.56	.09247
143.52	.4401	40.40	.1070
151.80	.4618	44.92	.1240
159.59	.4818	51.04	.1469
166.94	.5000	56.78	.1684
174.11	.5172		
181.22	.5336		
188.36	.5497		
195.57	.5655		
202.83	.5811		

Table 3. Experimental specific heats of NaAlSi₃O₈ glass

	1		
TEMP.	SPECIFIC HEAT	TEMP.	SPECIFIC HEAT
К	J/(G.K)	K	J/(G.K)
SED	IES 1	SERI	ES 4
13.87	.00877	163.50	.5145
15.34	.01166	169.87	.5317
17.04	.01544	178.45	.5490
19.12	.02080	182.70	.5649
21.27	.02691	188.92	.5802
23.51	.03376	195.13	.5953
25.81	.04126	201.41	.6104
28.36	.04994	207.74	.6254
31.12	.05980	214.00	.6394
34.05	.07061	220.33	.6535
37.34	.08301	226.75	.6672
40.99	.09689	233.25	.6809
45.04	.1123	239.85	.6946
49.56	.1299	SER.	
54.70	.1505	234.40	.6831
	RIES 2	240.68	.6960
54.34	.1495	247.12	.7088
59.92	.1712	253.60	.7213
65.58	.1927	260.15	.7337
71.41	.2147	266.63	.7459
77.34	.2369	273.00	. 75 79
83.28	.2589	279.38	.7692
	RIES 3	286.13	.7807
80.73	.2496	293.21	.7924 .8032
85.95	.2687	300.22 307.17	.8149
91.02	.2870	314.05	.8257
96.04	.304,8 .3224	SER	
101.08	.3399	308.18	.8162
111.36	.3574	315.43	.8277
116.63	.3749	322.52	.8388
122.02	.3925	329.70	:8495
127.55	.4097	337.08	.8600
133.20	.4271	344.46	.8696
138.97	4444	351.91	.8799
144.82	.4617	SER	
150.74	.4789	345.26	.8706
156.68	. 4955	352.80	.8809
162.58	.5120	360.28	.8916
168.08	.5268	367.70	.9013
		375.07	.9099
		382.29	.9186

mometer calculated from the National Bureau of Standards' calibration data was 1.392617. On the basis of McCrackin and Chang's analysis, we believe that temperatures determined by our provisional calibration are accurate to \pm 0.03 K between 4 and 13 K. Riddle, et al. (1973) gave 0.003 K as the maximum estimated uncertainty in the Bureau of Standards' calibration of a platinum resistance thermometer on the IPTS-68 (Comité Int. des Poids et Mes., 1969) between 13 and 505 K.

Experimental results

Our experimental data for the specific heats of KAlSi₃O₈ glass, NaAlSi₃O₈ glass, CaAl₂Si₂O₈ glass, and crystalline anorthite, in joules/(g·K), are listed in their chronological order of measurement in Tables 2 through 5, respectively. The molar heat capacities are shown graphically in Figures 1 through 4. The

Table 4. Experimental specific heats of CaAl₂Si₂O₈ glass

TEMP.	SPECIFIC HEAT	TEMP.	SPECIFIC HEAT
K	J/(G.K)	K	J/(G.K)
SEI	RIES 1	SEF	RIES 8
306.28	.7682	163.88	.4726
312.30	.7777	169.10	.4868
318.44	-7871	174.34	.5009
324.75	.7960	179.70	.5147
331.07	.8064	185.19	.5284
337.32	.8152	190.75	.5424
343.52	.8233	196.30	.5558
	RIES 2	201.81	.5689
349.66	.8311		RIES 9
355.74	.8395	207.30	.5817
361.81	.8470	212.79	.5944
367.89	. 8544	218.31	.6063
374.01	.8610	223.86	.6185
380.14	.8675	229.43	.6305
386.26	.8760		RIES 10
	RIES 3	221.50	.6135
53.41	.1084	227.34	.6239
59.44	.1301	233.34	.6374
	RIES 4	239.26	.6504
65.49	.1517	245.33	.6627
70.64	.1703	251.58	.6750
75.41	.1876		RIES 11
80.04	.2043	257.88	.6868
84.67	.2212	264.19	.6989
89.47	.2383	270.52	.7108
	RIES 5	276.96	.7222
94.55	.2559		
99.92	.2746	283.43 289.82	.7334
105.50	.2937	296.14	75/1
111.00	.3123		.7541
116.26	.3297	302.38	.7642 RIES 12
	RIES 6		
	.2961	6.48	.000232
106.53	.3146	7.31	.000344
117.23	.3317	8.72 10.42	.000725
122.29	.3482		
127.34	.3639	11.73 12.75	.002207
132.45	.3798	13.67	
137.66	.3956	14.63	.00372
142.93	.4116	15.77	.00589
	RIES 7	17.32	.00785
148.14	.4267	19.06	.01045
153.25	. 4426	21.28	.01432
158.28	.4569	23.71	.01907
163.27	.4708	25.98	.02406
168.27	.4841	28.71	.03032
173.29	.4975		.03840
113.47	• 47/2	31.77 35.02	
		38.55	.04767
		42.44	.05819
			.07053
		46.78 51.59	.08458
		51-59	10160

experimental data have been corrected for curvature but not for deviations from the stoichiometric compositions. The sample weights corrected for buoyancy used in these measurements were 34.036, 34.004, 39.709, and 38.130 g for KAlSi₃O₈ glass, NaAlSi₃O₈ glass, CaAl₂Si₂O₈ glass, and anorthite, respectively. The formula weights used in the calculations were based on the 1971 values for the atomic weights (Commission on Atomic Weights, 1972) and were 278.337, 262.224, and 278.210 g/mol for KAlSi₃O₈,

 $NaAlSi_3O_8$, and $CaAl_2Si_2O_8$, respectively. The temperatures are those of the International Practical Temperature Scale of 1968. The experimental data have an estimated uncertainty of \pm 0.15 percent between 25 and 380 K, \pm 1.0 percent at 15 K, and \pm 5.0 percent at 6 K.

