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Abstract

A phenomenological treatment of the thermal expansion of a monoclinic crystal is
presented. The components of the thermal expansion tensor are expressed in differential form
as functions of the unit cell parameters. Two sets of expressions are developed from the
Lagrangian and the Eulerian definitions of deformation. These correspond in form to the "in-
stantaneous linear thermal expansion coefficient" and the "true linear thermal expansion
coefficient" discussed by Kempter and Elliott (1959). The relation of these forms to the Ohashi
and Burnham (1973) equations is also discussed.

Introduction

With the development of techniques for collecting
precision intensity data from single crystals at high
temperatures, a considerable amount of data has
been obtained for a number of minerals (Bloss and
Papike, 1973). This has not only resulted in a better
understanding of the thermal properties of materials
in terms of individual bond length and angle varia-
tions, but has also provided valuable insight into the
nature of the cohesive forces between bonded atoms.
Ohashi and Burnham (1973) have developed expres-
sions for obtaining thermal expansion coefficients
from these data. We have since developed a set of
similar expressions in differential form. The mean
values of these are very similar to the equations given
by Ohashi and Burnham. Our approach is an exten-
sion of a method discussed by Stokes and Wilson
(1941) which was used by them to evaluate the ther-
mal expansion coefficient of lead metal. We have ex-
tended their approach to crystals with monoclinic'symmetry. 

The thermal expansion coefficients which
result are continuous functions of temperature rather
than mean values over some temperature range.

Types of Thermal Expansion

The thermal expansion coefficient of a material in a
given direction may be defined as the rate of change

of strain in that direction per unit temperature
change. For each type of strain which has been
defined there is a corresponding type of thermal ex-
pansion coefficient obtained by taking the derivative
of that strain with respect to temperature. Among the
types of one-dimensional strain that are used (Mase,
1970) are the "conventional engineering strain"
defined as

e : (l - D/lo (l)

and the "natural ,t":"1,il;?.,strain" o"on.o u.,r,

where /o and / represent the length of a given line seg-
ment in the medium at temperatures 7o and I,
respectively. The corresponding thermal expansion
coefficients are therefore

, '  :  9: +o'!:) (3)
dT lo dT

and
, d, d(ln /(D) | dl(T)

F : -  ( 4 \-  dT  dT t (T)  dT

To describe strain in a three dimensional body a
second rank tensor is required. Each of the nine com-
ponents, /iy, of this second rank strain tensor is a
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function of the applied stress (a second rank tensor
whose components are denoted by o,), and the
temperature ? (Nye, 1957). Accordingly,

l u  :  l11(o f l ,  o rz ,  . . . r  oss ,  T)  (5 )

or in differential form

dlq = (0lq/0oet)rdont + Glu/AT)df :

Sqplrdopl + tr,/"df (6)

where by definition the Sup" : (0lu/0ou1)y are
isothermal elastic compliance coefficients (a fourth
rank tensor) and tr,Jo represents the elements of the
thermal expansion tensor at constant stress. The sub-
scripts k and lin Equation 6 are dummy (running) in-
dices. The Einstein summation convention is being
used. There are nine equations of this type, each of
which contains a total of ten terms. Since the crystal
is not being subjected to a stress, i.e., oq: 0, and
therefore doit : 0, the /;y's are functions of 7 alone
and the first nine terms of Equation (6) vanish.
Therefore, we write

dlit : trr'6, : trud7 (7)

(the superscript o has been deleted to simplify the
notation).

The recent treatment by Ohashi and Burnham
(1973) assumes the ),,, terms in Equation (7) to be
constants. It then becomes possible to integrate
between the temperatures Zo and ? if the reference
state of zero strain is taken at To (i.e., lq(To) : 0).
Thus
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The essential characteristic of all deformations
resulting from a change in temperature is that they
are homogeneous (often called affine, i.e., deforma-
tions in which straight lines remain straight, planes
remain planes, and spheres are transformed into
triaxial ellipsoids). Such a deformation may be for-
mulated mathematicallv as

u1 = lqXl (12)

where X : Xi * Xrj + Xsk refers to the initial coor-
dinates of a "material point" before any deforma-
tion, i.e., at To, andu : ui 1- u,S t zek indicates the
amount of displacement which that point has un-
dergone upon reaching the final state at 7. The final
position of the material particle is

x : r r i t x r j ) - x r k : X * u . (13 )

As a consequence of Equation (12), it can be shown
that there exists a second rank tensor [e1y] such that

t u :  €1 f i 1 ' (14)

