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Abstract

A mathematical analysis is made of the Lorentz factor that applies to partially oriented
powder aggregates, analyzed by means of the flat-specimen X-ray diffractometer. Equations
are derived that include the effects ofpreferred orientation on absolute and relative intensities.
Consideration is given to the Lorentz, geometric, and powder ring distribution factors,
collectively referred to here as the Lorentz factor. Calculated results show that preferred
orientation must be extreme in order to obtain significant departures from the random powder
form of the Lorentz factor, and experimental data on clays indicate that glass slide and porous
plate techniques do not produce such high degrees of preferred orientation. If a fine Soller slit
(or a graphite monochromator) is used, the application of the random powder Lorentz factor
wil l  result in no signif icant errors for such samples.

Introduction

The flat-specimen X-ray diffractometer has been
widely adopted since its development in the 1950s. lt
has largely replaced the various powder diffraction
camera techniques and is now one of the most useful
analytical devices in the field of clay mineralogy.
Despite its popularity there has been, to the writer's
knowledge, no rigorous analysis of the mathematical
form of the Lorentz factor that applies to the flat-
specimen diffraction geometry. The purpose of this
communication is to accomplish such an analysis for
partially oriented micaceous aggregates.

Reynofds (1965, 1967, 1969) and Reynolds and
Hower (1970) have argued that the random powder
Lorentz factor should be applied, even for highly
oriented specimens. Good agreement between ob-
served and calculated diffraction intensities was
achieved when the random powder version was used.
But the writer has received some objections to the
acceptance of this conclusion, based as it is on empi-
rical evidence alone. The argument is not trivial; er-
rors of a factor of ten or more wil l result if the
inappropriate form of the Lorentzfactor is applied to
intensities at the lowest 20 ranges for peaks from
common clay minerals, for example, the glycol-smec-
t i te  001.

Diffraction geometry and the Lorentz factor

The derivation here is similar to the standard form
followed by many textbooks on the subject. The
reader is referred, for example, to James (1965, p.47).
But the mathematical description given below in-
cludes a consideration of the flat-specimen diffrac-
tometer geometry, and of partially oriented powder
aggregates.

In Figure I the arrow coincident with the diameter
l-D depicts the incident and undeviated X-ray beam
that passes through a sample (S) located at the center
of a sphere whose radius equals the diffractometer
radius (ro). A normal to the sample surface penetrates
the sphere at B and one-quarter of the detector slit is
located at C. The angle between the incident (or
diffracted) beam and the sample surface is d, and for
any value of d, the slit is located at the angular
position 20 and the sample normal is at 90-d.

Measurable diffraction effects are limited to reflect-
ing planes whose normals penetrate the surface of the
hemisphere of base A-D. If the sample consists of a
randomly oriented powder, these normals wil l pro-
duce a uniform distribution of pole penetrations over
the hemisphere. All planes so oriented as to reflect
into the diffraction arc p have normals that are distri-
buted along the arc q, or are located within a small
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distance on either side of q. The distance Ad is very
small, of the order of a few minutes of arc, and it does
not change with respect to d. The area of the crit ical
zone along arc 4 is its length times 2A0, and the
length is 2rrr/2 where r, : ro sin (90-0). The area is
thus rocos0.2A0, and the fraction of crystall i tes so
oriented as to diffract into p is rrocosd .2A0 /2r ro2, or
cos? .2A,0 /2r0. The quantit ies ro and AN are constant,
consequently the fraction of crystall i tes contributing
to the diffraction halo p is proportional to cos0.

An intensity measurement at C involves only a
small segment of the arc p, whether the detection
aperture is a goniometer slit or the slit of a densi-
tometer that is used to record densities from the fi lm
of a powder camera. We must, therefore, calculate
the fraction of the total intensity that is diffracted
into a small length of arc that is enclosed by the slit
fength l /2 t .The tota l  length of  arcp iszrr2whererr :
rosin29, and thus the fraction of the arc entering is
l/2/rrosin20. Now, l, r, and ro are constant, con-
sequently the measured intensities wil l change pro-
portionately to l/sin20. This must be multipled by

'One-hal f  of  the di f f ract ion geometry is  considered here be-
cause,  by symmetry,  the other hal f  is  ident ical .

q
FIc. l. Geometry of sample, diffractometer, and powder diffraction rings.
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cosd. derived above. and we have cos|/sin2?
| /sin?.

Any crystall i te or volume element of a crystall i te
shows a diminution of diffraction intensities propor-
tional to l/sin20. This factor is related to the change
in the irradiated area of a crystal volume element as
the diffraction angle is varied (James, 1965, p.4l ). By
itself, it constitutes the single crystal Lorentz factor.
But for a powder aggregate it must be multipled by
l/sin?, derived above, and we have

,  -  - - l -
" - s i n 2 0 s i n 0 '

the random powder Lorentz factor.

