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Abstract

Equil ibr ium si l icon-aluminum disorder in albite is computed on the basis of stat ist ical-
mechanical order-disorder theory. The quasi-chemical approximation is used, and the alumi-
num avoidance principle is taken into account. A l imit ing high temperature configurational
entropy of L57 R per mole of Al is obtained. I t  is argued that a I ,o site preference energy, as
well  as Al-Si interaction energy, is required for the model to be real ist ic. The configurational
entropy and order parameter are calculated as functions of temperature.

Introduction

The properties, and in particular, the thermody-
namic properties, of feldspar minerals are affected by
aluminum-si l icon d isorder  (Ribbe,  1975).  In  an at -
tempt to understand better the behavior of this cat-
ion disorder, it seemed worthwhile to undertake a
calculation on the basis of statistical mechanics. A
particular aim of the calculation is to gain some
insight into the effect of the so-called aluminum-
avoidance principle on the disordering process.

Except for one case, the 2-dimensional Ising
model, no exact solutions of the statistical-
mechanical order-disorder problem are known.
We can hardly expect to improve this situation on an
example as complex as a feldspar crystal. Never-
theless, we believe that a calculation based on the
simplest non-trivial approximation which takes
shortrange order into account gives useful qualitative
insight, and such a calculation is presented here.

The system treated is the low albite-high albite
transformation. The approximation used is the quasi-
chemical approximation, which is equivalent to the
Bethe method. This method originated in the theory
of order-disorder in metall ic alloys, and has been
applied to the theory of solutions and to magnetic
problems (Guggenheim, 1952). It is not quan-
titatively accurate, especially in the neighborhood of
cr i t ica l  points (Stanley,  l97 l )  but  does por t ray the
main essential features of the phenomena it purports
to describe. The conclusions to be drawn from our
calculations are therefore qualitative ones, even
though we shall present quantitative results of the
formalism.

Statistical mechanical methods have previously
been applied to petrological problems but, as far as
we are aware, only to systems which are, in one sense
or another, ideal (e.9. Kerrick and Darken, 1975).
We hope to demonstrate that certain more complex
cases can, in fact, be approached by these methods.

The model
Albite, NaAlSi.Or, has the typical feldspar struc-

ture. The Al and Si atoms lie at the centers of tetra-
hedra of oxygen which share corners. The Al and Si
cations can be thought of as lying on the corners of a
"double-crankshaft." These "crankshafts" are l inked
to form a 3-d imensional  network.  The Na atoms l ie
in mushroom-shaped cavities formed by the joined
crankshafts. We shall not be concerned explicit ly
with the Na atoms in what follows. For a more
complete description of the crystal structures of the
feldspars, see Smith (1974).

The tetrahedrally coordinated cation sites are not
equivalent. There are four nonequivalent types for
which the usual nomenclature is Tor, To^, Trc, Tt^. At
low temperatures in equil ibrated samples, the Al
atoms are found on the ?"ro sites. Thus low albite has
an ordered structure. As the temperature is raised, Al
atoms migrate to the other three types of sites, and
the structure becomes disordered with respect to tet-
rahedral cation placement. The kinetics of this pro-
cess are very slow, and poorly understood. In this
paper we shall be exclusively concerned with the equi-
l ibr ium s i tuat ion.

In feldspar crystallography, there is a guiding prin-
ciple based on empirical observation known as the
aluminum avoidance principle. This says that two
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(2b)
oxygen tetrahedra sharing a corner cannot both con-
tain aluminum. Clearly, there must be an energetic
reason for this. We formulate our model in terms of
an arbitrary amount of aluminum avoidance, but
only make numerical calculations for the case of total
a luminum avoidance.

The quantit ies which we shall calculate are the
entropy, S, and the order parameter, p, as functions
of temperature. The order parameter is the fraction

of Z,o sites occupied by Al atoms at equil ibrium; it
varies from I at low temperatures to t/q at high tem-
peratures. The model assumes that the T1*, T2s, and

Ir- sites are energetically equivalent with respect to
Al or Si occupancy. Thus there is only one distin-
guished type of site, Z,o, and one order parameter, p,

as far as the order-disorder problem is concerned.
The entropy calculated is the configurational entropy
due to Al-Si disorder. We do not consider the vibra-

tional entropy, nor interactions between vibrations
and disorder.

