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Abstract

Modal analysis by point-counting is discussed as a stochastic sampling process dictated by
the influences of grid distance and grain transition probabil it ies. Four sampling processes are
recognized (Bernoull i, Markov-Bernoull i, Markov-Markov, and Null-Markov) and the prob-
abil ity mass functions appropriate to each described. The counting normal distribution is
found to be appropriate to sampling processes in which a Markovian influence occurs.
Published methods of error estimation, based on the binomial distribution, are applicable
only to the Bernoull i sampling process. A method of point-counting for unbanded rocks, in
which data are collected as ft sets of size N and the analytical error estimated in terms of the
sample standard deviation, is recommended.

Introduction

Many systems of igneous rock nomenclature, such
as those of  Nockolds (1954),  Chayes (1957),  and
Streckeisen (1967), use an estimate of the percentages
of a rock's constituent minerals (the "mode") as a
classificatory criterion. It is now common practice to
determine the mode by a point-counting method, in
which the identity of the mineral underlying each of a
series of equally-spaced points on a grid is deter-
mined and tabulated. Thus, for the ith mineral, found
at x, points out of a total of N points counted, the
best estimate of its percentage in a rock ir i, :
100x,/1,'l . Of critical importance to the petrographer
is the error associated with this estimate, and that is
the subject of this paper.

One approach to estimating these errors for miner-
als in granitic rocks was presented in the classic work
of Chayes (1956). In this approach, the total error
(analytical error, Ea) is the sum of two essentially
independent errors: that due to the counting process
(counting error, Ec), and that due to the size of the
sample taken from the rock (sampling error, Es).
Chayes hypothesized that the counting error could be
approximated adequately in terms of the binomial
distribution, even though he pointed out that the
Bernoull i criteria may not be satisfied during point-
count ing (Chayes,  op.  c i t . ,  p .  9 l ) .  The sample error
represents that part of the analytical error not ac-
counted for by the counting error. Bayly (1960, 1965)
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developed empirical relationships to estimate sample
variance (square of Es) from grain size and sample
area for some granitic rocks.

In this paper, we wil l approach the problem of
estimating point-counting errors by an examination
of the conditions that exist during a modal analysis,
and then by a discussion ofthe appropriate stochastic
sampling processes. Finally, we wil l recommend a
method of point-counting for unbanded rocks that
allows an unambiguous estimate of these errors.

The point count

The type of sampling process carried out during a
point count depends on two unrelated factors, only
one of which the operator can control. The mechan-
ics of point-counting are such that the operator may
select the distance between successive points on a grid
(the grid distance). With respect to the rock's "grain
size," one of two conditions exists: that in which the
grid distance exceeds the grain size, or that in which
grid distance is less than grain size. The second factor
is the nature of the rock under investigation. Of the
many rock properties that may affect a point count,
such as texture, perhaps the most important is the
distribution of the constituent crystals. Again, two
possibil i t ies are apparent: crystals are stochastically
independent, or the composition of any crystal is
related to the compositions of adjacent crystals. Dis-
cussions of point-counting have assumed the former
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(Van der Plas and Tobi, 1965;Agterberg, 1974)with-
out any supporting evidence. Contrary to this as-
sumption, both Vistelius and his coworkers and
Whitten and Dacy (1975) have shown that grain tran-
sit ions along linear traverses in several granitic rocks
possess a Markov property, i.e. the compositions of
adjacent crystals have some degree of inter-
dependence. As both factors interact in the modal
analysis of a rock, four possible situations exist. They
are:

(1) grid distancel ) grain size, adjacent crystals
independent;

(2) grid distance ( grain size, adjacent crystals
independent;

(3) grid distance ( grain size, adjacent crystals
dependent; and

(a) grid distance ) grain size, adjacent crystals
dependent.

S ome app ropriate dist ributions

Bernoulli process. The Bernoulli sampling process
is a process in which (i) every observation in a set of
N observations must be of one of two kinds, one of
which is termed a success; (i i) the probabil ity that a
given observation wil l be a success is a fixed quantity,
zr; and (i i i) all observations are stochastically inde-
pendent (Hoge and Craig, 1970, p.87). Such a pro-
cess can be described statistically by the well-known
binomial probabil ity mass function.

