MINERALOGICAL NOTES

Force Constant For Be-O Stretching in Behoite and in Chrysoberyl

DALE A. HUCKABY, TERRY L. WRIGHT¹

Chemistry Department,

AND ARTHUR J. EHLMANN

Geology Department, Texas Christian University, Fort Worth, Texas 76129

Abstract

An absorption band near 780 cm⁻¹ in the infrared spectra of behoite $[\beta$ -Be(OH)₂] and of chrysoberyl $[Al_2BeO_4]$ was assigned to the vibration of a beryllium atom moving in a tetrahedral cage of four fixed oxygen atoms. Using this simple model, a force constant of 2.4 mdyne/Å was calculated for Be-O stretching in behoite and chrysoberyl.

Introduction

The infrared spectrum of behoite $[\beta$ -Be(OH)₂] was given by Ehlmann and Mitchell (1970), and the infrared spectrum of β -Be(OH)₂ has been studied by Funck (1964) and by Bear, Lukaszewski, and Turnbull (1965). The β -Be(OH)₂ crystal is composed of tetrahedral Be(OH)₄ groups (Seitz, Rösler, and Schubert, 1950).

The IR spectrum of chrysoberyl $[Al_2BeO_4]$ has been studied by Henning and Volke (1966), Povarennykh and Gevorkyan (1971), Povarennykh and Nefedov (1971), and Plyusnina (1963). Chrysoberyl contains tetrahedral BeO₄ groups and octahedral AlO₆ groups (Farrell, Fang, and Newnham, 1963).

For crystals having a small number of degrees of freedom in the unit cell, an analysis using lattice dynamics is feasible. Nusimovici (1969) has performed a lattice dynamical calculation for beryllium oxide, a crystal which contains tetrahedral BeO_4 groups. Using the Raman spectrum, he obtained a value of 2.3 mdyne/Å for the Be–O stretching force constant.

For crystals containing the BeO_4 group but having a large number of degrees of freedom in the unit cell, the infrared spectrum is often interpreted as arising principally from the vibrations of the tetrahedral BeO₄ group. A tetrahedral unit exhibits a nondegenerate vibration of frequency ν_1 , a doubly degenerate vibration of frequency ν_2 , and two triply degenerate vibrations at ν_3 and ν_4 (Wilson, Decius, and Cross, 1955). Generally, only ν_3 and ν_4 are infrared active, but distortions of the tetrahedral symmetry and couplings with other parts of the crystal can result in ν_1 and ν_2 appearing in the infrared and can break the degeneracy of the modes ν_2 , ν_3 , and ν_4 .

Funck (1964) has looked at ν_3 for several BeO₄containing molecules from the standpoint of a light central atom surrounded by heavy ligands. Using $\tilde{\nu} \approx$ 800 cm⁻¹ for the BeO₄ group, he obtained a metalligand force constant for Be–O of 1.79 mdyne/Å.

Model for the 780 cm⁻¹ Band

A simple model is proposed to account for the band near 780 cm⁻¹ which occurs in the infrared spectra of several BeO₄-containing minerals. This band is interpreted as arising from the vibration of a beryllium atom moving in a tetrahedron of fixed oxygen atoms. The frequency, ν_{Be} , of this vibration would be triply degenerate for a perfect tetrahedron, the degeneracy being broken by slight distortions of the tetrahedron.

The same procedure that would be used to evaluate the Einstein frequency of a crystal (Rice, 1967) is

¹ Robert A. Welch Foundation Undergraduate Scholar.

employed to express ν_{Be} in terms of the Be-O stretching force constant K. A situation is considered in which a beryllium atom experiences a displacement from equilibrium in the amount $\vec{r}_{Be} = \vec{r_1} - \vec{r_1}^*$, where $\vec{r_i}$ is the instantaneous displacement of the beryllium atom from the ith neighboring oxygen atom, and $\vec{r_i}^*$ is the corresponding equilibrium displacement. Neglecting all but central force interactions, the potential due to the displacement \vec{r}_{Be} is given by this model as

$$V = \frac{1}{2}K \sum_{i=1}^{4} (r_i - r_i^*)^2,$$

where the sum extends over the four fixed oxygen atoms.

Upon expanding $r_i = |\vec{r}_i^* + \vec{r}_{Be}|$ to first order in \vec{r}_{Be} and writing the \vec{r}_i^* in any convenient coordinate system, the simple expression

$$V = \frac{1}{2} \left(\frac{4K}{3} \right) r_{\rm Be}^2$$

is obtained. Hence the beryllium atom behaves as a simple harmonic oscillator vibrating with a frequency

$$\nu_{\mathrm{Be}} = \frac{1}{2\pi} \left[\frac{4K}{3} \right]^{1/2},$$

where *m* is the mass of a beryllium atom. This expression is similar in form to that of Funck (1964), except that ν_{Be} above shows no dependence on the mass of the outer oxygen atoms. A value for *K* is obtained upon assignment of an infrared band to ν_{Be} .

