Synthesis and Infrared Spectra of Ca₃Mn₂Si₃O₁₂ and Cd₃B₂Si₃O₁₂ (B: Al, Ga, Cr, V, Fe, Mn) Garnets

HITOSHI NISHIZAWA, AND MITSUE KOIZUMI

The Institute of Scientific and Industrial Research, Osaka University, Yamadakami, Suita, Osaka 565, Japan

Abstract

The garnets $Ca_3Mn_2Si_3O_{12}$ and $Cd_3Mn_2Si_3O_{12}$ were synthesized at high pressures and temperatures. They have a cubic structure with $a_0 = 12.060$ Å and $a_0 = 11.987$ Å, respectively. Infrared spectra suggest that the SiO₄ tetrahedra in these silicate garnets are strongly affected by the Jahn-Teller distortion of the MnO₆ octahedra and so are highly distorted.

Introduction

The garnet mineral family is based on a structure containing independent SiO_4 tetrahedra. The garnets, general formula $A_3B_2C_3O_{12}$, contain metal ions in eight, six, and four coordinated sites and thus provide a fruitful field for investigation of the influence of ionic substitution on properties and an excellent model for crystal chemical studies.

Recently Novak and Gibbs (1971) determined the effects of substituent cations on polyhedral interactions, bond lengths, and angles by comparing refined structures of eight natural garnets with that of synthetic pyrope. They showed that the regularity of the independent SiO₄ tetrahedra in the garnet structure was strongly influenced by the ionic radius of A cation in the eight-coordinated site, but not by that of B cation in the six-coordinated site. Gaudefroy et al (1969) reported that the new mineral henritermierite $Ca_3(Mn_{1.5}Al_{0.5})[(SiO_4)_2/$ $(OH)_4$] containing Mn³⁺ ions as B cations had a tetragonally distorted garnet structure. In order to know the role of Mn³⁺ ions in this garnet, it is necessary to investigate the end-member composition $Ca_3Mn_2Si_3O_{12}$. In the type formula $Ca_3B_2Si_3O_{12}$, the following cations have been successfully introduced for B cations: Al, Cr, Ga, V, Fe, Sc, and In (Geller, 1967). $Ca_3Mn_2Si_3O_{12}$ with the garnet structure has not been synthesized under any experimental conditions. It is possible that distortion produced by Mn³⁺ ions destabilizes the garnet structure (Strens, 1965).

In this paper, we report the synthesis of $Ca_3Mn_2Si_3O_{12}$ under high temperature and high

pressure and from infrared data estimate the effect of Mn^{3+} ions with the $3d^4$ electron configuration on polyhedral interaction. Then we describe the synthesis of the series $Cd_3B_2Si_3O_{12}$ (B: Al, Cr, Fe, Ga, V, Mn) and compare their X-ray and infrared spectra data with those of the series $Ca_3B_2Si_3O_{12}$.

Experimental Methods

In the syntheses of Ca₃Mn₂Si₃O₁₂ and of the series $Cd_3B_2Si_3O_{12}$ (B: Al, Cr, Ga, Fe, V, Mn), starting materials were prepared by mixing oxides, nitrates, or carbonates of the cations with colloidal silica in stoichiometric proportions. The starting materials were then dried and heated at 750°C in most cases for at least four hours. This temperature was varied somewhat with the materials used since it had to be high enough to decompose the starting materials without causing any volatilization. After this heating, the starting materials were reground and remixed. For hydrothermal runs, the starting materials were enclosed in sealed gold tubes which were placed in a "test-tube" type pressure vessel and heated in a Kanthal-wound furnace. Piston-cylinder type and cubic-type apparatus were used for high temperature and pressure experiments at 10 to 60 kbar (Shimada, Kume, and Koizumi, 1968). The starting materials were packed into a platinum capsule and compressed. The pressures generated in a cell were calibrated by the change of volume of AgNO₃ (9.8 kbar), of KBr (17.9 kbar), and of electric resistance of BiI-II (25.4 kbar) and BaI-II(55 kbar). After treatment at 10 to 60 kbar and 1100°C for one hour, the samples

were rapidly cooled to room temperature, and the pressure was released. The product was identified by X-ray powder diffraction and optical microscopy. Infrared spectra were obtained using a Hitachi Model 225 spectrophotometer and the Nujol mull technique.

Results

$Ca_3Mn_2Si_3O_{12}$

X-ray diffraction patterns of the products synthesized at 1000°C in air and at 600°C hydrothermally under the pressures from 1000 to 2000 bars were completely indexed as a mixture of wollastonite (CaSiO₃) and α -Mn₂O₃. The products synthesized under the pressures from 30 to 60 kbar at 1100°C were reddish brown and quite different in color from the mixture of wollastonite and α -Mn₂O₃. Their X-ray diffraction patterns, which resembled andradite's (Ca₃Fe₂Si₃O₁₂), were completely indexed on the basis of the cubic unit cell with $a_0 = 12.060$ Å. X-ray diffraction data are listed in Table 1.