The experimental data for the potassium aluminosilicate glass were corrected for deviation from the exact composition KAlSi₃O₈ by assuming that 283.370 g of anhydrous glass consisted of 1 mole of

Table 5. Experimental specific heats of anorthite, CaAl₂Si₂O₈

TEMP.	SPECIFIC HEAT	TEMP.	SPECIFIC HEAT	TEMP.	SPECIFIC HEAT
Κ	J/(G.K)	K	J/(G.K)	K	J/(G.K)
SERI 302.068 313.31 318.98 324.77 330.82 336.99 343.35 349.98 356.68 369.94 376.64 55.58 60.71 65.57 70.53 75.74 81.08 86.46 91.84 97.27 60.19 65.24 77.80 81.28 81.28 81.22 71.21 81.32 81.33 81.33 81.33 81.34 8	ES 1 .7662 .7756 .7843 .7927 .8009 .8097 .8179 .8269 .8348 .8441 .8523 .86672 ES 2 .1164 .1352 .1525 .1715 .1908 .2103 .2300 .2491 .2684 .22875 IES 3 .7678 .7782 .7882 IES 4 .1333 .1519 .1713 .1912 .2110	SERI 61.04 71.20 76.59 81.86 83.727 94.24 94.24 94.24 109.67 114.58 103.71 114.58 119.08 119.	ES 6 .1366 .1549 .1739 .1938 .2132 ES 7 .2199 .2388 .2576 .2758 .2933 .3108 .3285 ES 8 .2899 .3076 .3246 .3419 .3589 .3754 .3917 .4230 .4230 .4230 .4430 .4430 .4535 .4535 .4682 .4644 .4793 .4945 .5101 .5256 .5415 .5572 .5723 .5865 .6004 .6141	SERI 300.59 307.14 313.68 320.81 333.36 339.31 346.46 353.01 342.31 348.88 355.374.98 368.45	ES 11 .7637 .7737 .7840 .7941 .8035 .6125 .8209 .8396 .8383
55.64	.1162				

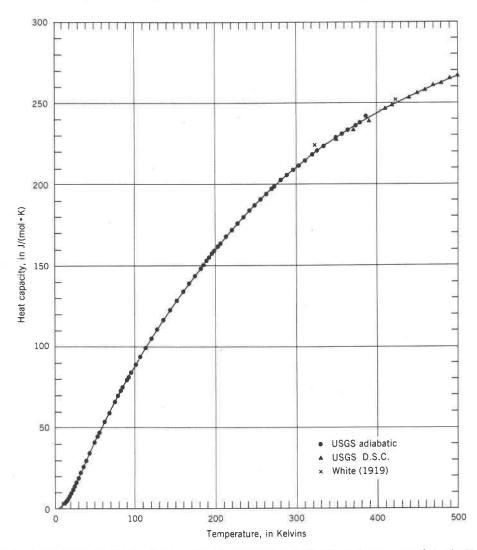


Fig. 1 Molar heat capacities of KAlSi₈O₈ glass between 13 and 500 K. Solid line is the least-squares fit to the U.S.G.S. data.

KAlSi₃O₈ (278.337 g), and 3.203 g of SiO₂ glass, 1.678 g of NaAlSi₃O₈ glass, 0.092 g of Al₂O₃ (corundum), and 0.056 g of Fe₂O₃ (hematite). The heat capacities of these fictive impurity phases were subtracted from the measured heat capacity for 283.370 g of sample to obtain the molar heat capacity of KAlSi₃O₈ glass. The correction to C_p^2 amounted to a maximum of 0.38 percent at 33 K, and was 0.15 percent at 100 K and 0.05 percent or less for all temperatures greater than 150 K. The difference between the calculated values for $S_{298}^o - S_0^o$ for the corrected and uncorrected C_p^o values was less than 0.1 percent.

The experimental data for the sodium aluminosilicate glass were corrected for deviation from the formula NaAlSi₃O₈ by assuming that 269.550 g of anhydrous glass consisted of 1 mole of NaAlSi₃O₈

(262.224 g) and 6.500 g of NaAlO₂, 0.765 g of Al₂O₃ (corundum), and 0.056 g of CaO (lime). The correction to C_P° was a maximum of -0.6 percent at 30 K and decreased to 0.2 percent at 380 K. The difference between the values for $S_{288}^\circ - S_0^\circ$ calculated from the corrected and uncorrected C_P° data was 0.15 percent.

No corrections were applied to the data for either CaAl₂Si₂O₈ glass or to anorthite, inasmuch as the uncertainty of the analytical results (microprobe) and the deviations from the ideal formula are of comparable magnitude.

Thermodynamic properties of KAlSi₃O₈ glass, NaAlSi₃O₈ glass, CaAl₂Si₂O₈ glass, and of anorthite

Our measured data were extrapolated smoothly to zero Kelvin using a plot of C_P°/T versus T^2 (Fig. 5).

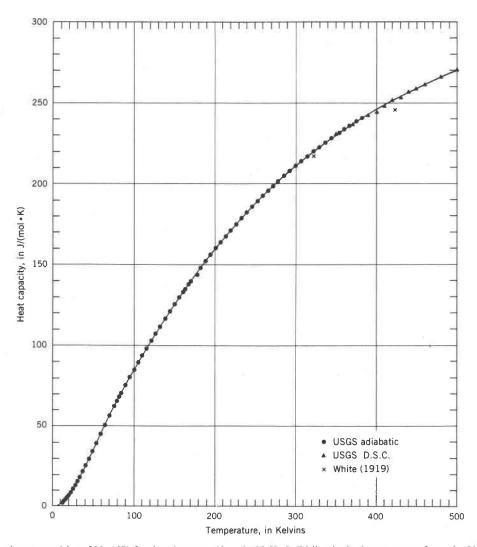


Fig. 2 Molar heat capacities of NaAlSi₈O₈ glass between 13 and 500 K. Solid line is the least-squares fit to the U.S.G.S. data.

The data were analytically smoothed using the methods outlined by Westrum et al. (1968). For KAlSi₃O₈ glass, the average deviation from the fitted curve, above 20 K, was 0.06 percent, and the maximum deviation was 0.39 percent (at 33 K). For NaAlSi₃O₈ glass, the average deviation was 0.05 percent and the maximum was 0.38 percent (at 50 K). For CaAl₂Si₂O₈ glass, the average and maximum deviations from the fitted curve above 20 K were 0.08 and 0.52 percent (at 29 K), respectively, and for anorthite, 0.04 and 0.35 percent (at 50 K), respectively.

For KAlSi₃O₈ glass and NaAlSi₃O₈ glass, the contributions to $S_{298}^{\circ} - S_{0}^{\circ}$ caused by the extrapolation of our measurements below 13.8 K were 1.3 and 0.8 J/(mol·K), respectively. For CaAl₂Si₂O₈ glass and anorthite the extrapolated portions of the entropies,

below 7 K, were 0.02 and 0.01 J/(mol·K), respectively.