Our model is the following. We consider a lattice of
N tetrahedrally coordinated sites. N/4 sites are type 4
sites (7,o), whlle 3N/4 sites are type b sites (Z'-, Iro,
T"*). Each a site has 4 b sites as neighbors. Each b
site has 4/3 type a neighbors and 8/3 type b neigh-
bors. The Tr^ and lro sites each have one Zro neigh-
bor, while a ?'r- site has two. Since our model lumps
Tr-, T"*, and Tzo sites together, we give each b site its

average coordination. This accounts for the peculiar

looking fractions.
Order-disorder phenomena are usually governed

by the interaction between atoms on the various sites;
we consider only nearest-neighbor interactions. Let r
denote the number of Al atoms on a sites. Let r11
denote the number of nearest-neighbor pairs of
atoms consisting of an atom of type i on an a site, and

one of type/ on a b site. Let s;; denote the number of

nearest-neighbor i, 7 pairs, both members of which
are on b sites. If the interaction energy between an i,7
nearest-neighbor pair is ei;, then the total interaction

energy of  the system is

E/r ,  s)  = eta(ret  *  so,c)  I  tss l rss *  ss6)  *
een(rea I rpa I sae) (l)

To avoid having multi l i teral subscripts we have here
denoted Al atoms by A and Si atoms by B. Note that

f as I r1a, but sa6 : sae. The r;; 's and J;7's are not all

independent. In fact, they can all be expressed in

terms of  taa,  sAA, and r  as fo l lows.

t ap :  4 f t  -  f aa

rBa:  N/3 -  4n/3 -  ree
r a n = 2 N / 3 - 8 n / 3 * r o o

s e a : 2 N / 3 - 8 n / 3 - 2 s o o
san : N/3 -l 8n/3 l- sea

Using Eq.'s (2) we can exPress E7 as

E1:  w(raa *  sro)  *  constant
w : tae -l ess - 2eas (3)

The constant in (3) depends on the e's, but not on the

conf igurat ion,  i .e .  not  on the r 's ,  J 's ,  or  n. l t  p lays no

role in what follows, and so we ignore it from here

on .
In addition to the interaction energy between sites,

we wil l permit our model to possess a site-preference

energy. That is an I (A1) atom on an a site wil l have

an energy ua, & B (Si) atom on an a site wil l have an

energy uu. An A atom on a b site wil l have an energy

uo, while a B on a b site wil l have an energy us' These

energies do not depend on the neighbors ofthe site in

question. All neighbor-dependent energies in the

model have already been included in Er, by hypoth-

esis. Then the site-preference energy is

Es :  un  f  cons tan t
u : t t t I u a - t t a - t ) t  ( 4 )

The remarks concerning the constant in (3) also refer

to the constant in (a). Thus the total energy for a

given configuration is

E :  w(raa *  saa)  I  un (5)

The thermodynamic properties of the system are

determined by the partit ion function

O : ,t" 
g(r, s, n) exP l-BE(r, s, n)l P : (kT)-'

(6)

where g is the number of possible configurations with

specified r, s, and z. It is purely combinatorial quan-

tity. Within the confines of our model, the expression

for E in (5) is exact. The problem is to find an

expression for g; this has not been done exactly.

We shall make the quasi-chemical approximation

for pairs. That is, we shall take g to be proportional

to the number of ways that independent pairs can be

arranged on the lattice consistent with the given r, s,

r. It is obvious that this is not exact, since two pairs

sharing a common site cannot be independent.
Having now explained the model, we sketch the

evaluation of Q, relegating many of the technical

details to the Appendix. Q is determined by the max-

imum term method for each n.

Q :  g(roo,  see,  f i )  exp l -BE(rae,  sen,  n) f  (7)

where the values of raa and ser to be used are deter-
(2a)



1234 MAZO: ALUMINUM.SILICON DISORDER IN ALBITE

uo 
*r ,  , r . ,  

I  lo  12

Fig.  l .  Order parameter versus temperature in reduced uni ts
Curve I: constant site-preference energy Curve II: site-preference
energy a l inear funct ion of  order parameter.

mined by quasi-chemical equations given in the ap-
pendix. Once ron and.riA are found as functions of n
(and w), one minimizes the Helmholtz free energy,
-kT ln Q,  wi th respect  to  n,  to  f ind the equi l ibr ium
value of /,. Before carrying out this program, we wish
to make a simplif ication.