$Cd_3B_2Si_3O_{12}$ (B: Al, Cr, Ga, V, Fe, Mn)

The single phase garnets $Cd_3Al_2Si_3O_{12}$ and $Cd_3V_2Si_3O_{12}$ have been already synthesized by Gentile and Roy (1960) and Mill (1964) under atmospheric and hydrothermal conditions respectively. We also obtained them under similar conditions. The other garnets in this series with trivalent Fe, Cr, and Ga ions were synthesized at 1000°C but only above 15 kbar. Higher pressure was needed to synthesize the garnet phase of $Cd_3Mn_2Si_3O_{12}$, and the products synthesized below

TABLE 1. X-ray Powder Data of $Ca_{3}Mn_{2}Si_{3}O_{12}*$

hk1	daha	Icho
	ODS	005
400	3.015	5 5
420	2.696	100
332	2.571	15
422	2.462	45
510	2.365	20
521	2.202	20
611	1,956	25
620	1,907	10
444	1.740	10
640	1.673	25
721	1.641	5
642	1,611	60
800	1.507	15
* Indexed	on the basis of	a_=12.060%.

TABLE 2. Lattice Constants and Colors of Synthetic	Garnets
--	---------

			the second se
	Lattice Constant	(Å)	Color
Ca ₃ Mn ₂ Si ₃ O ₁₂	12.060		reddish brown
Cd ₃ A1 ₂ Si ₃ 0 ₁₂	11.824		white
Cd ₃ Cr ₂ Si ₃ 0 ₁₂	11.943		green
Cd ₃ Ga ₂ Si ₃ O ₁₂	11.932		white
Cd ₃ V ₂ Si ₃ 0 ₁₂	12.023		black
Cd ₃ Fe ₂ Si ₃ O ₁₂	12.010		tan gray
Cd ₃ Mn ₂ Si ₃ O ₁₂	11.987		reddish brown

30 kbar at 1000°C were a mixture of cadmium metasilicate (CdSiO₃) and α -Mn₂O₃.

The calculated lattice constants and colors of the garnets synthesized are given in Table 2. The relation between lattice constants and the ionic radii of six-fold coordinated cations in the cadmium garnet series are shown in Figure 1 on the basis of Shannon and Prewitt's effective radii (1969). The same relationship for the calcium garnet series $Ca_3B_2Si_3O_{12}$ was also drawn. These relationships are very similar with some slight irregularities. The effective radii are not considered to be adapted to ions in every crystal structure. More evidence will be necessary to confirm these results.

Infrared Spectra

The infrared spectra of the synthesized garnets (Fig. 2) are qualitatively similar in the region from

FIG. 1. Lattice constants a_0 vs ionic radii of trivalent octahedrally coordinated cations in the calcium and cadmium garnet series. Data are derived from Table 1 and from Geller (1967).

FIG. 2. Infrared spectra of synthetic garnets. a: $Ca_3Mn_2Si_3O_{12}$; b-g: $Cd_3B_2Si_3O_{12}$ (B: Al, Cr, Ga, V, Fe, Mn).

800 to 1100 cm⁻¹. There are three strong and sharp bands (2, 3, 4, in curve g) with almost equal intensity, which arise from the site-group splitting of ν_3 due to the distortion of the tetrahedron in the garnet structure (Wickersheim, Lefever, and Hanking, 1960). A weak and diffused band 1 also appears as a shoulder just above the three strong bands in frequency, but its origin is not clear at the present time (Moore, White, and Long, 1971).

According to crystallographic data, the SiO₄ ions in the silicate garnets are not completely independent and do not form perfect tetrahedra. The SiO₄ tetrahedra are distorted along the S₄ axes so that two oxygen-to-oxygen distances are considerably shorter than the remaining four (Novak and Gibbs, 1971). Such an axial distortion will remove

FIG. 3. Lattice constants vs wavenumber for absorption bands 2, 3, and 4 in $Cd_3B_2Si_3O_{12}$ (B: Al, Cr, Ga, V, Fe, Mn).

some of the degeneracy. Moore *et al* (1971) considered that the band splitting of v_3 apparently correlated with the distortion of the SiO₄ tetrahedron and showed that the amount of the separation Δv of the lower frequency pair of bands 3 and 4 (Fig. 2) provided a measure of the S₄ distortion of the tetrahedral site. Table 3 lists accurate band frequencies of synthetic garnets.

The shift of the three sharp bands 2, 3, and 4 with lattice constants in the cadmium garnet series is illustrated in Figure 3. Band frequencies, except for the manganese phases, decrease almost linearly with increase in a_0 and the separations Δv are found to be almost equal. Accordingly, the degrees of distortion of SiO₄ tetrahedra are suspected to be almost equal except in Cd₃Mn₂Si₃O₁₂. This speculation is consistent with the tendency that the degree of the distortion of the SiO₄ tetrahedron decreases with the radius of eight-fold-coordinated cation but is independent of the radius of six-fold-coordinated cation (Novak and Gibbs, 1971). However, the separation Δv in both garnets, Cd₃Mn₂Si₃O₁₂ and Ca₃Mn₂Si₃O₁₂, is abnormally large. Therefore, the SiO₄ tetrahedra in these silicate garnets are suspected to be highly distorted.