Situation (l), in which grid distance exceeds grain
size and adjacent grains are independent, represents a
Bernoull i sampling process. A random sampling
method is used commonly to fulf i l l  the third Ber-
noull i condition, but grid sampling may achieve the
same result in some cases. The third Bernoull i condi-
tion merely requires that no interdependence exists
between the results of successive observations. If the
grid distance exceeds grain size and the grains are
independent, such a grid wil l meet this condition.
Homogeneity of the rock ensures that the second
Bernoull i condition is satisfied. Therefore, any
sample cut from the rock for modal analysis wil l have
the same composition as the rock itself, and the ana-
lytical error of any mineral wil l be precisely the error
determined by the moments of the binomial distribu-
tion: i.e. no "sample error" (in the sense of Chayes)
wil l exist. Thus, the analytical error of the ith min-

1 In the discussions that follow, the categorization of grid dis-

tance relative to grain size implies that grid distance is constant

throughout an analysis and that the distance between successive
traverses is equal to the grid distance.

eral, expressed as a percentage, can be estimated'by

Ea: l\}y'WAW,

where ,ii : xi/N,4t : 0 - i,), x, is the number of
points located on the ith mineral, and N is the total
number of points counted. The chart prepared by
Van der Plas and Tobi(op. cil.) provides a convenient
method of estimating this error. Although we have
discussed this situation in some detail, we suspect
that it rarely occurs during modal analysis.

A variation of this process would occur if counts
are made on a series of samples whose sizes are such
that each sample is effectively homogeneous, but the
rock is heterogeneous on a larger scale. In this event,
the quantity zr; would vary from sample to sample.
The mean ('i]), averaged over all samples, would be
the quantity of interest, and the results of the counts
for the individual samples would have a mixed bino-
mial distribution. The analytical error for 'i i would
then be greater than that calculated from the bino-
mial distribution. The characterization of the point-
counting process given by Chayes (1956) implies that
xi : Nini should have a mixed binomial distribution
and that the decomposition of analytical variance
into counting and sample variances is a special case
of analysis of variance.

A second variation of the Bernoulli process occurs
if each sample area is increased to the point that
sample-to-sample variation in r1 is small, but in-
homogeneity exists within each sample. If zr; has a
beta distribution throughout the rock for example,
the results of counting would have a beta-binomial
distribution, and the analytical error of i1 would be
greater than that determined from the binomial dis-
tribution (Kendall and Stuart, 1969). The character-
ization developed by Bayly (1960, 1965) implies that
the distribution of x; should be transformed from a
mixed binomial to a compound binomial as sample
area, or grid distance, increases.

Markou-Bernoulli process. This sampling process
occurs when situation (2) exists (grid distance ( grain
size, adjacent grains independent). During point-
counting two types of transitions are involved: first,
the transition from one point to the next on the same
grain; and second, the transition across a grain
boundary from one crystal to a crystal of the same
mineral or to a crystal of a different mineral. We
define a Markov-Bernoulli process as one in which
the first transition is Markovian (i.e. has a non-zero
probability) and the second is Bernoullian; this im-
plies that the compositions of adjacent crystals are
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Table I  Summary of  the resul ts of  a s imulated Markov-Bernoul l i
sampl ing process

dicted by the binomial distribution, but the difference
should decrease as grid distance is increased (i.e. as
the probabil ity d is decreased).

Markou-Markou process. In situation (3), where
grid distance is less than grain size and adjacent crys-
tals are dependent, the sampling process includes the
two types of transitions discussed in the previous
section. In this case, however, both transitions are
Markovian. We will leave a discussion of an appro-
priate distribution unti l later, but it is important to
note that the correlation of mineralogies of adjacent
crystals may be either positive or negative. If the
correlation is negative, this may result in an analyti-
cal error of less than that predicted for the appropri-
ate zr under the binomial distribution.

The subject of this discussion is restricted to the
precision of modal analysis. We note in passing
that the correlations induced by banding in in-
homogeneous rocks can be investigated in terms of
these models by multivariate autocorrelation meth-
ods. The problems of grid layout and analysis of the
data are too complex to be considered here. Bartlett
(1975) discusses some of the available techniques of
sampling and analysis of spatial data.