Smoothed values of the thermodynamic functions C_P° , $S_T^\circ - S_0^\circ$, $(H_T^\circ - H_0^\circ)/T$, and $(G_T^\circ - H_0^\circ)/T$ for KAlSi₃O₈ glass, NaAlSi₃O₈ glass, CaAl₂Si₂O₈ glass, and anorthite are listed at integral temperatures in Tables 6–9. At 298.15 K, the entropy change $S_{298}^\circ - S_0^\circ$ for the potassic, sodic, and calcic [feldspar] glasses, and anorthite are 224.3 \pm 0.3, 213.8 \pm 0.3, 198.7 \pm 0.3, and 199.3 \pm 0.3 J/(mol·K), respectively. For anorthite, S_0° is zero, and accordingly $S_{298}^\circ = 199.3 \pm$ 0.3 J/(mol·K). The values of the Gibbs energy function tabulated for the three glasses do not include the contribution arising from the zero-point entropies.

King (1957) measured the heat capacity of anorthite between 52.4 and 295.9 K. His sample (p. 5437)

"was prepared by repeated sintering of a stoichiometric mixture of reagent-grade calcium carbonate, pure hydrated alumina and pure silica, with the usual intervening grinding, mixing, analysis, and adjustment of composition. Nine heats were made, totaling 58 hours at 1100°, 53 hours at 1200°, 6 hours at 1300°, and 10 hours at 1500°. A platinum container was used for the 1500° heats and Alundum for the others. The product analyzed 20.10 % lime, 36.63 % alumina, 43.02 % silica and 0.2 % ferric oxide." King's values differ from ours by no more than 0.3 percent over the common temperature range.

Our value for the entropy of anorthite at 298.15 K is 3.2 J/(mol·K) (1.6 percent) less than the value obtained by King (1957). The difference is almost entirely due to the extrapolation of King's data below

51 K, the lowest temperature for which he measured C_p^p . From his measurements, King obtained $S_{298}^o - S_{51}^o = 187.2 \text{ J/(mol · K)}$ and by extrapolation $S_{51}^o - S_0^o = 15.5 \text{ J/(mol · K)}$. From our data we obtain $S_{298}^o - S_{51}^o = 187.3$ in almost exact agreement with the *measured* part of King's result. He extrapolated his data to zero Kelvin using the method of comparison with a fictive standard substance, described by Kelley *et al.* (1953).

The fact that the molar heat capacity of KAlSi₃O₈ glass is very much larger than that of CaAl₂Si₂O₈ glass below 40 K, even though their formula weights are the same (within 0.05 percent) and both have the same number of atoms per mol., is most probably a consequence of the much lower density of KAlSi₃O₈ glass (2.378 g/cm³) in contrast to CaAl₂Si₂O₈ glass (2.69 g/cm³).

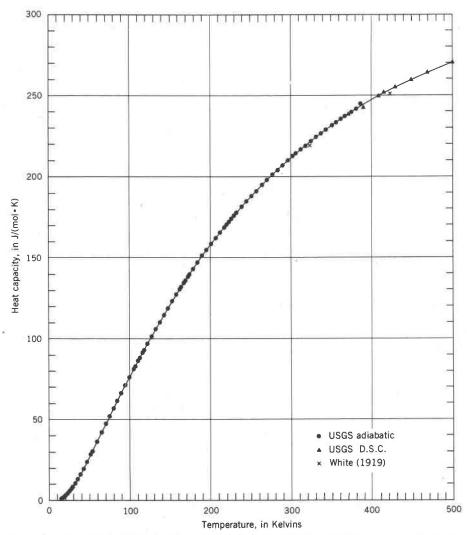


Fig. 3 Molar heat capacities of CaAl₂Si₂O₈ glass between 7 and 500 K. Solid line is the least-squares fit to the U.S.G.S. data.

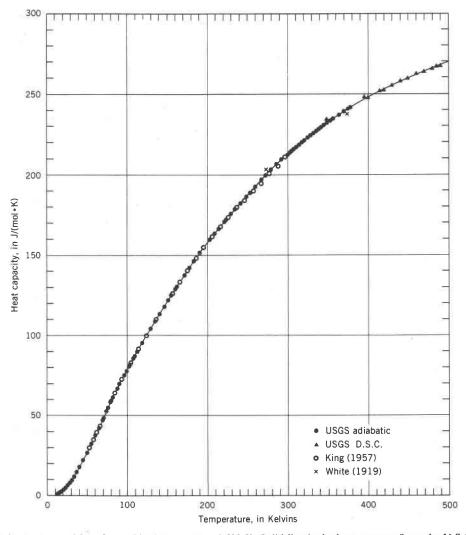


Fig. 4 Molar heat capacities of anorthite between 7 and 500 K. Solid line is the least-squares fit to the U.S.G.S. data.

The general relation that at temperatures below about 30 K the heat capacity of the low-density form is always greater than that of the high-density form is clearly evident in our results for $CaAl_2Si_2O_8$ glass ($\rho = 2.69 \text{ g/cm}^3$) and anorthite ($\rho = 2.758 \text{ g/cm}^3$). Similar differences are shown by the polymorphs of silica (Holm *et al.*, 1967) and silica glass (Westrum, E. F., Jr., written communication, August, 1957), and between As_2O_3 glass and claudetite and arsenolite (Chang and Bestul, 1971).

In Figure 6 we have plotted the difference, ΔC_P^o in the smoothed values of the molar heat capacities of KAlSi₃O₈ (glass)-high sanidine, NaAlSi₃O₈ (glass)-analbite, and of CaAl₂Si₂O₈ (glass)-anorthite as a function of temperature. The data of Openshaw *et al.* (1976) were used for the heat capacity of high

sanidine and analbite. This figure shows a marked peak in ΔC_P^o , for KAlSi₃O₈ at 30 K, at 35 K for CaAl₂Si₂O₈, and at 50 K for NaAlSi₃O₈. The negative value of ΔC_P^o for CaAl₂Si₂O₈ above 60 K is in sharp contrast to the positive increase of the ΔC_P^o values for KAlSi₃O₈ and NaAlSi₃O₈ and for most other inorganic glasses. Guttman (1972) attributes the normal increase of ΔC_P^o above the peak to the difference in the C_P^o - C_V term. In this respect thermal-expansion measurements on CaAl₂Si₂O₈ glass and anorthite at temperatures between 50 and 300 K would be most useful

The entropy difference, $S_{298}^{\circ} - S_{0}^{\circ}$, for KAlSi₃O₈ glass is greater than that for high sanidine by 10.2 J/ (mol·K), and that of NaAlSi₃O₈ glass is greater than $S_{298}^{\circ} - S_{0}^{\circ}$ of analytic by 6.1 J/(mol·K). In contrast,

 $S_{298}^{\circ} - S_{0}^{\circ}$ for anorthite exceeds that of CaAl₂Si₂O₈ glass by only 0.6 J/(mol·K).