Discussion

Since the X-ray diffraction pattern of the highpressure product with the composition $Ca_3Mn_2Si_3O_{12}$ resembled that of andradite ($Ca_3Fe_2Si_3O_{12}$), its structure was classified as a cubic garnet type. Although the X-ray data were carefully examined,

TABLE 3. Infrared Data for Synthetic Garnets

	Wavenumber	of	Absorption	Band	in	cm ⁻¹
	1	2	3	4		
Ca ₃ Mn ₂ Si ₃ O ₁₂		919	818	780)	
Cd ₃ A1 ₂ Si ₃ 0 ₁₂		920	860	840)	
Cd ₃ Cr ₂ Si ₃ O ₁₂		895	836	820)	
Cd ₃ Ga ₂ Si ₃ O ₁₂		905	850	828	3	
Cd ₃ V ₂ Si ₃ O ₁₂		890	832	812	2	
Cd ₃ Fe ₂ Si ₃ O ₁₂		890	835	810)	
Cd ₃ Mn ₂ Si ₃ O ₁₂	950	905	833	793	3	

there was no evidence for other phases nor evidence for a distorted crystal structure. Cd₃Mn₂Si₃O₁₂ with the garnet structure was also synthesized under high temperature and pressure. If all manganese ions in Ca₃Mn₂Si₃O₁₂ and Cd₃Mn₂Si₃O₁₂ are in the trivalent state and located on octahedral sites, these lattice constants should be close to those of the garnets in which Fe ions are substituted for Mn ions, as seen in the perovskite and the bixbyite structures (Geller, 1967). As indicated in Figure 1 and Table 2, Ca₃Mn₂Si₃O₁₂ has almost the same lattice constant as Ca₃Fe₂Si₃O₁₂, and the cell edge of Cd₃Mn₂Si₃O₁₂ is only slightly smaller than that of Cd₃Fe₂Si₃O₁₂. The garnet mineral containing Mn ions in the six-coordinated site has scarcely been found (Strens, 1965), but the present results suggest the possibility that such a garnet occurs in nature as a relatively high-pressure mineral.

X-rays could not detect noncubicity for the synthesized silicate garnets containing Mn ions. But, from the infrared spectra data, the degree of distortion of SiO_4 tetrahedra in the silicate garnets with Mn ions was estimated to be considerably larger than that in the other garnets. In the garnet structure, alternating SiO_4 tetrahedra and BO_6 octahedra share corners and form a continuous three dimensional framework (Novak and Gibbs, 1971). The SiO_4 tetrahedra in the silicate garnets with Mn ions are strongly affected by the Jahn-Teller distortion of MnO_6 octahedron and so are highly distorted, but these polyhedral distortions do not change the whole cubic structure in the synthesized silicate garnets $Ca_3Mn_2Si_3O_{12}$ and $Cd_3Mn_2Si_3O_{12}$.

Acknowledgments

The authors express their thanks to Drs. M. Shimada, N. Kinomura, and S. Kume at Osaka University. The expense of this study was partly defrayed by a Scientific Grant from the Ministry of Education, to which the authors wish to express their thanks.

References

- GAUDEFROY, P. C., M. ORLIAC, F. PERMINGEAT, AND A. PARFENOFF (1969) L'henritermierite, une nouvelle espece minerale. Bull. Soc. Franc. Mineral. Crystallogr. 92, 185–190.
- GELLER, S. (1967) Crystal chemistry of the garnets. Z. Kristallogr. 125, 1-45.
- GENTILE, A. L., AND R. ROY (1960) Isomorphism and crystalline solubility in the garnet family. *Am. Mineral.* **45**, 701–711.
- NOVAK, G. A., AND G. V. GIBBS (1971) The crystal chemistry of the silicate garnets. Am. Mineral. 56, 791-823.
- MILL, B. H. (1964) Hydrothermal synthesis of garnets containing V³⁺, In³⁺, and Sc³⁺. Dokl. Akad. Nauk. (USSR), 156, 814–816.
- MOORE, R. K., W. B. WHITE, AND T. V. LONG (1971) Vibrational spectra of the common silicates: I. The garnets. *Am. Mineral.* 56, 54–70.
- SHANNON, R. D., AND C. T. PREWITT (1969) Effective ionic radii in oxides and fluorides. Acta Crystallogr. B25, 925– 946.
- SHIMADA, M., S. KUME, AND M. KOIZUMI (1968) Possible existence of dense ferrimagnetic perovskite allotropic form of ytrrium iron garnet. J. Am. Ceram. Soc. 51, 713-715.
- STRENS, R. G. J. (1965) Instability of the garnet $Ca_3Mn_sSi_3O_{12}$ and the substitution $Mn^{3+} \rightleftharpoons Al$. Mineral. Mag. 35, 547-550.
- WICKERSHEIM, K. A., R. A. LEFEVER, AND B. M. HANKING (1960) Infrared absorption spectrum of the silicate ion in the garnet structure. J. Chem. Phys. 32, 271–276.

Manuscript received, March 29, 1974; accepted for publication, August 2, 1974.