Null-Markou process. Under the conditions in
which grid distance is greater than grain size and the
adjacent grains are dependent, only one type of tran-
sit ion occurs. This transition is Markovian in nature,
and the influence of positive or negative crystal corre-
lations wil l be strongly reflected in the deviation of
the analytical error from that predicted by the bino-
mial  model .

The Markouian influence and the counting normal dis-
tribution

Theoretical discussion. In three of four processes
described, the Markovian influence leads to statistics
the distributions of which are very cumbersome to
calculate, even if a simplif ied first-order Markov
process is assumed. In real cases, the situation may be
more complex. For example, points on a grid where
grid distance is greater than grain size might not fall
on contiguous grains. Further, if an observation is
not of the ith mineral, it may be any of several differ-
ent minerals, and the transition probabil it ies surely
vary from mineral pair to mineral pair. In addition,
rocks are not strictly equigranular, and even if they
were a section would not cut each crystal to expose an
equal area; hence it is possible that either d (as de-
fined previously) wil l vary from place to place within
the sample or the number of grains between succes-
sive observations wil l vary. Thus, the real sampling

x

0 . 0 0
0 .  1 0
0 . 2 0
0 .  30
0 .  40
0 . 5 0
0 .  60
1 . 0 0

(4 .  oo )  *
4 . O 2
3 .  98
4 . 1 5
4 . 0 7
4 .  00
3 .  9 1

(4 .  o0 )

(2 .  40 )
2 . 8 L

4 .  8 3
5 .  05
) .  v o

7 .  8 1
(24 .  OO)

( 1 .  o 0 )
L . L 7
t .  f  o

r . 7 9
2 . L O
2 . 4 8
3 . 2 5

( 1 0 . 0 0 )

1000
1000

500
500
500
500

Q = probab l l i t y  tha t  two success ive  observa t ions
selected at random will fall on the sane Srain

k = number of sets with N=10 counted
i = mean of all counts in k sets with same 0 value

s2= s^ample varlance of x
F  =  s z / N r ( L - T )  w h e r e  n  =  0 . 4
* values in parentheses calculated from the knom

exact distribution involved.

stochastically independent, but that consecutive ob-
servations might be made on the same crystal.

We have found that the exact probability distribu-
tion of the random variable, x;, for a sampling pro-
cess such as described here can be written as a series
expansion, and have also investigated the distribution
by Monte Carlo methods. A Monte Carlo experiment
that we performed illustrates the characteristics of the
process, irrespective of how distantly it may seem to
relate to current point-counting practice. In the
Monte Carlo experiment, the probability that a ran-
domly selected point will fall on a mineral (zr) was
fixed at 0.40, and the probability that two successive
observations selected at random will fall on the same
crystal (d) was varied from 0.00 to 0.60. For each d
value, k sets of counts with N : 10 were made. The
value of k was either 500 or 1000, depending on the
magnitude of d. For each 0, the statistic F : sr/Nr(l
- zr), the ratio of the observed variance to that pre-
dicted by the binomial, Bin (1/, zr), distribution, was
calculated. The results are given in Table l. It can be
seen that F and d increase sympathetically and that
the observed variance always exceeds that predicted
by the binomial distribution when d is greater than
zero. The small value of Iy' used in this experiment
was for computational simplicity. Such a small value
does not imply a small count length, for the much
larger quantity kN actually represents the count
length. The series expansion for the distribution of x,
is untidy, but reveals that the variance must be
greater than l/a'(l - z-) and is a monotonically in-
creasing function of d.

In practical terms, this experiment indicates that
under the point-counting condition described here
the analytical error should always exceed that pre-
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process may well be represented by a "(compound
M-th order Markov)-(mixed N-th order Markov)
process." Out of the foregoing discussion, three
points become clear. (1) There is a central tendancy
for point-count data, most simply expressed in terms
of z';, the proportion of the ith mineral in the rock.
(2) There exists a clear possibil i ty that observations
may be correlated, and that this correlation may be
positive or negative. (3) There is a great deal of
disorder, of several kinds.

