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Abstract

Considerable uncertainty attends the concept of determining paleogeotherms from xenolith
suites in alkaline basalts and kimberlites. Until further experimental studies are made on
complex systems, it is not possible to specify pressures and temperatures of equilibration for
these natural samples with sufficient precision to make such interpretations. Furthermore, it
can be argued that xenolith suites cannot be used to define valid geotherms because the
processes of magma generation and xenolith formation involve perturbations of the very
geotherms we seek to measure.

Introduction

The concept of deducing paleogeotherms by appli-
cation of mineral equilibria to suites of mafic to ultra-
mafic xenoliths in alkaline basalts and kimberlites
(e.g. Boyd, 1973; MacGregor,1974; MacGregor and
Basu, 1974; Mercier and Carter, 1975) has a number
of attendant uncertainties. The purpose of this note is
to point out these uncertainties, which have to some
extent been overlooked in most treatments of the
subject. The two main themes of this paper are (l)
that we are far from a situation of confidence in
pressure-temperature estimates for individual natu-
ral samples based on "simple system" equilibria and
(2) that we cannot rely on xenolith suites to define
valid geotherms because the processes of magma
generation and xenolith formation involve perturba-
tions of the very geotherms we seek to measure.

Uncertainties in P-7 estimates
for natural samples

The major-element chemical compositions of the
constituent phases of mafic to ultramafic xenoliths
are determined by many variables, but the most im-
portant are pressure, temperature, and bulk chemical
composition. Experimental phase-equilibrium studies
of simple and multicomponent systems have demon-
strated that for a given bulk chemical composition
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the compositions of coexisting mineral phases vary in
systematic fashion with P and f. Among the equi"
libria with potentially the greatest application to xe-
noliths are the diopside-enstatite solvus, the solubil-
ity of Al in enstatite, and the garnet-clinopyroxene
Fe/Mg exchange reaction. Reliable application of
such equilibria to natural rocks requires both (l)
accurate experimental calibration and (2) accurate
corrections for the differences in bulk chemistry be-
tween experimental and natural systems. If this two-
stage approach is to succeed, it is firstly essential that
calibrations are based on reuersed experiments
coupled with detailed microprobe analyses of experi-
mentally-produced phases.

The data of Mori and Green (1975, 1976) docu-
menting the effects of temperature and pressure on
the diopside-enstatite solvus clearly demonstrate the
uncertainties which can be introduced by alternative
methods, especially at lower temperatures. At higher
temperatures (> 1400'C), however, Mori and
Green's data are in good agreement with data ob-
tained by X-ray diffraction analysis of synthesis ex-
periments on gel starting materials (Howells and
O'Hara, 1975).

The most detailed study on Al solubility in ensta-
tite (MacGregor, 1974) must be considered with
some reservations because the experiments were un-
reversed, and because of difficulties in microprobe
analysis of the fine-grained run products, especially at
lower temperatures. Indeed, the theoretical analysis
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by Obata (1976) and Wood (1975) indicates that
MacGregor's (197a) experimentally-determined Al
isopleths for enstatite in the forsterite * enstatite *
spinel field are inconsistent with those in the forsterite
* enstatite * pyrope field. The theoretical treatment
is, however, in very good agreement with the experi-
mental data of Anastasiou and Seifert (1972), Herz-
berg and Chapman (1976) and Fujii and Takahashi
(1976), and is reasonably consistent with the single
determination by Presnall (1976).

Since the correct Al isopleths in the spinel per-
idotite field appear to be virtually independent of
pressure, it is not possible to obtain an estimate of
pressure for such assemblages by this means; rather,
the Al solubility in enstatite constitutes a thermome-
ter for spinel peridotites (cl Herzberg and Chapman,
1976). A further problem relevant to Cr-diopside
spinel lherzolite xenoliths is the very high Cr contents
of the spinels, which must be taken into account in
estimating conditions of their equilibration. These
recent theoretical and experimental results for the
system CaO-MgO-AlrOs-SiO, indicate that, ignor-
ing the effects of Fe, Cr, Na, and Ti, the pressures of
equilibration of spinel lherzolites can at present be
constrained only by the plagioclase- and garnet-form-
ing reactions, i.e. between 4 and 20kbar (assuming
equilibration temperatures of 700-l000oC estimated
from the diopside-enstatite solvus). For garnet
lherzolites, the slopes (dP/dT) of Al isopleths for
enstatite permit, in principle, the estimation of equili-
bration pressures, and the diamond-graphite reac-
tion is a further constraint for some natural samples
in kimberlites.

Extrapolation from "simple systems" such as
MgO-CaO-SiO, and MgO-AlrOr-SiO, to multi-
component (and multiphase) natural rocks contain-
ing particularly Fe, Al, Ca, Cr, Na, and Ti in addition
to dominant Mg and Si is a difficult proposition,
although theoretical corrections for some of these
components have been attempted (e.g. Wood and
Banno, 1973; Mercier and Carter , l9'7 5). Most of the
difficulties encountered by Wilshire and Jackson
(1975) in the application of these "simple system"
equilibria to natural peridotites probably reflect dif-
ferences in bulk chemistry which would demand com-
plex corrections. Some experimental studies of the
effects of additional components on the "simple sys-
tem" equilibria have been carried out (e.g. Akella,
1974; Wood, 1974), but we remain far from a situa-
tion of confidence in P-T estimates for individual
natural samples.