The Lorentz factor when the slit height is small

On the basis of this background, we now consider
the behavior of a partially oriented powder aggre-
gate. The treatment is based on the following as-
sumpt ions.

(l) The orientation of the particles is described by
a Gaussian distribution function, e-n", where
e denotes the angular departure in degrees
from the mean position of all poles that are
normal to the basal diffracting planes of the
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crystall i tes, and ,( : l /fZS where S is the
standard deviat ion of  the normals about  the
mean.

(2)  The mean pole posi t ion is  def ined by a l ine that
is normal to the sample surface.

(3) The distribution function is circularly sym-
metr ica l ,  that  is ,  the par t ic le  d is t r ibut ion has
no l ineat ion.

On Figure l ,  such a d is t r ibut ion can be d iagrammat-
ically described by a series of circular contours cen-
tered on B. These have been omitted ffom the figure
in order to preserve its clarity with respect to the
other features shown, but the reader should keep this
condi t ion in  mind dur ing the der ivat ion g iven below.

The measured intensity at 20 (Fig. I ) is given by
summing the Gaussian d is t r ibut ion funct ion over  the
limits zero to l/2, where / is the length of the detector
slit. Only crystall i tes so oriented as to diffract into /
contribute to the diffraction intensity, and the pro-
por t ion of  these var ies wi th d and wi th r .  The angle a
in arc p is f ixed by the slit.

rz  :  r ts in  2d,  and a :  s in- t  (^-L-)
\zro stn za/

(F ig.  2a) .  Evident ly ,  a  in  arcp is  equal  to  p in  arc q.
consequent ly  we must  sum the Gaussian d is t r ibut ion

l-(rr-E )-------l
I

D
2. Powder r ing l imi tat ion by (a)  s l i t - length,  and (b)  s l i t -

Label  nomenclature is  the same as that  of  Fig l .

surface over a range that corresponds to B on arc q.
But  the angular  range p on arc q is  not  equal  to  the
angular range € for the distribution function because
rr ,  the radius of  q,  is  smal ler  than ro which is  the
radius of the Gaussian surface. Consequently we
must  mul t ip ly  a by r , / ro.  Now, r '  :  ros in(9O-d)  :

rocosd, and rocos?/ro : cosd. Thus the l imit of in-
tegration in e , defined here as a, is

(2) 4 : cos o sin- '  [-]  =l
Ltro srn za )

F igure 2b shows the consequence of  long s l i t  lengths
and/or low values of 20. Then, the extent of the
powder r ing admit ted by the s l i t  becomes s l i t -width
l imi ted rather  than s l i t - leneth l imi ted.  The l imi t  a  in
(2 )  i s  t hen

(3)  d :  cos d co 
- '  l - tn  s in zo -  w/21' L- .;Gzo 

-)

where w is the slit-width in centimeters. The selection
of  the appropr iate l imi t  is  easi ly  made.  The correct
value is  a lways the smal ler  of  the two values for  a.

One-hal f  the number of  crysta l l i tes so or iented as
to diffract into the slit is given by

(4)  n :  c '2  L0 f ,  e-*" '  Ae,

where c and Ad are constants. For any real appli-
cation, relative values for n are required, values that
correctly describe the intensities of diffraction peaks
from a given mineral at different values of d. Hence,
we always consider a ratio of the quantit ies n, and c
and 2L,0 both cancel for such an operation. The
Lorenlz factor can then be written:

1

2

I
(5)

lw l
lzl

-->
o

Suppose that  Equat ion 5 is  appl ied to a s ingle crysta l .
Then, all "crystall i tes" are in a position to diffract at
all Bragg angles ofd because the distribution function
is  narrow compared to the s l i t  length.  In  shor t ,  in-
creasing a from its value in (2) to o causes no change
in the value of  the summat ion.  The summat ion then
yields a constant value for all values of d and we have
the single crystal Lorentz factor,

r * . \ '
sin 20

Consider  now the random powder condi t ion.  This
is  equivalent  to  making r  very smal l  (s tandard devia-
tion very large). If x is so small that all values of e-r""
are c lose to uni tv .  then the value of  the summat ion in

Frc
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(5) approaches simply the l imit given by (2). If the
length of the receiving slit is very small compared to
the goniometer radius, ro, then the angle a (Figure I )
is very small. For small angles, a is proportional to
stna,  so

, i n - ' - - {  -  -  . J _ .2ro sin 20 sin 20

Multiplying by cosd gives cosd,/sinT : l/sin?, and
multiplying by the single crystal factor provides the
final form of the Lorentz factor, i.e.