We have been accustomed to equating disorder
with entropy in physical systems; exactly the same
concept is applicable to information (Shannon,
1948). From this concept, maximum entropy proba-
bil ity distributions have been developed by Kagan et
al. (1973), Kemp (1975), Brockman (1976), and oth-
ers. The concept underlying these distributions is best
expressed by Good's Principle of Maximum Entropy:

"Let x be a random variable whose distribution
is subject to some set of constraints. Then enter-
tain the null hypothesis that the distribution is
one of maximum entropy, subject to those con-
straints"

(Good, 1963, p. 912). With respect to count-type
data, there are two apparent restraints: the average
composition of the rock constrains the expectation of
a count x; of N points to be E (xi) : r 1N, where zr; is
the proportion of the ith mineral in the rock; and the
various types of correlations in a given situation gov-
ern the variance of x'.

Brockman (1976, p. 25-28) shows that under these
constraints x has the distribution that he calls the
counting normal distribution. This distribution has
the form

P(x) :  0e-G-a)2/21 ,

where

p - ' :  i  e - t i - d ) z /2^ t ,

and a and 7 are selected so that E(x) : zrN and
Var(x) : o2. The moments of this distribution must
be found by direct evaluation from the definitions.
Alpha and 7 must be found iteratively, but are of
l itt le real interest as it can be shown that the random
variable p : l00x/N (which is what interests the
petrographer) has a distribution that approaches the
normal distribution very closely for moderate values
of N, provided E(x) is not too near 0 or N and that

Table 2. Point-count data for two qranitic rocks

Texas P lnk  Gran i te  (N=16,  k=37)

^ 2 2 _ t
o,

D

Q u a r t z  2 6 , 5 2
K f e l d s p a r  4 7  . 3 0
P l a g i o c l a s e  2 0 . 1 0
b L o c a E e  b  .  u b

L . 9 7  3 . 2 9  0 . 5 9 9  2 L . 5 6 4
2 . 4 8  4 . 2 r  0 . 5 8 9  2 L . 2 0 4
L . 8 2  2 . 7 L  0 . 6 7 2  2 4 . L 9 2
0 . 4 5  0 . 9 6  0 . 4 6 6  1 6 . 7 7 6

oban River Leucoadanel l i te (N=16, k=36)
^ 2 2 -
D S o . f- b

Quar tz  33 .  68
Kfe ldspar  36 .  98

B i o t l r e  6 . 7 7

2 . 9 r  3 . 8 8
2 , 5 9  4 . 0 5
1 . 8 8  3 . 0 3
0 , 4 7  1 . 1 0

0 . 7 5 0  2 6 . 2 5 0
0 . 6 3 9  2 2 . 3 6 5
0 . 6 2 0  2 L . 7 0 0
0 .427  14 .945

i .=  es t ina ted  percentage o f  n inera l  p resent
s'= samole variance of p

o. 2= r.. i.."" of 6 estinated fron the binonial dlstri-
DUEaOn

p =  s2 /or2

*2= tr.-rit

o2/N2 is not too large. Then, if points are counted in
sets of size 1{, and k such sets are counted,

i : */N,

and to quote the results in percentage present, let fi :
100#. Thus E(i) : 100'i and

VAr (p) : lrjn/(k'N')){E (x') - (L x)'/kl

In practical applications we replace VAr(p) by

s"p :  kY?n ( i ) /& -  l )  :

I rU/[(k -  l )N'k] i { I (x ' )  -  (L x) ' /k l

An experiment. In an attempt to test the appli-
cability of the counting normal distribution, point-
count data were collected on two nonfoliated, coarse-
grained granitic rocks: the Texas Pink Granite (TPG)
and the Oban River Leucoadamellite (ORLA). In
each case, a grid with grid distance just greater than
the largest crystal was used and either 37 (TPG) or 36
(ORLA) sets of counts with l/ : 16 were made on
each rock, as described in the section "A recom-
mended method of modal analysis." The data are
given in Table 2.

It is obvious that the conditions of data collection
represent either a Bernoulli or a Null-Markov sam-
pling process. A test for the "fitness" of observed
variances to the binomial model is the well known F
test. Thus, a variance estimate, s2, computed from ft
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Fig.  l .  Compar ison of  the observed var iat ion in counts for  a lkal i  fe ldspar (x, )  wi th those predicted f rom the binomial  and count ing
n o r m a l  d i s t r i b u t i o n s f o r t w o g r a n i t i c r o c k s . N =  l 6 f o r b o t h c a s e s , a n d k =  3 T a n d 3 6 f o r t h e T e x a s P i n k G r a n i t e a n d t h e O b a n R i v e r
Leucoadamel l i te respect ively.

sets of measurements can be comDared with the bino-
mial  var ianca,  o62,by

F :  s ' /oa2 -  F(k -  l ,  o) .