The FelMg exchange reaction between clinopyrox-

ene and garnet is potentially very useful as a P-T
indicator because of the very large range of values
observed for the distribution coefficient in natural
eclogites and garnet pyroxenites (e.g. Banno and
Matsui, 1965; Irving, 1974a, Fig. l4). Riheim and
Green's (1975) experimental calibration of this reac-
tion in a complex synthetic system is directly appli-
cable (without correction) to rocks of quartz tholeiite
bu lk  compos i t ion  cons is t ing  essent ia l l y  o f
clinopyroxene and garnet, but nevertheless cannot
necessarily be applied to peridotites or other rocks
containing olivine, orthopyroxene, amphibole, or
spinel.

The practical advantages of the two-stage ap-
proach using well-calibrated, relatively simple equi-
libria combined with theoretical corrections of vary-
ing magnitude are certainly to some extent offset by
the extra uncertainties introduced. If the uncer-
tainties of t20 percent in pressure and *5 percent in
temperature suggested by Boyd (1973, p.2539) for
garnet lherzolite xenoliths are appropriate, then the
observed P-?" trends which have been equated with
geotherms are not statistically meaningful. It is there-
fore imperative that detailed experimental studies be
made on a selected number of complex natural sys-
tems as a critical test of this approach. Only then will
we be able to determine equilibration pressures and
temperatures for natural samples with reasonable
preclsron.

Can xenolith suites be used to
define paleogeotherms?

Even though further studies will undoubtedly re-
solve the present uncertainties in P-7 estimates, the
particular use of such estimates for mixed xenolith
suites in attempts to define paleogeotherms involves
uncertainties of a different nature. It is implicit in
most recent publications adopting this approach that
xenoliths are considered to be samples of the upper
mantle fortuitously incorporated by explosively as-
cending magmas, and further that the majority of
these samples are considered to be representative of
rocks at similar stratigraphic levels elsewhere in the
mantle. This is not necessarily a valid assumption.
The discussion that follows attempts to show that
most xenoliths ultimately are genetically linked to
processes of magma generation, and differ signifi-
cantly from rocks in parts of the upper mantle which
have not been affected by such processes.

Three major xenolith series have been recognized
from alkaline basalts: the Cr-diopside lherzolite
series, Al-Ti-augite pyroxenite series, and garnet py-
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roxenite series (e.9. Wilshire and Shervais, 1975;
Kuno, 19691 Beeson and Jackson, 1970; Ishibashi,
1970; Wilkinson, 1975; Hutchison et al., 1975; Frey
and Green, 1974; lrving, 1974a, 1974b). The many
studies o[ these xenoliths have demonstrated their
extensive structural, mineralogical, and chemical
complexity. Some can be interpreted as chemically-
modified and recrystallized residues after episodes of
partial melting, whereas others are evidently cumu-
lates and frozen liquids which have cooled and/or
recrystallized at high pressures before incorporation
by ascending magmas. An important observation is
that at some localities Cr-diopside lherzolite occurs
in contact with rocks of the other major series (e.g.
Irving, 1974b, Fig. 3; Wilshire and Shervais, 1975;
Wilshire and Jackson, 19751' Reid, 1975), which im-
plies that at least some members of all three series
coexisted (and presumably last equilibrated) at the
same depths. Experimental studies of garnet pyroxe-
nite series xenoliths from the Delegate basaltic pipes
(Irving, 1974a) suggest equilibration conditions of
13-l7kbar, 1050-l l50oC, which are well above pub-
lished geotherms derived from geophysical data.

Garnet peridotite and eclogite xenoliths in kimber-
lites also show a great deal of complexity, and again
residues, cumulates, and liquids are thought to be
represented (e.g. O'Haru et al., 1975; Gvney et al.,
1975).  O'Hara et al .  (1975) also claim that one of
their garnet lherzolite samples may be unmodified
mantle material, but their interelement plots cannot
exclude the possibility that it is a residue. A number
of garnet lherzolite xenolith suites show gross differ-
ences in degree of deformation, which at some, but
not all, localities are correlated with differences in
bulk chemistry (e.9. Boyd and Nixon, 1975). Dawson
et al. (197 5) have summarized data for garnet lherzo-
lite xbnoliths from a number of kimberlite diatremes.
At most of these localities the samples yield linear
arrays of apparent P-7 conditions (equated with geo-
therms), and granular and "sheared" xenoliths define
different portions of the arrays. At three localities,
however, there are no such linear P-T arrays and no
correlations with texture. The granular garnet lherzo-
lite xenoliths from the Lashaine ankaramite-carbon-
atite volcano also fail to define a "geotherm" (Reid
et al., 1975).