We said earlier that the extent of aluminum avoid-
ance must be determined on energetic grounds. It is
clear that, in the present model, the aluminum avoid-
ance is determined by the parameter w. In fact, alumi-
num avoidance means w )) kT for any temperatures
of  in terest .  A luminum avoidance means r te :  set  :
0. Now, roo and sa, depend on w/kT exponentially,
from the quasi-chemical equations. Hence E1 : 0 in
the complete aluminum avoidance limit. This has the
pleasant effect of reducing a two-parameter theory (w
and u) to a one-parameter theory (only rz), and is the
simplif ication referred to above.

Let us introduce the order param eter, p, mentioned
earlier, by

p :  4 n / N  ( 8 )

p varies from l, for complete order, to l/4, for com-
plete disorder. In terms of p, the free energy, f ' ,
becomes

-F/kr(N/4) = (r/4)l(t  + 4p) tn t/3 + (4/3)
( r  -  p ) tn  t / 4  -  p tn  p  - (2 /3 ) ( r  -  p )  l n  ( t  -  p )

+3 (2+p ) l n (2+p )
- (4/3)(t + 2p) tn (t + 2p)l - up/4kT (9)

The division by l,{/4 is so as to give the free energy
per Al atom. Differentiating (9) with respect to p and
setting the derivative equal to zero determines p in an

equil ibrated crystal. The equation is

- l n  3  *  ( t / 3 ) t n  4  -  ( t / + ) t n  p  +  ( t / 6 ) l n  ( l  -  p )
+  (3 /4 ) tn (2  +  p )  -  ( 2 /3 )  l n  ( l  +  2p ) :  u /4kT  (10 )

This equation can be solved numerically for p as a
function of the dimensionless temperature 4kT/lul.
Recalf that a must be negative if the a sites are to be
preferred energetically. The results of this calculation
a re  shown  i n  F igu re  l .

Once p has been determined, through (10), the
entropy, ,S, can be determined by noting that
S/(N/4)k is the first term on the right-hand side of
Eq. (9). The entropy is plotted in Figure 2 as a
function of 7'.

Of some interest is the high-temperature l imit of
S/R, under the assumption of aluminum-avoidance.
This requires some explanation. We have identif ied
af uminum-avoidance with w/ kT )) l. Clearly, if ?. is
high enough, for any finite w this inequality cannot
hold. Presumably, before ?" got that high, the crystal
would melt, and the whole model becomes mean-
ingless.  So,  by h igh- temperature l imi t  wi th a luminum
avoidance,  we mean u/kT 11 l ,  w/kT ) )  I .

To compute S in this l imit, we merely put p : l/4
in the formula for S. The result is S = 1.570 R, or
3.12 cal / "K per  mole of  Al .  This  is  to  be compared to
the vafue 2.249 R or 4.47 cal/ 'K for complete ran-
dom mix ing.  Kerr ick and Darken (1975) have g iven
an estimate of 1.469 R or 2.92 cal/"K for complete
aluminum-avoidance.  Their  ca lculat ion was based on
an approximate geometrical counting argument,
whereas ours is based on the quasi-chemical approxi-
mation. It is quite gratifying that their estimate and

o 2 4 6 8 t o t 2

4kTl lu. l

Fig.  2.  Conf igurat ional  entropy versus reduced temperaturs.
Curve I: constant site-preference energy Curve II: site-preference
energy a linear function of order parameter. The arrow denotes
the high-temperature l imi t

r 6 0
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ours are so close to each other. When one considers
the different characters of the approximations used,
the concordance of the results leads one to believe
that they are both more or less right. We have ob-
tained S for all temperatures, whereas they have con-
sidered only the high-temperature l imit.