Zero-point entropies of the feldspar glasses

In order to calculate the Gibbs free energies of formation of KAlSi₃O₈, NaAlSi₃O₈, and CaAl₂Si₂O₈ glasses from the relation

$$\Delta G_f^{\circ} = \Delta H_f^{\circ} - T \Delta S^{\circ} \tag{1}$$

we need to know both the enthalpy and entropy of formation of the specific glass from the elements. From our measurements of the heat capacities of the three [feldspar] glasses (extrapolated to zero Kelvin) one cannot calculate their absolute entropies but only the change in the entropy $S_T^* - S_0^*$. This is because S_0^* is not zero for a glass (Gibson and Giauque, 1923). One way of determining S_0^* for a glass is to measure the heat capacities of both the glass and its crystalline equivalent between approximately zero Kelvin and

the melting temperature, T_M , and also to measure the enthalpy of melting, ΔH_M° of the crystal, keeping in mind that the glass changes to a liquid without a change in enthalpy. At T_M , the Gibbs free energies of the liquid and crystal are equal and equation (1) reduces to

$$\Delta H_M^{\circ} = T_M \Delta S_M^{\circ} \tag{2}$$

Unfortunately, the enthalpies of melting of the feldspars cannot be measured directly in a calorimeter for the following reasons:

- (a) NaAlSi₃O₈ (monalbite) readily superheats above its equilibrium melting point, 1391 K.
- (b) KAlSi₃O₈ (high sanidine) melts incongruently at one bar pressure (10⁵Pa) to KAlSi₂O₆ (leucite) plus a silica-rich liquid.
- (c) The melting point of CaAl₂Si₂O₈ (anorthite) is 1830 K and exceeds the normal maximum oper-

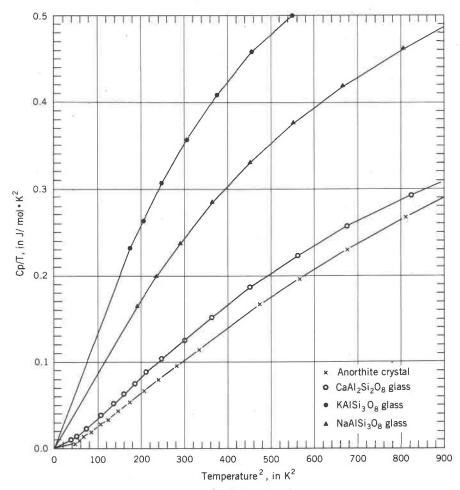


Fig. 5 Extrapolation of the molar heat capacities of KAlSi₃O₈ glass, NaAlSi₃O₈ glass, CaAl₂Si₂O₈ glass, and anorthite to zero Kelvin.

Table 6. Molar thermodynamic properties of KAlSi₃O₈ glass, formula weight = 278.337

EMP.	HEAT CAPACITY	ENTRUPY	ENTHALPY FUNCTION	GIBBS ENERGY FUNCTION
T	c _p	(s_T-s_0)	$(H_T - H_0)/T$	-(G _T -H ₀)/T
KELVIN		J/(MC	L.K)	
5	0.183	0.058	0.043	0.015
10	1.40	0.468	0.350	0.118
15	4.27	1.518	1.128	0.390
20	8.51	3.289	2.410	0.879
25	13.45	5.709	4.115 6.102	1.594
30 35	18.66 24.10	8.619 11.91	8.291	2.517 3.619
40	29.27	15.48	10.60	4.876
45	34.81	19.26	13.00	6.263
50	40.07	23.20	15.44	7.758
60	50.27	31.41	20.40	11.01
70	60.04	39.90	25.37	14.53
80	69.47	48.54	30.30	18.24
90	78.65	57.25	35.16	22.09
100	87.56	66.00	39.96	26.04
110	96.16	74.75	44.68	30.07
120	104.4	83.48	49.32	34.16
130	112.4	92.15	53.86	38.29
140	120.0	100.8	58.32	42.44
150	127.4	109.3	62.68	46.62
160	134.5	117.7	66.95	50.80
170	141.3	126.1	71.12	54.98
180	147.8	134.4	75.20	59.16
190	154.1	142.5	79.19	63.34
200	160.1	150.6	83.08 86.89	67.50 71.64
210 220	166.0 171.7	158.5 166.4	90.62	75.77
230	177.1	174.1	94.26	79.88
240	182.4	181.8	97.82	83.97
250	187.4	189.3	101.3	88.03
260	192.3	196.8	104.7	92.07
270	197.0	204.1	108.0	96.09
280	201.6	211.4	111.3	100.1
290	205.9	218.5	114.5	104.0
300	210.1	225.6	117.6	108.0
310	214.1	232.5	120.7	111.9
320	218.0	239.4	123.6 126.6	115.8 119.6
330 340	221.7	252.8	129.4	123.4
350	228.8	259.4	132.2	127.2
360	232.3	265.9	134.9	131.0
370	235.7	272.3	137.6	134.7
380	238.4	278.6	140.2	138.4
273.15	198.5	206.4	109.1	97.35
298.15	209.4	224.3	117.0	107.2

ating temperature of all but a few drop calorimeters

(d) The liquids of all three compositions quench to glasses, and the use of the drop calorimetric technique is thus not possible.

The reluctance of NaAlSi₃O₈ and KAlSi₃O₈ glasses (in the absence of H_2O) to crystallize even at temperatures near their melting points, however, makes it possible to measure the heat contents of the metastable glasses to near T_M by standard drop calorimetry. By combining the $H_T^{\circ} - H_{298}^{\circ}$ data (from drop calorimetry) with low-temperature heat capacities, one can determine the entropy change $S_{T_M}^{\circ} - S_0^{\circ}$ for both crystals and glass.