Equations (12) and (14) are referred to as the
Lagrangian and Eulerian formulations of the defor-
mation, respectively. For pure strain the tensor [/11] is
called the linear Lagrangian strain tensor while [e1y] is
the linear Eulerian strain tensor. The components of

[f1] and leil are defined by
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:  t r ; i ( I  -  %) :  t r i r  AT (8)
or

hq : 111/ AT. (9)

The l4 are then formulated in terms of the initial and
final cell parameters. A more general theory
recognizes that the trs7 terms can vary with
temperature. The expression corresponding to Equa-
tion (8) then becomes

l r , (T) (10)

and the mean value of tr,r(T) between temperatures ?tr'
and 7 is

(1 5a)

respect ive ly .  (15b)

Since it follows from these definitions that lq : lp and
€ii : €1t; both strain tensors are symmetric (Frederick

and Chang, 1969). The corresponding thermal expan-
slon tensors are

,  t f au ,  ,  au i lt , i :  i Ld& -  AX , )
and

tni(D : Io'n"' '  o,,, :  [ "^ , ,  o ,

:  
[ ' . ^ , ,1r1u,

t f  au ,  ,  au i l
e ' i :  2  Ld" ,  

-  d" r l  '

and

tr,;(r) : dl,i?)/dT

e,i(T) : de'i(D/df.

( l6a)

( l6b)

We will refer to these as the Lagrangian and Eulerian
thermal expansion tensors. Note that X,y(I) and e ;;(Z)
also correspond respectively to the "instantaneous
linear thermal expansion coefficient" and the "true
linear thermal expansion coefficient" given by
Kempter and El l iot t  (  1958).  These terms are
somewhat misleading and hence the terms La-
grangian and Eulerian thermal expansion coeffi-
cients are used here.

(r,n) : #n f'"^,,1r1u, (1  1 )
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Starting from Equation (12)1 it can be shown that
for a given line segment in the medium with initial
length /0, initial direction cosines (nr, nr, nr), final
length /, and final direction cosines (7rr, -nr, frr), the fol-
lowing is true:

I - Io - N l i in ;n ;

(r7)
l o l I;ila1"fl;r11"

since liy'pnpp 11 2lqnp., << I (the /17 values are
usually of the order of l0-o). Similarly, from Equa-
t ion (14) one can show

2e;; f i ; f t ;  -  € i ;€af i ; f ia
N eai f t ; f i ;

( 1 8 )
1+ I  I  e;;e;y,fr; fr1" - 2e;i f iaf i . ;

since et1eth-nl-np 11 2e4-n1-n, ( I (the esy values are also
usually of the order of l0-6. On differentiating Equa-
tions (17) and (18) with respect to temperature we ob-
ta ln

Equations (19) and (20) may be used to calculate the
principal thermal expansion coemcients of any
crystal with orthogonal axes because these are known
from symmetry consideraiions to coincide with the
unit cell edge vectors {a, b, c}. Accordingly, for
an orthogonal crystal \rye write2

tr , , (T):  
lda(T) 

Q3)
a s d T '

\ r r (?" ) :  *W,
(24)

\33(T)  : , (25)

and

(26)

(27)

(28)

(30)

for the Lagrangian and Eulerian forms respectively.
The purpose of this paper is to develop similar expres-
sions for the monoclinic case. The approach may be
extended to the triclinic case.

In order to use Equations (23) through (28), the cell
parameters must first be expressed as functions of
temperature. Owen and Roberts (1936), Stokes and
Wilson (1941), and Kempter and Elliott (1959)
utilized a power series expansion in Z for this pur-

(20) pose. For example, we can write the length of the a
cell edge as

a(n  =  d"+  f "T  *  goT '+  hoT++ "  (29)

and hence frord Equation (25)

.  l .  I  2 s , T  +  3 h " T 2  +  . . .
nt t  :  - -  

on

There are circumstances when power series expan-
sions of cell constants as functions of temperature are
not appropriate. Deshpande and Mudholker (1961)
point out, for example, that power series approxima-
tions yield thermal expansion coefficients that do not
approach zero as temperatuie approaches zero, con-
trary to behavior predicted by the Grtineisen relation.
Other functional forms can be devised (Skinner,
1957), but because the number of possibilities is large,

2 ao, bo, etc are the cell parameters at some reference tempera-

ture, Io.