Discussion

The first question one should ask is why we had to
introduce the site-preference energy parameter, ar. Af-
ter all, most order-disorder problems can be ade-
quately modeled without it. Firstly, the ?"0 sites in
albite do appear to be different from the other sites.
The framework is distorted, presumably because of
the small size of the Na atom relative to the cavity
s ize (Ribbe,  1975,  F ig.  R-9) .  This  could conceivably
be a minor perturbation and not an essential point.
But let us consider a completely ordered configura-
tion, p : I, at f : 0. Each 7,0 site has an adjacent
7r- site. If we randomly switch Al atoms from their
sites in the ordered configuration to the neighboring
Zr- sites (not to an arbitrary Z'- site), we do not
change the coordination of an Al atom, and hence do
not change its interaction energy. But the number of
such configuration is 2N, which would give an en-
t ropy contr ibut ion of  Rln2.  And of  course,  there may
be other isoenergetic configurations which would
raise this value. For our purposes, it is sufficient to
note that the above argument shows that there are at
least enough configurations to give an entropy of
o rde r  R  (pe r  mo le  o f  A l )  a tT :0 .  Thusp  :  I  i s  no t
the stable state at 7 : 0 when only interaction energy
is present. On the other hand, even a small amount of
site-preference energy stabil izes the ordered ground

state.
In the case ol the alloy CurAu, which has the same

atom ratio as the Si/Al ratio in albite, the quasi-
chemical method based on pairs of sites with no site-
preference energy yields no order-disorder transition.
But a higher approximation, based on tetramers of
sites, does yield a transition similar to that observed.
The argument we have just given shows that our
model is not ordered at T : 0, if u : 0, independent
of the approximation used. A better approximation
(with the same model) would not yield a transition.
The difference between albite and CurAu, for present
purposes, l ies in the open tetrahedral structure of
albite, as contrasted to the close-packed, l2-coordi-
nated structure of the alloy.

Secondly, one should ask "What is the experimen-
tal situation?" Our theory predicts no phase transi-
tion. Rather, as ?" increases from zero, the order

parameter, p, drops rapidly and then, rather gradu-

ally, approaches its asymptotic value of l/4.

McKenzie (1957) has performed annealing experi-

ments on low albite, and these data were analyzed by

Stewart and Ribbe (1969), to determine p as a func-

t ion of  ? ' .  F igure 6 of  Stewart  and Ribbe (1969)

shows a remarkable qualitative accord with Figure I

of this paper. Unfortunately, the quantitative accord

is not so good. If one looks carefully at the temper-

ature axes in our graph and that of Stewart and

Ribbe, one sees that the change of p with I is much

more abrupt in actuality than is predicted by our

theory.
It is easy to understand why this should be so' The

site-preference energy is caused by distortion of the

framework around the Na atoms. As the temperature

increases, the occupancy of the various sites becomes

more and more a l ike,  and the ampl i tude of  atomic

vibrations becomes larger. One would expect the site-
preference energy to become smaller. That is, a

should not be a constant, but rather u : u(p), de-

creasing (in absolute value) as p decreases. The

smaller a, the lower p, at a given temperature. Hence

this mechanism would give a more rapid decrease ofp

with I than does our constant u model, and would

give better agreement with experiment. This can be

looked upon as a manifestation of the coupling of

cation configuration and atomic motions, which has

been explicit ly left out of our model.
It is possible to carry out a calculation similar to

the one presented here if one knows how a(p) de-

pends on p.The s implest  guess,  a :  (4/3)uo@ -  l /4) ,

says that z decreases l inearly from uo to 0 as p goes

from 1 to l/4: this guess is free of additional parame-

ters, but probably overestimates thep dependence of

z. A calculation shows that, indeed, the p-Z curve

computed on this hypothesis looks much more l ike

the experimental one. This is also shown in Figure l.

But since the form of u(p) used was rather ad hoc,we

do not wish to dwell on this point, even though the

improvement is appreciable. We have also plotted the

entropy for this case in Figure 2. For the present

we shall be content with asserting that the lowering of

u as p decreases most probably occurs and, if i t oc-

curs, wil l certainly make the p versus Z curve more

abrupt, more l ike the experimental curve.
If, instead of letting w tend toward infinity, we had

kept w finite (incomplete aluminum avoidance), we

could have computed p and ,S with some additional

labor, but not an inordinate amount. The problem is

not with the calculation, but with the presentation of

results. The work presented here had one parameter,
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rz, which entered the theory only as a dimensional
reduction parameter for the temperature. Thus the
fact that we do not know u a priori is relatively
unimportant for qualitative results. If we had to ac-
count for both u qnd w, neither of which is known,
only one of these parameters could be incorporated
into a dimensionless temperature, and a large range
of parameter space would have to be investigated for
each ?".