Although we cannot measure the enthalpy of melting of the feldspars directly, we can determine ΔH_M° indirectly by combining measurements of the enthalpies of solution of both crystal and glass [measured by either HF solution calorimetry (Waldbaum and Robie, 1971) or fused salt calorimetry (Holm and Kleppa, 1968)], with high-temperature heat-capacity data and using the relation

Waldbaum (1968) used this method to obtain the enthalpies of melting of high sanidine and analbite. Although the stable phase of NaAlSi₃O₈ above 1253 K is monalbite (Smith, 1974), no data are available

Table 7. Molar thermodynamic properties of NaAlSi₈O₈ glass, formula weight = 262.224

TEMP.	HEAT CAPACITY	ENTROPY	ENTHALPY FUNCTION	GIBBS ENERGY FUNCTION
T	Cp	(s_T-s_0)	$(H_T-H_0)/T$	-(GT-H0)/T
KELVIN		J/(MG	L.K)	
5 10 15 20 25 30 35 40 45	0.111 0.877 2.88 6.10 10.11 14.62 19.36 24.29 29.34 34.45	0.033 0.287 0.969 2.214 3.996 6.232 8.840 11.75 14.90 18.25	0.625 0.216 0.727 1.643 2.925 4.493 6.277 8.219 10.28	0.008 0.071 0.242 0.571 1.071 1.739 2.563 3.527 4.613 5.808
60 70 80 90 100 110 120 130 140	45.09 55.11 64.87 74.39 83.63 92.53 101.1 109.3 117.2 124.7	25.51 33.22 41.22 49.41 57.73 66.12 74.54 82.95 91.34 99.69	17.04 21.76 26.54 31.33 36.10 40.83 45.50 50.09 54.60 59.02	6.476 11.46 14.67 16.08 21.62 25.29 29.04 32.86 36.74 40.66
160 170 180 190 200 210 220 230 240 250	132.0 139.1 145.9 152.4 158.7 164.8 170.6 176.2 181.5 186.8	108.0 116.2 124.3 132.4 140.4 148.3 156.1 163.8 171.4 178.9	63.36 67.61 71.77 75.84 79.83 83.73 87.55 91.28 94.93 98.50	44.61 46.58 52.56 56.55 60.54 64.53 68.52 72.49 76.45 86.40
260 270 280 290 300 310 320 330 340 350	191.8 196.7 201.3 205.8 210.1 214.3 218.4 222.3 226.0 229.5	186.3 193.7 200.9 208.0 215.1 222.0 228.9 235.7 242.4 249.0	102.0 105.4 108.8 112.0 115.2 118.3 121.4 124.4 127.3 130.2	84.33 86.25 92.14 96.01 99.87 103.7 107.5 111.3 115.0 118.8
360 370 380 273.15 298.15	233.2 236.7 239.4 198.2 209.3	255.5 261.9 268.3 195.9 213.8	133.0 135.8 138.5 106.5 114.6	122.5 126.2 129.8 89.47 99.15

Table 8. Molar thermodynamic properties of $CaAl_2Si_2O_8$ glass, formula weight = 278.210

TEMP.	HEAT CAPACITY	ENTROPY	ENTHALPY FUNCTION	GIBBS ENERGY FUNCTION
T	c_{P}	(s_T-s_0)	(HT-H0)/T	-(G _T -H ₀)/T
KELVIN		J/(MC	L.K)	
5 10 15 20 25 30 35 40 45 50	0.255 0.333 1.401 3.346 6.442 9.386 13.20 17.43 21.97 26.74	0.008 0.088 0.397 1.042 2.069 3.460 5.188 7.222 9.534 12.09	0.006 0.068 0.321 0.803 1.572 2.590 3.828 5.260 6.861 8.609	0.002 0.020 0.086 0.239 0.497 0.870 1.360 1.962 2.673 3.485
60 70 80 90 100 110 120 130 140	36.68 46.77 56.83 66.77 76.46 85.82 94.83 103.6 112.1	17.84 24.25 31.15 38.42 45.96 53.69 61.55 69.48 77.47 85.48	12.45 16.64 21.03 25.56 30.17 34.81 39.44 44.03 48.59 53.10	5.384 7.615 10.12 12.86 15.79 18.88 22.11 25.45 28.88 32.39
160 170 180 190 200 210 220 230 240 250	128.4 136.1 143.4 150.4 157.1 163.5 169.7 175.6 181.3 186.8	93.51 101.5 109.5 117.5 125.3 133.2 140.9 148.6 156.2 163.7	57.55 61.95 66.27 70.52 74.68 78.76 82.75 86.66 90.49 94.23	35.96 39.58 43.24 46.94 50.66 54.40 58.16 61.92 65.69 69.46
260 270 280 290 300 310 320 330 340 350	192.2 197.5 202.5 207.1 211.4 215.5 219.6 223.8 227.8 231.5	171.1 178.5 185.8 192.9 200.0 207.0 213.9 220.8 227.5 234.2	97.89 101.5 105.0 108.4 111.8 115.1 118.3 121.4 124.5	73.23 76.99 80.75 84.49 88.23 91.95 95.65 99.34 103.0 106.7
360 370 273.15 298.15	235.0 238.4 199.1 210.6	240.7 247.2 180.8 198.7	130.4 133.3 102.6 111.2	110.3 113.9 78.18 87.54

for the enthalpy of transition of analbite to monalbite, and we have, therefore, assumed that it is zero in our calculations.

We have reevaluated the enthalpies of melting of sanidine and analbite (assumed to be the same as for monalbite), using the data of Waldbaum and Robie (1971) for the differences in enthalpies between the glasses and crystals at 323 K (obtained by HF solution calorimetry) and the recent measurements of C_p^p at high temperatures by K. M. Krupka, R. A. Robie, and B. S. Hemingway (1977, unpublished data) for the feldspar glasses, anorthite, high sanidine, and analbite. Krupka, Robie, and Hemingway have prepared tables (1977, unpublished data) of the thermodynamic functions for the three feldspar-composi-

tion glasses and for sanidine, analbite, and anorthite; the tables combine their measurements of C_P° for temperatures between 350 and 1000 K (obtained by differential scanning calorimetry), with those of Openshaw et al. (1976), and the results of the present investigation, as well as the heat-content data of White (1919), Kelley et al. (1953), and Ferrier (1969b). From the above data, we obtain 49800 \pm 3000 J/mol at 1473 K and 59280 \pm 2000 J/mol at 1391 K for the enthalpies of fusion of high sanidine and analbite, respectively. Kracek and Neuvonen (1952) used HF solution calorimetry to obtain 71800 J/mol for the difference in enthalpy of CaAl₂Si₂O₈ glass and anorthite at 298 K. Yoder (1975) has reported unpublished data of O. J. Kleppa and T. V.

