MINERALOGICAL NOTES

Force Constant For Be–O Stretching in Behoite and in Chrysoberyl

DALE A. HUCKABY, TERRY L. WRIGHT
Chemistry Department,
AND ARTHUR J. EHLMANN
Geology Department,
Texas Christian University, Fort Worth, Texas 76129

Abstract

An absorption band near 780 cm⁻¹ in the infrared spectra of behoite [β-Be(OH)₂] and of
crysoberyl [Al₂BeO₄] was assigned to the vibration of a beryllium atom moving in a
tetrahedral cage of four fixed oxygen atoms. Using this simple model, a force constant of 2.4
mdyne/Å was calculated for Be–O stretching in behoite and chrysoberyl.

Introduction

The infrared spectrum of behoite [β-Be(OH)₂] was
given by Ehlmann and Mitchell (1970), and the in-
frared spectrum of β-Be(OH)₂ has been studied by
Funck (1964) and by Bear, Lukaszewski, and Turn-
bull (1965). The β-Be(OH)₂ crystal is composed of
tetrahedral Be(OH)₄ groups (Seitz, Rössler, and
Schubert, 1950).

The IR spectrum of chrysoberyl [Al₂BeO₄] has
been studied by Henning and Volke (1966), Povaren-
nykh and Gevorkyan (1971), Povarennik and Nefedov (1971), and Plyusnina (1963). Chrysoberyl
contains tetrahedral BeO₄ groups and octahedral
AlO₆ groups (Farrell, Fang, and Newnham, 1963).

For crystals having a small number of degrees of
freedom in the unit cell, an analysis using lattice
dynamics is feasible. Nusimovici (1969) has per-
formed a lattice dynamical calculation for beryllium
oxide, a crystal which contains tetrahedral BeO₄
groups. Using the Raman spectrum, he obtained a
value of 2.3 mdyne/Å for the Be–O stretching force
constant.

For crystals containing the BeO₄ group but having
a large number of degrees of freedom in the unit cell,
the infrared spectrum is often interpreted as arising
principally from the vibrations of the tetrahedral
BeO₄ group. A tetrahedral unit exhibits a non-
degenerate vibration of frequency ν₁, a doubly
degenerate vibration of frequency ν₂, and two triply
degenerate vibrations at ν₃ and ν₄ (Wilson, Decius,
and Cross, 1955). Generally, only ν₃ and ν₄ are
infrared active, but distortions of the tetrahedral
symmetry and couplings with other parts of the
crystal can result in ν₂ and ν₃ appearing in the infrared
and can break the degeneracy of the modes ν₂, ν₃, and
ν₄.

Funck (1964) has looked at ν₃ for several BeO₄-
containing molecules from the standpoint of a light
central atom surrounded by heavy ligands. Using ν ≈
800 cm⁻¹ for the BeO₄ group, he obtained a metal-
ligand force constant for Be–O of 1.79 mdyne/Å.

Model for the 780 cm⁻¹ Band

A simple model is proposed to account for the
band near 780 cm⁻¹ which occurs in the infrared
spectra of several BeO₄-containing minerals. This
band is interpreted as arising from the vibration of a
beryllium atom moving in a tetrahedron of fixed ox-
ygen atoms. The frequency, ν₃, of this vibration
would be triply degenerate for a perfect tetrahedron,
the degeneracy being broken by slight distortions of
the tetrahedron.

The same procedure that would be used to evaluate
the Einstein frequency of a crystal (Rice, 1967) is

1 Robert A. Welch Foundation Undergraduate Scholar.
employed to express \(\nu_{\text{Be}} \) in terms of the Be-O stretching force constant \(K \). A situation is considered in which a beryllium atom experiences a displacement from equilibrium in the amount \(\tilde{r}_{\text{Be}} = \tilde{r}_i - \tilde{r}_{\text{Be}}^* \), where \(\tilde{r}_i \) is the instantaneous displacement of the beryllium atom from the \(i \)th neighboring oxygen atom, and \(\tilde{r}_{\text{Be}}^* \) is the corresponding equilibrium displacement. Neglecting all but central force interactions, the potential due to the displacement \(\tilde{r}_{\text{Be}} \) is given by this model as

\[
V = \frac{1}{2} K \sum_{i=1}^{4} (r_i - r_i^*)^2,
\]

where the sum extends over the four fixed oxygen atoms.

Upon expanding \(r_i = |\tilde{r}_i^* + \tilde{r}_{\text{Be}}| \) to first order in \(\tilde{r}_{\text{Be}} \) and writing the \(\tilde{r}_i^* \) in any convenient coordinate system, the simple expression

\[
V = \frac{1}{2} \left(\frac{4K}{3} \right) \nu_{\text{Be}}^2
\]

is obtained. Hence the beryllium atom behaves as a simple harmonic oscillator vibrating with a frequency

\[
\nu_{\text{Be}} = \frac{1}{2\pi} \left(\frac{4K}{3} \right)^{1/2},
\]

where \(m \) is the mass of a beryllium atom. This expression is similar in form to that of Funck (1964), except that \(\nu_{\text{Be}} \) above shows no dependence on the mass of the outer oxygen atoms. A value for \(K \) is obtained upon assignment of an infrared band to \(\nu_{\text{Be}} \).

Using the infrared spectrum of behoite reported by Ehlmann and Mitchell (1970), a band composed of peaks at 875, 780, 750, and 720 cm\(^{-1}\) was assigned to the vibration of the Be in a tetrahedron of fixed OH groups. The average frequency, 781 cm\(^{-1}\), was taken as \(\nu_{\text{Be}} \). These frequencies are similar to the assignments of \(\nu_{\text{Be}} = 875, 775, \) and 700 cm\(^{-1}\) given by Funck (1964) and close (somewhat similar) to the assignments of \(\nu_{\text{Be}} = 880, 875, 825, \) and 780 cm\(^{-1}\) made by Bear et al. (1965).

A band in the infrared spectrum of chrysoberyl with peaks at 750, 775, and 820 cm\(^{-1}\) was tentatively assigned to \(\nu_{\text{Be}} \) by Henning and Volke (1966). The average of these peaks, 782 cm\(^{-1}\), is close to the assignment of 780 cm\(^{-1}\) made for \(\nu_{\text{Be}} \) by Povarennykh and Nefedov (1971), and is not inconsistent with the assignment of \(\nu = 1000, 860 \) and 780 cm\(^{-1}\) given by Povarennykh and Gevorkyan (1971). A quite different assignment was given by Plyusnina (1963) who tentatively assigned to \(\nu \) a band having peaks ranging from 963 to 1161 cm\(^{-1}\).

Using the frequency 780 cm\(^{-1}\) for \(\nu_{\text{Be}} \) in both behoite and chrysoberyl, a Be–O stretching constant of \(K = 2.4 \) mdyne/Å is obtained, in good agreement with the Be–O stretching constant of 2.3 mdyne/Å obtained by Nusimovici (1969) for beryllium oxide.

Acknowledgments

The authors wish to thank Keiichi Omori, Professor of Tohoku University, Sendai, Japan, for suggesting we perform a force constant analysis for behoite. This research was supported by The Robert A. Welch Foundation Grant P-446, and by the TCU Research Foundation.

References

Manuscript received, January 21, 1974; accepted for publication, March 6, 1974.