A more powerful test can be constructed by com-
bining the individual F statistics. It is well known that

X? :  (k  -  l )F(k -  l ,  - )  -  x"G -  l ) .

In addition, if the variances of m different minerals in
the k sets are estimated, then approximately

, g
l(m - t)/m\ 2 Y - x'(m - lxk - l),

i = 1

a form of the additivity theorem for chi-squares
(Hogg and Craig, 1970, p. 159), modified to allow for
non-independence. For large values of (k - l)(m - l),

Z : r/2x, _ {2(k -  r)(m - l )  -  3 -  N(0, l )

approximately (Fisher and Yates, 1948, p. 33). To
test the possibility that the data represent a simple
Bernoulli process, we tested the null hypothesis
Ho: E(s2) = oo2 against the alternative Ha'. E(s2) I o62.
Using the sum of .12 from the variance data (Table 2)
and computing the Z scores led to a Z of -3.398 and
-3.079 for the Texas Pink Granite and the Oban
River Leucoadamellite, respectively. Thus, for each
rock the null hypothesis can be rejected at a con-

f idence level of  0.99. Brockman (1976,p. 84-107) has
discussed procedures for testing the fitness of the
count ing normal.

A non-quantitative test of the applicability of the
counting normal distribution to these data was made
by determining the predicted number of points ex-
pected to fall on each mineral in a count of N: 16
for k sets, using the binomial and counting normal
distributions and comparing them graphically with
the counts obtained during point-counting. In all
cases the predicted results from the counting normal
were closer to those obtained by the counting process
than those from the binomial. Figure I shows the
results for alkali feldspar in each rock.

A recommended method of modal analysis

Although our characterizations of sampling pro-
cesses are theoretical in nature and, hence, potentially
applicable to all types of rocks, we will restrict our
discussion of the practical aspects of point-counting
to the modal analysis of unbanded rocks.2

It is common practice in point-counting to count ly'
points (usually 1000 or more) as one set. From these
data, the percentages of constituent minerals are cal-

'The interested reader is  referred to Chayes (1956, Ch. 2)  for  a
discussion of  the problems associated wi th modal  analysis of
banded rocks.
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culated and errors allocated to the results, using ei-
ther the graph of Van der Plas and Tobi (1965) or the
re lat ionship deduced by Bayly (1965).  As we have
pointed out previously, the graph of Van der Plas and
Tobi is applicable only to those cases in which the
point count represents a simple Bernoull i sampling
process. Even if the operator selects a grid distance
greater than the diameter of the largest grain in the
sample, he has no assurance that the observations are
stochastically independent or that r is constant
throughout the sample. Thus, the "analytical error"
so calculated may be a very poor approximation.

Bayly's method of estimating analytical error re-
sults from empirical observations on a few granitic
rocks. There is no reason to believe that his ex-
pression for sample variance is applicable to any rock
other than those used in his experiment. In addition,
the expression was developed from data on several
rocks in which the calculated sample variance was
negative (Bayly, 1960, Table 1; Bayly, 1965, Table 2),
a meaningless statistical entity. He noted this anom-
aly (Bayly, 1965, p. 209) and pointed out that the
binomial distribution may overestimate counting var-
iance; nevertheless, he continued to use the binomial
distribution to estimate this component in his data
analys is .

As an indication of the approximate nature of er-
ror estimations based on the two approaches de-
scribed above, the observed errors for the Texas Pink
Granite and the Oban River Leucoadamellite (Table
2)have been compared with those predicted from the
work of  Bayly (1965) and Van der  Plas and Tobi
(1965). The error for each mineral is quoted as twice
the standard error (which gives a confidence interval
of  p +.2s wi th a level  of  conf idence of  0.95)  in  Table
3. An examination of the table reveals that the ob-
served errors are less than the errors predicted by
both methods in all cases.