L n  
1

s in  2d  s in ' 8  
'

and this is the random powder form. Thus we see that
applying the proper l imiting conditions to (5) results
in the appropriate forms of the Lorentz factors.

The Lorentz factor: general solution

The effective length / of the receiving slit, treated by
(2), is not controlled by the slit i tself. Rather, the
length is f ixed by the separation of the plates in the
detector Soller slit assembly. Each Soller slit space
defines a slit of minute length. If there are, say, ten
such increments in a typical Soller slit, then the
sample surface is viewed by the detector in ten small,
identical, increments. For our purposes it is necessary
only to solve for the radiation transmitted by one
such cell, as a function of 2d.

Unfortunately, Soller slit assemblies in common
use allow horizontal divergences2 that correspond to
relatively large effective values of I (2). Then, the
length / can no longer be considered very small com-
pared to the goniometer radius, and (5) is not valid
unless / is very small. But the diff iculty is overcome by
summing (5) over the slit area. The procedure de-
tracts from the simplicity of the derivation, but it is
necessary for accurate results if medium resolution
Soller slits are used. For fine Soller slits (horizontal
divergence <0.5') and probably for goniometers
equipped with crystal monochromators, the simpler
form of (5) wil l suffice for most work.

Summation of the powder arcs over the horizontal
range of the slit can be visualized by the aid of Fig-
ures I and 3. The slit is considered to be fixed in
space, and the spherical geometry containing the
sample and powder rings is moved in small successive
increments D (Figure 3) in a direction parallel to the

'zThe terminology here and elsewhere in this paper is consistent
with the geometry of Figure l. Horizontal divergence denotes
horizontal divergence from a horizontal sample surface.

slit length. The summation is continued unti l l imited
by the divergence, that is, unti l a powder increment is
displaced from the slit center by an amount so large
that no portion of its powder ring is transmitted to
the detector.

Figure 3 shows that two different geometrical con-
figurations are involved. One, Figure 3a, occurs when
an increment of powder P is displaced from the slit
axis (dashed line) by an amount D where D is less
than So/2; the latter signifying one-half the spacing of
the plates in the Soller slit. The other configuration
resul ts  when D )  So/2 (F igure 3b) .  Thus i t  is  conve-
nient to break the summation into two parts, so that

s o / 2  a 2  D t  - b 2

(6 )  n :  t Ie - . " ' "ae^D+ I tacaD.

The limit ,, 
"un 

o" calculated ,r"t';.;""metric
restrictions shown by Figure 3, and it is given as

o, : s"!!l2z) '
2 Y

The summations are taken over one-half the possible
values of D, but over the entire slit length. The quan-
tit ies X, , and Z (Figure 3) denote the following. X
is the distance from the center of the detector slit to
the outer edge of the Soller plates, I/ is the length of
the Soller plates, and Z is the distance from the inner
edge of the plates to the center of the sample. X t Y
+ Z : ro, the goniometer radius.

The limits al and a2 are also derived from the
geometry shown by Figure 3. The derivation is
tedious but not conceptually diff icult, and is not pre-
sented here. The interested reader can derive it him-
self with the aid of Figure 3. The quantit ies lr and lrin
Figure 3 are identical with I in (2), but because sum-
mation is taken over the entire slit length, the two in
the denominator is eliminated and we have

^  .  - r  (  t , . ,  \a r ' z  :  cos  u  s l n  
\ t . . i "  2d /

Appropriate l imits are:

41 : coS dsin-' ?r-r++#*)

a2 : cos A .n-t ( 2(Z

Dr : cos dsin-' ("**ik*), and

bz : cos d sin-' e**)
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/z
s-

/1

As before, each step in the summation must be
checked for the appearance of the slit-width l imiting
condition, and when this occurs, the appropriate val-
ues for ey a2, b1, or b" are given by (3).

Comparison of intensities between two minerals

The relative change in peak height with respect to
20 wll l be correctly given by (7), which contains the
powder ring distribution factors, the polarization fac-
tor, and the crystal volume element Lorentz factor,
uiz.

(7) LP - n(l * cos' 20)
sin 20

when z is  a solut ion of  (6) .
If quantitative analysis is attempted by means of peak
height measurements of two peaks, each from a diffe-
rent mineral species which has a different orientation
factor, r, (7) for a given species is normalized by
div id ing by

9 0
\ r  - r , c ,  .
zr e A€.

