A quartz-aragonite-talc schist from the lower Skagit Valley, Washington

BERNARD W. EVANS AND PETER MISCH
Department of Geological Sciences, University of Washington
Seattle, Washington 98195

Abstract
A thin metaperidotite layer containing the assemblage quartz + aragonite + talc crystallized under blueschist facies conditions in the Darrington Phyllite, northwestern Washington. It is inferred from this occurrence that the stability field of talc + CaCO$_3$ + quartz extends across the calcite-aragonite phase boundary.

Introduction
On the basis of field evidence, talc was added by Tilley (1948, 1951) to Bowen’s (1940) list of minerals to be expected during the progressive metamorphism of siliceous dolomite. Experimental work in the mixed volatile system CaO-MgO-SiO$_2$-H$_2$O-CO$_2$ has subsequently confirmed a stability field for the mineral pair talc + calcite (Metz et al., 1968; Gordon and Greenwood, 1970; Skippen, 1971, 1974; Slaughter et al., 1975). At lower temperatures, or higher CO$_2$-fugacities, talc + calcite + CO$_2$ react to form dolomite + quartz + H$_2$O; at higher temperatures, talc + calcite + quartz react to tremolite + CO$_2$ + H$_2$O, and talc + calcite react to tremolite + dolomite + CO$_2$ + H$_2$O.

However, talc is not common in metamorphosed siliceous dolomite (e.g. Melson, 1966; Hutcheon and Moore, 1973), and its absence has been ascribed to a number of factors, viz. the narrow field of stability for talc + calcite on the T-X_{CO_2} diagram (Skippen, 1971, 1974; Slaughter et al., 1975), production of a low-temperature, very CO$_2$-rich fluid by buffering along the reaction curve dolomite + potash feldspar + H$_2$O = phlogopite + CaCO$_3$ + CO$_2$ (Gordon and Greenwood, 1970; Trommsdorff, 1972), low pressures of metamorphism (Skippen, 1974), and high pressures of metamorphism (Slaughter et al., 1975).

This paper describes a rock containing the mineral assemblage talc + quartz + aragonite, from which it is inferred that the field of talc + CaCO$_3$ + quartz extends across the calcite-aragonite phase boundary.

Regional setting
The quartz-aragonite-talc schist occurs as a 1 to 3 cm wide layer within graphitic phyllite in a small roadside quarry overlooking the Skagit River, on the South Skagit Highway, 2 1/2 miles east of its junction with Washington State Highway 9 (Clear Lake Quadrangle). The rocks in the vicinity of the quarry belong to the Darrington Phyllite, a unit of pelites, semipelites, and plagioclase-rich psammites, which is conformably overlain by the metabasaltic Shuksan Greenschist, an actinolitic greenschist with blueschist intercalations (Vance, 1957; Misch, 1959, 1966; Bryant, 1955; Jones, 1959). The metamorphism of this sequence was interpreted by Misch (1959) as representing an intermediate P/T range within a comprehensively-defined blueschist facies. Within this subfacies range, crossite and crossite-glaucophane schists formed under higher, and actinolitic greenschists, under lower oxygen fugacities (confirmed by Brown, 1974). Epidote is abundant, whereas lawsonite occurs sporadically in some phyllites and psammites, and jadeite has not been found, although pyroxenes in the chloromelanite range (optically) occur in some metabasalts south of the Skagit (Bryant, 1955; Vance, 1957; Jones, 1959). Aragonite has recently been identified in blueschist ten miles east of the locality here described.

At the quarry, the country-rock graphitic phyllites contain phengite, chlorite, quartz, and albite. Some 100 yards farther west graphitic phyllite contains accessory lawsonite and epidote, as well as aragonite being replaced by calcite. The various phyllites contain the record of an S_1, S_2, S_3 sequence. S_1 survives in some panels between S_2 planes. The dominant foliation S_2 parallels the axial plane of tight folds of S_1, with major transposition of phyllosilicate and graphite layers. Asymmetric open folding of S_2 has led to an oblique incipient S_3, with
further transposition of graphite and some phyllosilicate.

Quartz-aragonite-talc schist

The thin quartz-aragonite-talc schist forms a flattened isoclinal fold of S_1. Except in the narrow hinge, all foliation seen in the talc layer represents S_2, which is marked by strongly aligned talc flakes, mostly much less than 0.5 mm long, accompanied by minor chlorite. S_2 is openly microfolded. This chlorite-talc fabric is partially replaced by 1 to 4 mm quartz and aragonite xenoblasts, commonly elongate parallel to S_2, and by S_2-elongate glomeroblastic aggregates of both minerals. Some quartz and aragonite crystals include trains of S_2 chlorite-talc fabric. There is no visible sign of reaction between the talc and the later-formed quartz and aragonite (Fig. 1).