The counting normal distribution appears to best
describe the observed distribution of minerals in sam-
pling situations that possess the Markov property.
Although the two rocks used in the experiment give
analytical errors less than'those predicted by the bi-
nomial distribution (Tables 2 and 3), we do not wish
to imply that any sampling process that includes a
Markovian component (i.e. situations 2 through 4)
wil l behave in a similar manner. The counting normal
distribution allows for variances of less than or
greater than those estimated by the binomial (Brock-
man, 1976). No prediction as to the efficiency of a
sampling process can be made prior to the actual
modal analysis, unless tests for grain transition prob-

Table 3.  Some est imat ions of  analyt ical  error  for  two grani t ic  rocks

Texas Pink Granite

p  z s 2 o

Q u a r t z  2 6 , 5 2
K f e l d s p a r  4 1 . 3 0
P l a g i o c J - a s e  2 0 . 1 0
B i o t i t e  6 . 0 8

2 . 8 L  3 . 6 3  3 . 9 1
3 . 1 5  4 . 1 0  8 . 6 1
2 . 7 0  3 . 2 9  3 . 8 9
1 . 3 4  r . 9 6  2 . 0 8

Oban River Leucoadamellite

0 2 " 2 0

Q u a r t z  3 3 . 6 8
K f e l d s p a r  3 6 . 9 8
P l a g i o c l a s e  2 2 . 5 1
B i o t i t e  6 . 7 7

3 . 4 L  3 . 9 4  4 . 0 6
3 , 2 2  4 . 0 5  4 . 2 2
2 . 7 4  3 . 4 8  3 . 5 9
L . 3 7  2 . 0 9  2 . 7 2

p =  percentage o f  minera l  p resent
2s= twice sample standard deviation

(observed -  f rom Tab le  2 )
2o= tw ice  s tandard  er ro r  as  de temined f rom

binon ia l  d is t r ibu t ion  (a f te r  Van der
P las  and Tob i ,  1965)

2sa =  tw ice  ana ly f i ca l  e r ro r  as  de termined
b y  t h e  m e t h o d  o f  B a y l y  ( 1 9 6 5 )

abil it ies are made using the grid distance of the pro-
posed analysis. It should be further emphasized that
collection of data as one large set (as is commonly the
case) precludes any realistic estimate of analytical
error whatsoever.

This discussion leads to the inevitable conclusion
that analytical errors in point-counting cannot be
estimated realistically from established formulae, for
a variety of reasons. Chief among these is the sam-
pling process used. Although the sampling process
used in an individual point count may be recognized,
the moments of some appropriate distributions (such
as the counting normal) are diff icult to calculate. It is
probably more common that the operator does not
know what type of crystal transitions exist in the
rock; thus, he is unaware of the sampling process
being used. To circumvent these problems, we tecom-
mend that point counting of unbanded rocks be car-
ried out in the following fashion.

(a) Determine the largest diameter of all crystals in
the thin section or rock slab to be analyzed, and fix
grid distance so as to slightly exceed this value. The
grid distance is to be kept constant throughout the
analysis and is used to set both the distances between
successive points along a traverse and the distance
between successive traverses.

(b) Collect the data as a series of k sets, each set
containing a total of ,M points. Each set is collected on
a square grid of 1,rfl traverses, each traverse contain-
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ing yN points. Thus, to count approximately 1000
points, 30 sets of 1/ : 36 would be appropriate. If
analyzing a thin section, locate the position of the
first set by using a random number table to Eet x,y
coordinates for the counting stage. For the analysis
of a rock slab, locate the position of the first set by
placing a transparent overlay grid on the surface with
eyes closed. The positions of all other sets are located
such that (i) no piece of the sample is covered by
more than one set, and (i i) the outl ine of the grid for
each set is at least two grain diameters away from the
out l ines of  a l l  o ther  sets.

(c) Estimate the percentage of the ith mineral by

where x, is the number of points fall ing on the ith
mineral  in  set7.

(d) Determine the variance of the ith mineral, ex-
pressed as a percentage, from

s'it '  : { loa/t(ft - l)N'kl}{I (x') - (Z x)'/tcl

(e) Determine the confidence interval for each min-
eral at an approximate 95 percent level of confidence
aS  p i  i  t \  s 'P , .
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