I dc(T)
c6  dTI - lo -

I

\,a;(T)nnn, : A# ,ari NIf1-

and

e, i (T) f i in ;  :  WolD o,o,

-  l € ; ; l l ; l l 1

2e,{Dn,ft

(1 e)

|  !  ea,ea7f i i f i1

._t_9!9 _
Kr) dr

_  t  d l ( D .
- K D d T

We now consider at temperature, To, a line segment
perpendicular to the plane (hkl) with length /o equal
to d7p1. l-nt (nr, n2, nr) denote the direction cosines of
this line segment. At temperature 7 the deformed
line, with direction cosines (Itr, 

-nr, 
Zr), is perpen-

dicular to the deformed (hkl) plane and its length is
given by /, equal to d17py for the deformed plane
(Bouvaist and Weigel, 1970). We obtain from Equa-
tions (19) and (20) the following:

and

(2r)

(22)

' See appendix for alternative derivations of Equations (17) and
( 1 8 ) .

2 l i i n ; n ;  *  l n t l n

+ \ / l  *  2lun;n;
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explicit examples will not be further discussed in this
paper. The approach adapted here assumes simply
that it is possible to express the cell parameters ac-
curately as continuous functions of temperature. For
this reason there should be no phase changes in the
temperature range under consideration.

Lagrangian Thermal Expansion
Coefficients for Monoclinic Crystals

It is readily established from symmetry considera-
tions (Nye, 1957) and Neumann's principle that the
thermal expansion coefficient tensor for a monoclinic
crystal in the second setting is of the form

h" 0 I"l

lo  t r , ,  o l  (31)

L^,, o r,, ]
If we adopt:the rectangular coordinate system

employed by Ohashi and Burnham (1973) with c
oriented along Z, b along Y, and a* along X, then by
means of Equation (21), we obtain

t r , , (T ) : ,1  4 l4 ruor (21
do , roo ,  dT

dla(T) sin 0(Dl (32)

The expressions for Irr(Z) and trrr(Z) are the same as
those given in Equations (2a) and (25). The off-
diagonal element, trrr(Z), is somewhat more difficult
to obtain. The thermal expansion along the a cell
edge in the Lagrangian formulation is given by

r " ( D :  
L d a : : ) '  ( 3 3 )
a6 df

Since the init ial direction cosines (nr, nr,nr) for a are
(sinpo, 0, cospo), we use Equation (19) to obtain

I  da(T)  .  2
;?rJ 

:  t r , , ( r )  s in 'Bo

+ X,r(Z) sin 2Bo f trrr(r) cos'po. Q4)

(3 5)

may utilize Equation (ll) to obtain the following
mean values for trrr, trrr, trrr, and trta:

'\ ' r-=- [tt++ - rl , (36)(Arr) : T-- n L". ,t. e, 
- rl ,

'  - l+ - 1l ,  (37)(tr,r) : T-- ro lh 
-l '

t - [ " - l l ,  (38 )(tr") : 7-- ro Lro
and

/ \  \ -\ / \ r 3 , / -  2 ( T _ T o )

[. (-+r'j+e) - a++-l. (3e)
Lao \ sin 0o cos 0o / 

"o 
sin Bol

It is readily apparent that these equations are quite
similar in form to the Ohashi and Burnham (1973)
equations.

Eulerian Thermal Expansion
Coefficients for Monoclinic Crystals

The form of the thermal expansion tensor remains
the same as in the Lagrangian case. Using Equation
(22) we obtain

I  d [d (1oo) ( r ) ]
€ r r ( r /  :  

d . r * l r ) -  d f -

: 4!trt-1(.11! ilt I da ^ dB
dr 

' : 
;ff i  * cot 0; (40)

The expressions for er"(T) and es(7) remain as given
in Equations (27) and (28). The expression for e 's(Z)
is obtained by expanding Equation (22) andrealizing
that the instantaneous direction cosines, (itt, h", h") of
a are (sinB(7"), 0, cosB(Z)). On solving the expanded
form of Equation (20) for e 

"(7) 
one obtains

cot 0(T) J- I da(r)€re(r.r: 2 Lr<n-af

-t",-,#] -+W (41)
Replacing I'(Z) and tr'r(I) by Equations (32) and Equations (40) and (41) reduce correctly to the
(25) and solving for \,s(7) yields orthogonal case. Using Equation (ll) one obtains

dta(T) sin 0(I)l , cot Bo Cc(Dl' -  
d f  -  , "  d f  l

(.,.): r+"[nffi]
*#,,t*#*-1] ,

d T
I

a6 sin Bo

tr,3(r): ^!r^rnY -i k*e
(42)

ffiJ1:::1iH:i:fi?1ili,'1'J#i':;::';;:i^?; (.,,) : r+" [*] *r!n[* -'], s3)
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(44)

(4s)

values of the thermal expansion coefficients obtained
from the Lagrangian expressions are therefore not
unique but rather dependent upon the choice of To.
Since it is never necessary to choose a reference
temperature, %, in the case of the Eulerian formula-
tion, the values obtained for the components of [e 1y]
are unique. While the Eulerian expressions appear to
provide a more accurate description of thermal ex-
pansion, the Lagrangian values are more easily com-
puted. Furthermore, the Lagrangian expressions
have a d is t inct  advantage in that  s tat is t ica l
procedures for obtaining error estimates are much
simpler in the Lagrangian than in the Eulerian case.
In addition tr,, can be integrated exactly in its general
form over a given temperature interval, while e ,r can-
not. It should be pointed out that in the l imit of an in-
finitesimal displacement gradient these two formula-
tions become equivalent (Frederick and Chang,
196s).