0

l-*----..--=l-Y l--r........-l

I

D
FIc.  3.  Sol ler  s l i t  contro l  of  the l imi ts of  summation in Equat ion 6.

o

The procedure provides a value for the number of
crystal planes, expressed as a fraction of all crystal
planes of that type in the sample, that will diffract
into the instrumental aperature at any value of 2d. A
final form of a working equation for quantitative
analysis is thus

n,(1 I cos' 20,1 y, r-r""' ae sin 202
IV'

N - . n n1\2 
nr( l  *  cos '  2orY |  " -^ '  

" ' "  Ae s in 2dr

where N'/N, is the ratio of reflecting planes between
mineral one and mineral two, and the other quan-
tit ies d,, 02, Ky K2 are similarly identif ied with the two
mineral species. Of course, this equation is only part
of the intensity ratio between peaks from two mineral
species. Other factors not considered here include
approrpriate unit-cell transforms, crystall i te size, mi-
cro-absorption characteristics and other factors
which conspire to make quantitative analysis by X-
ray diffraction a formidable undertaking.



Results

Calculated results

Figure 4 shows calculated results for the Lorentz
factor as a function of orientation (S), and Soller slit
spacing (So). The results have been normalized to
the random-powder Lorentz factor at 50'2f. Con-
sequently, a value ofunity signifies perfect correspon-
dence to the random powder form. Data apply to two
commonly encountered clay reflections, namely, the
mica 001 at8.8"20 (CuKa radiation) and the glycol-
smectite 001 at 5.2"U. At higher diffraction angles,
the intensity distribution rapidly approaches the ran-
dom powder form, but at lower angles larger depar-
turgs occur.

For a Soller slit spacing of 0.1 cm (General Electric
XRD-5 medium resoh.it ion slit) the mica 001 gives
approximately 90 percent of the intensity predicted
by the random powder equation, down to a value of
S-  t  l2 ' .  At .So = 0.05,  essent ia l ly  random powder
characteristics are followed unti l the orientation is
about *5o. As expected, the smectite 001 shows
greater departures due to its smaller diffraction angle.
Errors of 20 percent in intensity wil l occur if the
random powder correction is used for data obtained
with the medium resolution Soller slit. If the fine slit
is used, random powder characteristics are followed
wi th in l0  percent  down to S :  t l0 ' .

Figure 4 shows that the random powder intensity
distribution is followed even for well-oriented speci-
mens (S : + l0') at error levels of20 to 30 percent.
If f ine Soller slits (So : 0.05) are employed, the errors
are greatly minimized. The single crystal Lorentz fac-
tor departs by a factor of approximately ten from the
random powder version at the angle of the smectite
001. Consequently the randorn powder version is the
one to apply unless the investigator is wil l ing and able
to measure the distribution function for a particular
mineral sample, and then to calculate the correct
effects by means ofthe equations presented above. In
several publications, Reynolds has stressed the appli-
cabil ity of the random powder form to oriented clay
diffraction mounts, and the data of Figure 4 tend to
confirm this empirical f inding analytically.

The intensity is less than that provided by the
random powder Lorentz factor because of two condi-
tions. At low values of S, and low values of 20, the
slit aperture intercepts many or most of the diffrac-
tion rays from the crystall i tes. Thus diminishing 2d
further causes only a relatively small increase in the
number of diffraction rays entering the slit, and the
rate of intensity increase with diminishing 20 is re-
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FIc.  4.  Lorentz factor  at  52 and 8.8 'Z for  So :  0.1 ( lower

curves), and So : 0.05 (upper curves). The quantity/is the fraction

of  the random powder value.

duced. At larger values of S and So, that is, on the
plateau regions of Figure 4, the diminution of in-
tensities at low 2d is due to the relative importance of
slit-width as opposed to slit-height l imitations (Fig-

ure 2). This difference, amounting to about l8 per-

cent for the smectite 001 and 8 percent for the mica
001 under the geometric conditions applied here, is a
consequence of the assumption that the powder dif-
fraction arcs are very thin compared to the slit-width.
If the intrinsic diffraction l ine breadth is large com-
pared to the width of the slit, or if the sample surface
is rough, the diffraction rings wil l be broad because
they are composed of a multiplicity of rings staggered
parallel ro W (Fig.2b), and then a rigorous analysis
requires summing these in a direction parallel to the
slit-width. Under these circumstances, the intensity at
low 20 is no longer strictly slit-width l imited, and the
lower of each of the two curves in Figure 4a and 4b
approaches the upper at moderate to high values of
S. That is, l ine broadening and sample roughness

LORENTZ FACTOR IN ORIENTED POWDER AGGREGATES
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cause the intensity distribution to move closer to that
predicted by the random powder Lorentz factor. The
added complication of two more dimensions of sum-
mation (one over a Gaussian l ine-breadth function,
and one over a range that extends from the lowest to
the highest point on the sample surface) seems hardly
worthwhile, providing, as it does, only a small refine-
ment in accuracy, but causing the length ofthe calcu-
lations to press the l imits of modern digital comput-
ers. It is far simpler to use fine Soller slits in
conjunction with the random powder Lorentz factor.