Table 9. Molar thermodynamic properties of anorthite, CaAl₂Si₂O₆, formula weight = 278.210

TEMP.	HEAT CAPACITY	ENTROPY	ENTHALPY FUNCTION	GIBBS ENERGY FUNCTION
T	c_p	$(s_T - s_0)$	$(H_{T} - H_{0}) / T$	-(G _T -H ₀)/T
KELVIN		J/(MC	L.K)	
5 10 15 20 25 30 35 40 45	0.009 0.248 1.105 2.802 5.388 8.71 12.62 16.98 21.68	0.002 0.052 0.288 0.815 1.702 2.969 4.599 6.564 8.832	0.002 0.043 0.239 0.642 1.318 2.265 3.458 4.871 6.475 8.240	0.001 0.009 0.049 0.173 0.384 0.705 1.141 1.692 2.357 3.130
60 70 80 90 100 110 120 130 140	36.85 47.19 57.41 67.47 77.29 86.81 95.96 104.7 113.2 121.4	17.12 23.58 30.55 37.90 45.51 53.33 61.28 69.31 77.38 85.48	12.15 16.42 20.91 25.52 30.21 34.93 39.63 44.31 48.93 53.49	4.971 7.161 9.645 12.37 15.30 18.40 21.65 25.00 28.46 31.99
160 170 180 190 200 210 220 230 240 250	129.3 136.9 144.1 151.1 157.8 164.3 170.5 176.5 182.2 187.7	93.56 101.6 109.7 117.6 125.6 133.4 141.2 148.9 156.5 164.1	57.98 62.40 66.74 71.00 75.17 79.26 83.27 87.19 91.03 94.78	35.58 39.23 42.92 46.64 50.39 54.16 57.94 61.73 65.52 69.31
260 270 280 290 300 310 320 330 340 350	193.0 198.2 203.1 207.8 212.2 216.6 220.9 224.9 228.5 232.2	171.6 178.9 186.2 193.5 200.6 207.6 214.5 221.4 228.2 234.9	98.46 102.1 105.6 109.0 112.4 115.7 118.9 122.1 125.1	73.10 76.88 80.66 84.43 88.18 91.92 95.64 99.35 103.0 106.7
360 370 273.15 298.15		241.4 248.0 181.3 199.3	131.1 134.0 103.2 111.8	110.4 114.0 78.07 87.49

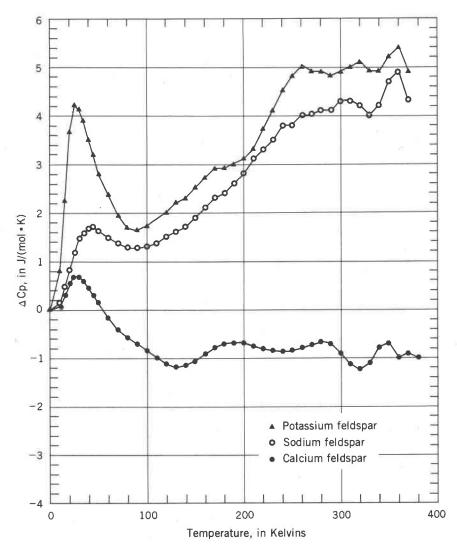


Fig. 6 The difference, ΔC_P° , between the molar heat capacities of KAlSi₃O₈ (glass)-high sanidine, NaAlSi₃O₈ (glass)-analbite, and CaAl₂Si₂O₈ (glass)-anorthite as a function of temperature.

Charlu of the enthalpies of solution of CaAl₂Si₂O₈ glass and anorthite in molten 2PbO·B₂O₃ at 973 K that lead to $\Delta H_{M,973}^{\circ}$ of 78240 J/mol.

Ferrier (1969a) measured the enthalpy difference by solution calorimetry in HF-HCl at 353 K and corrected this value to the melting point, using his heat-content data (1969b) to obtain 167000 J/mol for the enthalpy of fusion at the melting point of anorthite.

We believe that Ferrier's (1969a) value for $\Delta H_{M,1830}^{\circ}$ of anorthite is incorrect. We also feel that, until the details of Kleppa and Charlu's measurements are more fully reported, it is best to use the value of $\Delta H_{M,298}^{\circ}$ for anorthite obtained by Kracek and

Neuvonen (1952) for our calculations. The correction of Kracek and Neuvonen's value from 298 to 1830 K was made using the heat-capacity values of anorthite and CaAl₂Si₂O₈ glass tabulated by Krupka *et al.* (1977). The difference in the heat contents of the glass minus that of the crystals, $\Delta(H_T - H_{298})$, was plotted as a function of temperature and was extrapolated smoothly to the melting point of anorthite, 1830 K. The resultant value for $\Delta H_{M,1830}^{\circ}$ is 81000 ± 2500 J/mol, which corresponds to an entropy of melting of 44.3 ± 1.4 J/(mol·K).

The zero-point entropies of the three [feldspar] glasses were calculated from the values of $S_{T_M}^{\circ} - S_0^{\circ}$ for the glasses and for high sanidine, analbite, and

anorthite, together with the enthalpies of melting of the crystal phases using the relation:

$$[(S_{T_M}^{\circ} - S_0^{\circ})_{\text{crystal}} + H_M^{\circ}/T_M] - (S_{T_M}^{\circ} - S_0^{\circ})_{\text{glass}}$$

$$= S_0^{\circ},_{\text{glass}} - S_0^{\circ},_{\text{crystal}} \qquad (4)$$

The data used to calculate S_0° for the KAlSi₃O₈, NaAlSi₃O₈, and CaAl₂Si₂O₈ glasses are summarized in Table 10. For anorthite $S_0^\circ \equiv 0$, and for high sanidine and analbite, we have adopted the ideal configurational value 18.70 J/(mol·K), given by Holm and Kleppa (1968).