Appendix

Equations (17) and (18) may also be obtained by considering the
deformation of a material particle initially located at X : /o(nti +
n2il nsk), where lXl = /0. If theparticleis displacedu : u,i * u,i *
urk (where u1 = l11Xi = l,py'o) during formation, then

o . X :  l ; i n i l o l l o n ;  _  ,  . .  _ .
X .X 

- iu -  :  t ; i t t ; r t i '

But, according to Equation (13), u is defined to be u = x - X
so that rr :  xt -  XL: l i -h - lonyHence,

u.X (Lf i ,  -  I6n;) lsn; fr ;n; l  -  nonnlo- t l :  
r on :  I o

so that (fip/ - lo) lo : li;4n1.

Since the deformation is small, we may make the approximation
that n' = E' from which it follows that

I  -  lo 
d l ; ; r t in i  '

lo

Inherent in this approximation is the assumption that the line
segment from O to the material particle is unrotated during
deformation. By using the same arguments but starting with
u .  x /x .  x ,  we obtain Equat ion (18).

Some authors write Equation (17) using an equals rather than an
approximately equals sign (Nye, 1960). This is correct provided it is
realized that the expression is exact only in the limit of an
infinitesimal displacement gradient, i e., exact within the context of
the assumptions incorporated into the theory of linear strain.

Note Added in Proof

Equations (17) and (18) may also be written in the form

2L;1nan;
N l ; in ;n1

N e i i f idn i

1+

and

(.,,): #n"k] *r!n[;-']
where we have uti l ized the approximation

l n ( x ) : ( x - l )

which is the l inear approximation to ln(x) at x : L
Since the change in a, b, c, and 0 is very small in com-
parison to their init ial dimensions, the quotients in-
volved in Equations (42), (43), and (44) are very close
to I and hence, for these values, the linear approx-
imation is quite accurate.

Since 0(Z) is unspecified and not part of a perfect
differential, an exact integration of Equation (l l) in
the case of e 1s(Z) is not possible. If, however, we as-
sume that 0(Z) is a constant function, i.e., A(T) : 0",
then

(.,,) : tr!'n['' (*.) - '' [9]
=#%lt-zl (46)

in the case where B( 7) varies significantly in the inter-
val IIr, 7], the approximation given in Equation (46)
may not yield an accurate estimate of (eqs). Hence, a
numerical approximation to the integral using, for
example, the trapezoidal rule may be more
desirable. We note that the approximate value of
(e ' ') given in Equation (46) is the same as obtained by
Ohashi  and Burnham (1973;  Eq.  A-10,  p.848)  i fB( f )
is assumed to be a constant function.

Conclusions

Once functions have been found which permit a, b,
c, and 0 to be expressed accurately as functions of
temperature, Equations (24), (25), (32), and (35) or
(27), (28), (41), and (42) may be used to obtain values
for the thermal expansion coefficients aI any desired
temperature. The orientation of the representation
quadric with respect to the crystallographic axes may
also be calculated (Eq. A-13, Ohashi and Burnham,
1973),

When a crystal is heated, an arbitrarily chosen line
segment in the crystal changes in both length and
orientation. As before, let /(Q denote the length of
the line segment at temperature Z. The Eulerian ex-
pression for the thermal expansion is the change of
l(T) per unit temperature change divided by /(7). On
the other hand the correspondingLagrangian expres-
sion for the thermal expansion is the change of /(Z)
per unit t€mperature change divided bV /(fr) where 7o
is an arbitrarily chosen reference temperature. The

l -  l o

lo

l - l o -

I

|  !  2 L ; i n ; n 1

2Ei i f i i f i i

and

1+
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Er,: t
respectively.

where Lrr and E,/ are the finite Lagrangian and Eulerian
strain tensors. These are defined as

.  t ^  ^  \
r  .  :  I  (  dr,  _+ dui 'J_ 3!L 3", ' l-L '  

2  \dx ,  '  axn  '  ax t  ax t /
and
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