Experimental results

It is diff icult to test the accuracy of the formulae
derived above. No clay structures are known with
sufficient accuracy to allow residual errors in a struc-
tural analysis to be assigned solely to the Lorentz
factor. For this reason the treatment presented here
must be accepted or rejected on the basis of the
appropriateness and accuracy of the mathematical
approach used. But some confirmation can be ob-
tained by comparing relative intensities of different
peaks from a single mineral, obtained with two differ-
ent Soller slit spacings. The data of Table I contain
such information. Results were obtained with a G.E.
XRD-5 diffractometer, CuKa radiation, 0.2o detec-
tor slit, and uti l izing Soller slits with plate spacings of
0.1 cm and 0.05 cm. Table I  g ives measured and
calculated values for the change in absolute in-
tensities of the illite 001 and 003, and a glycol-smectite
001 and 005, obtained with the two Soller slit spac-
ings. In addition, data are given (Q) on the increase in
the intensity ratio 001/003 (or for smectite,00l/005)
caused by the use of the finer (0.05 cm) Soller slit
compared to the coarser. The values for ,S are as-

TABLE l .  Intensi ty data for  Sol ler  s l i t  spacings
S r = 0 l a n d S " : 0 . 0 5

I  ( s o = 0 .  I  )

r ( s o = 0 . 0 5

I c ,

sumed ones, and of course, can be selected with con-
siderable latitude, because the results are not sensi-
tively related to S if S is indeed above the critical
transition value (see Figure 4).

As expected, the use of fine Soller slits causes the
intensity ratio to move toward that described by the
random powder Lorentz factor (cf. Figure 4). In ad-
dition, the amount of change (Q),7 to 18 percent, is
consistent with the expected values, calculated for the
different slits. In short the assumption of non-ex-
treme values for preferred orientation predicts in-
tensity changes that roughly compare with measured
values. The experimental data thus tend, in a small
measure, to confirm the calculated results.

The values for the absolute change in peak height
with different Soller slits, calculated by means of (6)
above, also compare well with experimental values.
At 26.6"20 most of the integrated powder arcs are of
such curvature that they are slit-height limited, con-
sequently doubling the slit-height (Soller slit spacing)
causes approximately a doubling of intensity. At
lower values of 2d, however, many more of the arcs
are slit-width limited, hence the increase in intensity
is less than double. Again, these values tend to con-
firm the validity of the approach used here. Signifi-
cantly, the data indicate that standard methods of
sample preparation produce degrees of preferred ori-
entation that are insufficiently extreme to cause wide
departures from the random powder form of the
Lorentz factor.

Discussion and conclusions

Oriented clay specimens produce diffraction pro-
files that are controlled by a Lorentz factor very close
to the random powder form. For all but the most
critical work, the investigator will make only small
errors if he applies the random powder form. When
accurate intensities are crucial, strategies can be for-
mulated that minimize or eliminate possible depar-
tures from the random powder Lorentz factor.

For quantitative analysis, higher order reflections
should be used whenever possible. Figure 4 shows
data only for the mica and smectite 001, but at higher
diffraction angles, departures from the random pow-
der form became insignificant for either Soller slit. lf
low-order reflections must be used, as, for example,
in structure determinations, the use of the finest Sol-
ler slit is indicated. This will cause an intensity loss of
about a factor of two, but intensity is not normally a
problem with the low-order reflections. To test for
errors caused by very high degrees ofpreferred orien-
tation, it is useful to generate diffraction patterns

obs.
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util izing different Soller slit spacings. If the two slits
produce identical patterns, or if the differences (e.5. Q
in Table l) are not greater than that predicted from
the plateau values in Figure 4, the investigator can
confidently apply the random powder form to the
pattern obtained by means of the fine slit.

MacEwan et al. (1961) have pointed out that the
correct value for oriented aggregates wil l l ie between
the two possible forms of Lorentz factor, and that the
exact value wil l depend on the degree of preferred
orientation. The analyses presented here show that
this view is qualitatively correct, but what is not
generally appreciated is the very large degree of pre-
ferred orientation necessary to cause significant de-
partures of the Lorentz factor from its random pow-
der form.
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