The principal source of the uncertainty in the calculated values of the zero-point entropies is the extrapolation of the heat capacities of the glasses above the glass transition temperature, T_g . At T_g the heat capacity of a glass changes slope. On the basis of thermal expansion measurements, Arndt and Haberle (1973) give 1086 and 1036 K as the glass transition temperatures for CaAl₂Si₂O₈ glass and NaAlSi₃O₈ glass. Vergano et al. (1967) obtained 1088 and 1213 K for T_g of NaAlSi₃O₈ glass and KAlSi₃O₈ glass also from thermal-expansion studies. Thus our extrapolation of C_P for KAlSi₃O₈ glass and NaAlSi₃O₈ glass to T_M contains an unknown error, inasmuch as the heat-content data (upper limit 1373 and 1173 K, respectively) include only a single measurement of $H_T - H_{298}$ above T_g . The extrapolation of C_P for CaAl₂Si₂O₈ glass is quite long and may introduce an uncertainty in ΔH_M° of \pm 2.5 kilojoules (i.e., 1.4 J/(mol·K) in ΔS_M°).

In our calculation of the zero-point entropy we have assumed that anorthite retains its ordered Al/Si distribution up to the melting point, 1830 K. There is, however, some evidence (Smith, p. 540, 1974) that the aluminum and silicon atoms become partially randomized over the tetrahedral positions in the Al₂Si₂O₈ framework of anorthite at temperatures above 1525 K. The extent of this disorder is not presently known, and accordingly we have not included this effect in our calculation of S_0° .

If we assume that, at the melting point, equilibrium anorthite is totally disordered with respect to the Al/Si occupancy of the tetrahedral positions, and furthermore that our extrapolation of C_p^o for anorthite does not include any contribution due to this disorder, then our calculated value for S_{1830}^o for anorthite would be too small by 23.05 J/(mol·K), and therefore our value for S_0^o for CaAl₂Si₂O₈ glass would also be too small by this amount.

If, however, anorthite is only partially disordered, the entropy contribution due to disorder would be much less. Until the exact structure of anorthite at a temperature near the melting point is known, we believe it best to assume that Al and Si are ordered. Thus, our value for S_0° of $CaAl_2Si_2O_8$ glass represents the minimum possible value for S_0° and can be (though we consider it unlikely) too small by a maximum of 23.05 J/(mol·K). Although our anorthite sample is probably somewhat disordered, we believe, on the basis of a comparison with data for the alkali feldspars, that this would have a trivial effect on our

Table 10. Thermodynamic v	alues used to cal	culate the residual	l entropies of feldspar	glasses
---------------------------	-------------------	---------------------	-------------------------	---------

Formula	Name	T _M kelvins	$S_{T_M}^{\circ} - S_O^{\circ}$ J/(mol·K)	ΔH° M J/mol	ΔS° M J/(mol·K)	S° 0 J/(mol·K)	S° 298 J/(mo1•K)
KA1Si ₃ 0 ₈	high sanidine	1473*	660.9	49800	33.8	18.7	_
KAlSi ₃ 0 ₈	glass	æ:	676.1	-	·	37.3	261.6
NaAlSi ₃ 0 ₈	analbite	1391	636.2	59280	42.6	18.7	2
NaAlSi ₃ 0 ₈	glass	: = :	659.4	-	-	38.1	251.9
CaAl ₂ Si ₂ O ₈	anorthite	1830	739.0	81000	44.3	0.0	~
CaAl ₂ Si ₂ O ₈	glass	=	744.7	=	1/25	38.6	237.3

^{*}Estimated congruent melting temperature at 1 atmosphere, (see Waldbaum, 1968)

derived value for the entropy of anorthite. Openshaw et al. (1976) have shown that the difference between the Al/Si ordered and disordered polymorphs of the Na and K feldspars leads to a difference in C_p° below 300 K of less than 0.3 percent and of less than 0.1 percent in $S_{288}^{\circ} - S_0^{\circ}$.

Values for the various thermodynamic quantities used to calculate the entropies for the feldspar glasses at zero Kelvin (S_0°) are listed in Table 10. At zero Kelvin S₀ for KAlSi₃O₈, NaAlSi₃O₈, and CaAl₂Si₂O₈ glass are 37.3 \pm 2.5, 38.1 \pm 1.5, and 38.6 \pm 2.2 J/ (mol·K), respectively. At 298.15 K, the absolute entropies for KAlSi₃O₈, NaAlSi₃O₈, and CaAl₂Si₂O₈ glass are 261.6 \pm 2.8, 251.9 \pm 1.8, and 237.3 \pm 2.5 J/ $(mol \cdot K)$, respectively, and are the appropriate values of S_{298}° to be used in thermodynamic calculations. The largest part of the uncertainties assigned to these values for the absolute entropies is due to the extrapolation of the heat capacities of the glasses to the melting point and the consequent uncertainty in the entropy of melting. Our values for the absolute entropies were combined with the $\Delta H_{f,298}^{\circ}$ data given by Hemingway and Robie (1977), and were used to calculate the Gibbs free energies of formation, $\Delta G_{f,298}^{\circ}$, for the three feldspar glasses. The Gibbs free energies of formation are -3703500 ± 3500 , -3665325 ± 3720 , and $-3956800 \pm 4000 \text{ J/mol}$ for KAlSi₃O₈, NaAlSi₃O₈, and CaAlSi₂O₈ glasses, respectively.

We have calculated the Debye temperature, θ_D , of $CaAl_2Si_2O_8$ glass and of anorthite from our heat capacity measurements using the relation

$$C_V = \frac{12}{5} \ \pi^4 R T^3 / \theta^3 \tag{5}$$

Values of θ_D calculated from our measurements between 6.5 and 12.7 K were extrapolated smoothly to zero Kelvin, using the assumption that equation (5) is exact for temperatures less than approximately $\theta_D/50$. The data point for anorthite at 7.8 K is undoubtedly too low by at least 5 percent. We have not calculated the Debye temperatures of the alkali feld-spar glasses because our heat capacity data do not extend to sufficiently low temperatures to provide a satisfactory extrapolation of θ_D to zero Kelvin.

Acknowledgments

We thank our U. S. Geological Survey colleagues D. B. Stewart, for providing us with the samples and analyses of KAlSi₃O₈ glass and NaAlSi₃O₈ glass, and J. S. Huebner, for determining the unit-cell parameters of the calorimetric sample of anorthite. We are particularly grateful to Gordon Nord for examining our anorthite by electron microscopy and for several enlightening discussions concerning aluminum/silicon disorder in plagioclase feldspars. We

are also most grateful to James Woodhead, Princeton University, for preparing the sample of CaAl₂Si₂O₈ glass used for our measurements and for determining its refractive index.

References

Arndt, J. and F. Haberle (1973) Thermal expansion and glass transition temperatures of synthetic glasses of plagioclase-like compositions, *Contrib. Mineral. Petrol.*, 39, 175-183.