There is no convincing evidence that any xenoliths
are pristine, unmodified samples of the earth's upper
mantle. Systematics of MglMg*Fe ratios for xeno-
lith suites from basalts (e.9. Carter, 1970) and for
xenolith-bearing basalts themselves (e.9. Irving and
Green, 1976) imply that present xenolith composi-

tions are divergent from that of the primitive upper
mantle and inevitably reflect a variety of solid/liquid
fractionation processes. The data of O'Hara et al.
(1975) for xenoliths in kimberlite can also be inter-
preted in the same fashion. It appears l ikely that these
various types of xenoliths ult imately are part of the

same broad petrogenetic processes that give rise to

the magmas containing them, and that near the

source region there is negligible sampling outside

the envelope of modified materials. The isotopic and

trace element evidence for an accidental relationship
between most xenoliths and their present host rocks
(e.g. Stueber and Ikramuddin,1974; Frey and Green,

1974: Barrett, 1975) does not necessarily contradict

this hypothesis, since residues, cumulates, etc. rclated

to one magma may be entrained by later magmas of

different chemistry produced in the same magmatic
episode (cl Stuckless and Irving,1976).

Despite overall similarit ies among xenolith suites
from different localities, particular suites commonly
have distinctive textural, mineralogical, or chemical

features which would most logically seem to reflect

local peculiarities in iectonic and magmatic pro-

cesses. There is no evidence that erupting magmas

sample a continuous section of the mantle and crust

through whieh they pass. Crustal materials (espe-

cially deep crustal materials) are typically much less

common than mantle materials. The great majority

of localit ies have one dominant, broadly coeval xen-

olith suite, although there are exceptions (e.g. the

two-pyroxene granulites and garnet pyroxenites in

the Delegate basaltic pipes (Irving,1974a); the pyrox-

ene granulites accompanying Cr-diopside series and

Al-Ti-augite series xenoliths in basalts at Kilbourne

Hole, New Mexico; the spinel lherzolites, garnet web-

sterites and garnet lherzolites in the southern Wyom-

ing kimberlite pipes (McCallum and Eggler, 1976)).

Our understanding of the physical processes oper-

ative during the generation of magmas is far from

complete. Before we can hope to unravel the com-
plexities of xenolith suites we must develop much

more sophisticated hypotheses for the origin of the

magmas resironsible for their presence at the earth's

surface. Studies of xenolith suites in detail sufficient
to overcome the considerable sampling problems in-

volved (e.g. Wilshire and Shervais, 1975) reveal a

degree of complexity which is probably matched by
that within zones of magma generation. Such zones

are probably atypical of the upper mantle as a whole,

especially in terms of thermal and mechanical para-

meters.
Although experimental and trace-element studies



PALEOGEOTHERMS DETERMINED FROM XENOLITH SUITES 641

(e.9. Green, 1970; Kay and Gast, 1974)have yielded
important information on the temperatures, depths,
activities of volatiles, and degrees of partial melting
appropriate to the production of many types of
magma within the upper mantle, we remain largely
ignorant of the factors governing the init iation of
melting, the segregation of small amounts of partial
melt, and the mechanisms of xenolith entrainment
and ascent of magmas to the surface. The key to
detailed understanding of these processes may well l ie
in the rheological properties of mantle materials, a
subject which has received relatively little attention
from petrologists. Models involving diapiric uprise of
portions of the upper mantle by plastic f low (e.g.
Wyll ie, l97l; Green and Gueguen, 1974), perhaps
init iated by instabil it ies or fractures in the overlying
lithosphere, appear to offer most promise for explain-
ing in detail the magma generation process. The seg-
regation of very small amounts of partial melt (down
to fractions of a percent), which is difficult under
static conditions, may be very readily accomplished
during such a dynamic flow process (cl Sleep, 1974).

One deduction that can fairly readily be made is
that processes of magma generation involve per-
turbations of regional mantle geotherms. Xenolith
formation is evidently an integral part of the pro-
cesses generating kimberlit ic, carbonatit ic, and alka-
line basaltic magmas, and is also involved in the
production of at least some tholeiit ic magmas (e.g.
Sutherland, 1974); the general lack of xenoliths in
tholeiit ic magmas may merely be a result of their
lower volati le contents and less explosive eruptive
nature. Such a genetic l ink between xenoliths and
magma generation processes poses serious questions
for the validity of geotherms deduced from xenolith
suites. If the above reasoning is correct, then in a
similar sense to Heisenberg's (1921) Uncertainty
Principle of Quantum Mechanics, it is not possible to
determine a valid geotherm from xenolith materials,
since they are formed during a process which per-
turbs the geotherm. Any "geotherm'o deduced from
such samples can only be meaningful for the rather
specialized and highly complex P-7 regime associated
with zones of magma generation, and cannot be
equated with the steady-state geotherm in unmodi-
fied regions of the mantle.
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