Using the infrared spectrum of behoite reported by Ehlmann and Mitchell (1970), a band composed of peaks at 875, 780, 750, and 720 cm⁻¹ was assigned to the vibration of the Be in a tetrahedron of fixed OH groups. The average frequency, 781 cm⁻¹, was taken as $\tilde{\nu}_{Be}$. These frequencies are similar to the assignments of $\tilde{\nu}_3 = 875$, 775, and 700 cm⁻¹ given by Funck (1964) and close (somewhat similar) to the assignments of $\tilde{\nu}_3 = 880, 875, 825, and 780 cm⁻¹ made$ by Bear*et al*(1965).

A band in the infrared spectrum of chrysoberyl with peaks at 750, 775, and 820 cm⁻¹ was tentatively assigned to $\tilde{\nu}_3$ by Henning and Volke (1966). The average of these peaks, 782 cm⁻¹, is close to the assignment of 780 cm⁻¹ made for $\tilde{\nu}_3$ by Povarennykh and Nefedov (1971), and is not inconsistent with the

assignment of $\tilde{\nu}_3 = 1000$, 860 and 780 cm⁻¹ given by Povarennykh and Gevorkyan (1971). A quite different assignment was given by Plyusnina (1963) who tentatively assigned to $\tilde{\nu}_3$ a band having peaks ranging from 963 to 1161 cm⁻¹.

Using the frequency 780 cm⁻¹ for $\tilde{\nu}_{Be}$ in both behoite and chrysoberyl, a Be-O stretching constant of K = 2.4 mdyne/Å is obtained, in good agreement with the Be-O stretching constant of 2.3 mdyne/Å obtained by Nusimovici (1969) for beryllium oxide.

Acknowledgments

The authors wish to thank Keiichi Omori, Professor of Tohoku University, Sendai, Japan, for suggesting we perform a force constant analysis for behoite. This research was supported by The Robert A. Welch Foundation Grant P-446, and by the TCU Research Foundation.

References

- BEAR, I. J., G. M. LUKASZEWSKI, AND A. G. TURNBULL (1965) The infrared spectrum of the solid phases in the system BeO-H₂O. Aust. J. Chem., 18, 1317-1330.
- EHLMANN, A. J., AND R. S. MITCHELL (1970) Behoite, beta-Be(OH)₂, from the Rode Ranch pegmatite, Llano County, Texas. Am. Mineral. 55, 1–9.
- FARRELL, E. F., J. H. FANG, AND R. E. NEWNHAM (1963) Refinement of the chrysoberyl structure. Am. Mineral, 48, 804-810.
- FUNCK, E. (1964) Metall-Ligand-Schwingungen in den Infrarot-Absorptionsspectren von Komplexen mit leichten Zentralatomen und Sauerstoff-Koordination. I. Lithium- und Beryllium-Verbindungen. Ber. Bunsenges. Physik. Chem. 68, 617-629.
- HENNING, O., AND K. VOLKE (1966) Die Infrarotabsorption der Monoerdalkalialuminate. Wiss. Z. Hochsch. Architektur u. Bauw. Weimar, 13, 557-566.
- NUSIMOVICI, M. A. (1969) Modes Normaux de Vibration de l'oxyde de Beryllium. C. R. Acad. Sci. Paris, 268, 755-758.
- POVARENNYKH, A. S., AND S. V. GEVORKYAN (1971) Infrared spectra of isostructural groups of minerals. *Mineral. Sb. (Lvov)*, 25, 100-110.
- ----, AND E. I. NEFEDOV (1971) Infrared spectra of some beryllium and boron minerals. *Geol. Zh.* **31**, 12-27.
- PLYUSNINA, I. I. (1963) Infrared absorption spectra of beryllium minerals, *Geokhimiya*, 2, 158-173 [transl. *Geochem.* 8, 174-190 (1963)].
- RICE, O. K. (1967) Statistical Mechanics, Thermodynamics, and Kinetics. Freeman, San Francisco.
- SEITZ, A., U. RÖSLER, AND K. SCHUBERT (1950) Kristallstruktur von β -Be(OH)₂. Z. Anorg. Chem. 261, 94-105.
- WILSON, E. B., J. C. DECIUS, AND P. C. CROSS (1955) Molecular Vibrations. McGraw-Hill, New York.

Manuscript received, January 21, 1974; accepted for publication, March 6, 1974.