Berman, H., R. A. Daly and H. C. Spicer (1942) Density at room temperature and 1 atmosphere. In F. Birch, J. F. Schairer, H. C. Spicer, Eds., Handbook of Physical Constants, p. 8-26. Geol. Soc. Am. Spec. Paper 36.

Chang, S. S. and A. B. Bestul (1971) Heat capacities of cubic, monoclinic, and vitreous arseneous oxide from 5 to 360° K. J. Chem. Phys., 55, 933-946.

Comite International des Poids et Mesures (1969) The international practical temperature scale of 1968. *Metrologia*, 5, 35-44.

Commission on Atomic Weights (1972) Atomic weights of the elements 1971. Pure and Appl. Chem., 30, 639-649.

Fahey, J. J. (1961) A method for determining the specific gravity of sand and ground rock or minerals. U. S. Geol. Surv. Prof. Paper 424-C. 372.

Ferrier, A. (1969a) Mesure de l'enthalpie de dévitrification de l'anorthite synthétique. C. R. Acad. Sci. (Paris) Ser. C, 269, 185-187.

— (1969b) Étude expérimentale de l'enthalpie de l'anorthite synthétique entre 298 et 1950°K. C. R. Acad. Sci. (Paris) Ser. C, 259, 951-954.

Gibson, G. E. and W. F. Giauque (1923) The third law of thermodynamics. Evidence from specific heats of glycerol that the entropy of a glass exceeds that of a crystal at the absolute zero. J. Am. Chem. Soc., 45, 93-104.

Guttman, C. M. (1972) Low-temperature heat capacity differences between glasses and their crystals. J. Chem. Phys., 56, 627-630.

Hemingway, B. S. and R. A. Robie (1977) Enthalpies of formation of low albite (NaAlSi₃O₈), gibbsite (Al(OH)₃), and NaAlO₂; revised values for $\Delta H_{f,298}^{o}$ and $\Delta G_{f,298}^{o}$ of some alumino silicate minerals. J. Res. U. S. Geol. Surv. 5, 413-429.

Holm, J. L. and O. J. Kleppa (1968) Thermodynamics of the disordering process in albite. Am. Mineral., 53, 123-133.

——, —— and E. F. Westrum, Jr. (1967) Thermodynamics of polymorphic transformations in silica. Thermal properties from 5 to 1070°K and pressure-temperature stability fields for coesite and stishovite. *Geochim. Cosmochim. Acta, 31*, 2289–2307.

Kelley, K. K., S. S. Todd, R. L. Orr, E. G. King and K. R. Bonnickson (1953) Thermodynamic properties of sodium-aluminum and potassium-aluminum silicates. U. S. Bur. Mines Rep. Inv. 4955.

King, E. G. (1957) Low temperature heat capacities and entropies at 298.15 K of some crystalline silicates containing calcium. J. Am. Chem. Soc., 79, 5437-5438.

Kracek, F. C. and K. J. Neuvonen (1952) Thermochemistry of plagioclase and alkali feldspars. Am. J. Sci., Bowen Volume, 293-318.

Krupka, K. M., R. A. Robie and B. S. Hemingway (1977) The heat capacities of corundum, periclase, anorthite, CaAl₂Si₂O₈ glass, muscovite, pyrophyllite, KAlSi₃O₈ glass, grossular, and NaAlSi₃O₈ glass between 350 and 1000 K. EOS (Trans. Am. Geophys. Union), 58, 523.

McCrackin, F. L. and S. S. Chang (1975) Simple calibration proce-

- dures for platinum resistance thermometers from 2,5 to 14 K. Rev. Sci. Inst., 46, 550-553.
- Openshaw, R. E., B. S. Hemingway, R. A. Robie, D. R. Waldbaum and K. M. Krupka (1976) The heat capacities at low temperatures and entropies at 298.15 K of low albite, analbite, microcline, and high sanidine. J. Res. U. S. Geol. Surv., 4, 195-207.
- Riddle, J. L., G. T. Furukawa and H. H. Plumb (1973) Platinum resistance thermometry. U. S. Natl. Bur. Stand. Monograph 126.
- Robie, R. A. and B. S. Hemingway (1972) Calorimeters for heat of solution and low-temperature heat capacity measurements. U. S. Geol. Surv. Prof. Paper, 755.
- Calorimetry Conference copper, muscovite KAl₂(AlSi₃)O₁₀ (OH)₂, pyrophyllite Al₂Si₄O₁₀(OH)₂, and illite K₃(Al₇Mg)(Si₁₄Al₂) O₄₀(OH)₈ between 15 and 375 K and their standard entropies at 298.15 K. J. Res. U.S. Geol. Surv., 4, 631-644.
- Schairer, J. F., J. R. Smith and F. Chayes (1956) Refractive indices of plagioclase glasses. Carnegie Inst. Wash. Year Book, 55, 195– 197.
- Smith, J. V. (1974) Feldspar minerals. Vol. 1, Crystal structures and physical properties. Springer Verlag, Berlin.

- Stewart, D. B. (1967) Four-phase curve in the system CaAl₂Si₂O₈-SiO₂-H₂O between 1 and 10 kilobars. Schweiz. Mineral, Petrogr. Mitt., 47, 35-59.
- Vergano, P. J., D. C. Hill and D. R. Uhlmann (1967) Thermal expansion of feldspar glasses. J. Am. Ceram. Soc., 50, 59-60.
- Waldbaum, D. R. (1968) The enthalpies of fusion of KAlSi₃O₈ and NaAlSi₃O₈. J. Am. Ceram. Soc., 51, 61-62.
- —— and R. A. Robie (1971) Calorimetric investigation of Na-K mixing and polymorphism in the alkali feldspars. Z. Kristallogr., 134, 381-420.
- Westrum, E. F., Jr., G. T. Furukawa and J. P. McCullough (1968) Adiabatic low-temperature calorimetry. In J. P. McCullough and D. W. Scott, Eds., *Experimental Thermodynamics*, Vol. I, *Calorimetry of nonreacting systems*, p. 133–214. New York, Plenum Press.
- White, W. P. (1919) Silicate specific heats. *Am. J. Sci.*, 47, 1–43. Yoder, H. S., Jr. (1975) Heat of melting of some simple systems related to basalts and eclogites. *Carnegie Inst. Wash. Year Book*, 74, 515–519.

Manuscript received, February 28, 1977; accepted for publication, August 2, 1977.