The talc layer is sharply bordered by originally nearly monomineralic chlorite schist several millimeters thick. The chlorite fabric is identical to that of talc and is similarly and extensively replaced by S_2-elongate quartz xenoblasts which include trains of S_2 fabric of chlorite, openly folded in places. The chlorite selvage clearly represents a tectonically drawn-out blackwall reaction zone between metaperidotite and enclosing metasediment; the talc schist layer, which contains accessory chromite and a variety of sulfides containing Ni, Fe, and Cu, is all that remains of the metaperidotite at the outcrop. The chlorite selvage lacks carbonate but contains minor tremolite in discrete layers (in one sample, at the talc-chlorite boundary).

Although the replacement quartz and aragonite postdate the talc and chlorite S_2 fabric and its open microfolding, they were nevertheless affected by considerable late-stage deformation. Both show strained extinction, and aragonite has secondary polycrystalline twinning. Moreover, widely spaced S_3 planes oblique to S_2 cut the replacement quartz xenoblasts, which at such shears are locally granulated and annealed as fine-grained mosaic. This feature is best displayed in the chlorite selvage which also shows local transposition and recrystallization of chlorite in S_3. The same pattern is shown less distinctly in the talc layer, involving transposition of talc into S_3. An irregular growth of minor amounts of calcite has formed at the expense of some of the aragonite.

Thus, the main growth of quartz and aragonite took place after formation of S_2 but predates S_3. Talc crystallized during movement on S_1, recrystallized during formation of S_2, and recrystallized again, in minor amounts, on S_3. We therefore infer that the intimate association of talc, aragonite, and quartz constitutes a stable assemblage. Tremolite did not form as a reaction phase between talc and introduced

![Fig. 1. Chlorite-bearing talc schist partially replaced by aragonite and quartz.](image_url)
carbonate and silica, although it did grow in minor amounts on S_2 in the chloritic blackwall, where f_{H_2O} was presumably higher than in the talc layer.

Conclusions

Aside from Fe in the talc and Sr in the aragonite, the compositions of the talc, aragonite, and quartz can be rather well expressed by the system $CaO-MgO-SiO_2-H_2O-CO_2$ (Table 1). The stabilizing effect of Fe in the talc will be more than counterbalanced by Mg in calcite, the alternate silicate phase, the overall effect being minimal (Rice, 1975; Thompson, 1975). Similarly, the effect of Sr in aragonite is likely to be counterbalanced by Mg in calcite, the alternate carbonate phase; again, the overall effect on the stability of the assemblage talc-aragonite-quartz will be minimal (see also Skippen and Hutchison, 1974).

South of the Skagit River, the temperature of the metamorphism of the Darrington Phyllite and Shuksan Greenschist cannot have exceeded 400°C, the upper limit of stability of lawsonite (Crawford and Fye, 1965; Newton, 1966; Liou, 1971). Pressures of 7 and 9 kilobars are required to stabilize aragonite at 300$^\circ$C and 400$^\circ$C respectively (Johannes and Puhan, 1971). The aragonite formed in the course of the regional metamorphism, and therefore at temperatures most likely high enough to ensure its back-reaction to calcite, had it formed from strained calcite in the calcite stability field (Brown et al., 1962). We therefore conclude that natural talc, aragonite, and quartz are a stable paragenesis at pressures in excess of the calcite-aragonite inversion curve. Even if the talc + calcite stability field contracts with increasing pressure, as claimed by Slaughter et al. (1975), it is still in existence at pressures high enough to convert calcite to aragonite.

Acknowledgments

The support of the National Science Foundation, through grant EAE75-14904 to Evans, and grants GA-11466 and GA-29631 to Misch and Gresens, is gratefully acknowledged. E. A. Mathez is thanked for the microprobe analyses.

References

Liou, J. G. (1971) P-T stabilities of lawsonite, wairakite, lawsonite, and related minerals in the system $CaAl_{2}Si_{2}O_{6}-SiO_{2}-H_2O$. J. Petrol. 12, 379-411.

B. W. EVANS AND P. MISCH

Manuscript received, December 31, 1975; accepted for publication, May 4, 1976.