We could, of course, compute the energy, heat
capacity, etc. of this order-disorder system also; we
already have all of the ingredients. We have not done
so because it seems to us that the main interest of this
work at its present stage is in the qualitative insight it
gives into the order, and entropies are usually more
sensitive indicators of order than energies, especially
when an approximate theory is being used.

The conclusions to be drawn are, f irst, that the
ordering process in albite is gradual, and not a true
phase transition. Secondly, the primary ordering fac-
tor is not the interaction energy between tetrahedrally
coordinated cations, but is a site-preference energy
for 7,0 sites. Thirdly, the aluminum-avoidance prin-
ciple implies a considerable reduction of the configu-
rational entropy of high albite. Both the order pa-
rameter and the entropy make a relatively rapid,
though smooth change from their low-temperature
values, as the temperature rises above I (in units of 4
lul/k), followed by a much more gradual change
toward thei r  u l t imate asymptot ic  l imi ts .

Could this model also apply to potassium feldspar
(low-microcline, sanidine)? The high-temperature en-
tropy estimate would apply, just as for albite; the
combinatorics are the same. But the constant a model
cannot apply for the p versus 7 or S versus ?n curves,
over the entire temperature range, for the crystal
symmetry changes from tricl inic to monoclinic as the
temperature is raised. This does not change the local
coordination appreciably, but wil l probably affect the
site-preference energy. Thus we expect our constant u
model to be of dubious validity for the K-feldspar
case, except at high temperatures.

For feldspars with different AllSi ratios, the model
would have to be modified, but it should not be too
di f f icu l t  to  do so.  The calculat ions could then be
extended to solid solution of, say, albite and anor-
th i te .

Appendix

We outline here some of the mathematical develop-
ment of the calculation. Much of this wil l be elemen-
tary for those already familiar with the quasi-chem-

ical approximation. An excellent source for details is
the book by Guggenheim (1954).

In Eq. (7), we approximate g (roe, s,sa, n) by the
number of ways independent pairs of A and B par-
ticles can be put on the lattice. Thus

E(roo, soo, n) : lh(n)(N/4)ll/ lroor. rpsl rasl real) X

[2^"(3N /4) l ] / fs  eet .  s  eat .  saat f  (A. I  )

where the relations (2a, b) hold. h(n) is a correction
factor to take account of the normalization required
by the meaning of g:

E rtr, s, n) : t(tv /4)t QN /Dtl/lnt(N /2 + 71t

KN/a - n)tl'zl (A 2)

which would automatically be satisfied if the hypoth-
esis of independent pairs were really true.

h(n) is determined by approximating the logarithm
of the sum in (A.2) by the logarithm of the largest
term (maximum term method),  and one obta ins

h(r) : [nt(N/2 + n)tl(N/a - fir.121-t
X r o oo ! r o uo ! r s ao I r s po l.s a ao l. s p po ls a po 12 "or0 (A. 3 )

Here the zero superscript on the r's and s's refers to
the values of the r's and s's for a completely random
dist r ibut ion.  In  par t icu lar  roto :  Np( l  -  p) /3,  sooo :
N( t  -  P)" /9.

The sum in Eq. (7) is then also evaluated by the
maximum term method.  This leads to the quasi -
chemical  equat ions

I@n - roo)(N/3 - 4n/3 - ro)l/
lrao(2N/3 - 8n/3 -r roo)l: exp (Bw) (Aaa)

(lV/3 - n/3 - sea)'/[see(ll/3 + 8n/3 f srr)] :
exp(pw) (A4b)

rooo and .iaao are the solutions of these equations
when w :  0.

In the text, we have computed only the case lr - o,
i.e. raa : 0, Jaa : 0, the case of strict aluminum
avoidance. However, it is clear that these equations
can be solved for any value of w we please, by numer-
ica l  methods.

Having determined roa and s1o in terms of p (and T
too, of course) one minimizes FQt)/NkT : 0 E(p) -

ln g(p) as a function of p, which we did by solving
AFlap : 0 numerically. The value of p which gives
the minimum is the equil ibrium value, and it is this
which is plotted in Figure l ln g can then be calcu-
lated easily, and this is what is shown in Figure 2.
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