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Abstract

The statistical quality, Z, of any peak in a given M&ssbauer spectrum can be defined in terms of the

observed spectral parameters: background counts,

velocity increment, and the width and dip of the peak.

For isolated peaks the statistical uncertainty with which each peak parameter may be determined, from a
given spectrum, is an inverse linear function of the peak £ value.

For spectra with partially overlapped peaks, parameter uncertainty further depends on component
peak separation. Below a critical separation where separate minima are visually discernible, probable
parameter error rises very rapidly to infinity. The limits of recovering the parameters of strongly
overlapped peaks and the (large) uncertainties involved are graphically presented.

Introduction

It is not uncommon to find, in the recent literature,
examples of M&ssbauer spectra which show a limited
number of well-defined minima, but which have been
fitted with a substantially larger number of “in-
completely resolved component peaks” by the in-
vestigator. The validity of this procedure and the
probable errors involved depend upon the uncertain-
ty of the spectral measurements and upon the fitted
model. Under optimum conditions with no
systematic errors present in the data and an ap-
propriate model, the fitting errors are those due purely
to the statistical uncertainty of the spectral data. It is
this statistical limitation to spectral fitting that is the
subject of this paper and is considered herein for the
specific case of Mdssbauer spectra measured in the
usual constant-acceleration mode. The conclusions,
however, are adaptable to other types of spec-
troscopy.

An empirical approach using computer-simulated
Madssbauer spectra is employed, and the effects of
peak quality and peak overlap on probable peak-
parameter errors are graphically presented. It is
assumed that the spectroscopist is already aware of
the statistical limitations of the data. This paper is
rather aimed at the users, or potential users, of
Méssbauer data who wish to know, “to what degree
does this particular data set support this particular
model?”

Statistical Quality of Massbauer
Spectral Peaks

Most routine Mdssbauer spectra are measured us-
ing a so-called constant acceleration spectrometer

which accumulates the spectrum in a multichannel
analyzer (see, e.g., Greenwood and Gibbs, 1971,
chap. 2). In this experimental configuration the
gamma-ray source (or absorber) is repeatedly swept
at constant acceleration through a range of velocities,
typically on the order of —5 mm/sec to +5 mm/sec,
for Fe-57 studies. Each channel of the multichannel
analyzer (MCA) contains the counts recorded while the
source was moving in a particular velocity interval.
For instance, velocities of 5.00 to 4.98 mm/sec may
be associated with channel 1, velocities of 4.98 to 4.96
to channel 2, efc. In this example the velocity incre-
ment of 0.02 mm/sec/channel would require 500
channels to cover a —5 to a +5 mm/sec range.

An example of such a spectrum is shown in Figure
1, and is seen to consist of a plot of the total number
of counts received in each of the MCA channels. (The
relation of velocity to channel number, or calibra-
tion of the spectrometer, is accomplished through
electromechanical or electrooptical techniques, or
through the use of standards.) Note that the counts at
high negative velocities (low channel numbers) and
again at high positive velocities (high channel
numbers) are nearly constant, differing only by
statistical noise. This background count, which could
be more precisely defined as the average count per
channel at velocities well removed from any spectral
peaks, is termed the off-resonance count. Nearer the
center of the spectrum some of the channels show a
significant decrease in the number of counts ac-
cumulated. This loss of counts is due to the resonant
absorption and re-emission of gamma photons in the
absorber sample being studied.

Ideally the shape of the Mdssbauer absorption
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F1G. 1. Example of computer simulated spectrum. The data
points simulate the number of counts accumulated in each channel
of a multichannel analyzer. The solid curve represents the least-
squares fitted envelope which is the sum of two Lorentzian peaks
separated by 2.0 peak width,

peak conforms to a Lorentzian (also known as
Cauchy) profile. In practice, it is found that most
spectra closely approximate this form although
relatively minor deviations do occur. In those cases
where the deviations from Lorentzian form are real,
it is often difficult to determine whether this is an in-
herent property of the material under study or merely
an artifact caused by faulty sample preparation, im-
perfect spectrometer, etc. At any rate, these devia-
tions are small and do not materially affect the sta-
tistical conclusions arrived at below.

The spectral parameters which characterize each
peak in a spectrum are:

. center location (in units of channel numbers)
. area (in units of counts X channel numbers)
. width (in units of channel numbers

The width is usually expressed as full width at half
maximum. How well these parameters are defined by
the observed spectrum varies widely due to such fac-
tors as the strength of the Mdssbauer effect in the
particular sample studied, the length of time over
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which the spectrum was accumulated, the amount of
sample used and the amount of specific Mdssbauer
nuclide in the sample, the number and types of
different sites within the sample over which this
isotope is distributed, the activity of the gamma-ray
source, the experimental configuration, etc. Despite
these experimental variations, however, it is possible
to estimate the statistical quality of a specific peak in
a given spectrum.

How well defined the spectral parameters are
depends basically on the peak-to-background ratio of
the specific peak in question. This may be expressed
as the depth of the peak below background in units of
estimated standard deviations. In the following, the
estimated standard deviations are taken directly from
counting statistics, thereby assuming no systematic
error is present in the spectrum. The probable errors
arrived at therefore refer to the precision rather than
the accuracy of the spectrum.

The peak depth can be given as the difference in the
number of counts observed at the peak center and the
off-resonance count. As the M&ssbauer effect results
in only a small percentage decrease in the counting
rate at the peak, the standard deviation of the count
in any channel is closely approximated by the square
root of the off-resonance count. Thus the desired
peak depth in units of counting standard deviation is
given by the ratio,

R = (N. — No)/\/N. (1)

where N, refers to the off-resonance count and N, the
count at the peak.

For spectra measured under constant experimental
conditions, the above ratio, R, is in fact proportional
to the statistical quality of a given peak. However,
consider a spectrum measured under the conditions
that the velocity increment per channel is very small
and, therefore, a peak of a given width is recorded
over a relatively large number of channels. Without
appreciable loss of information, under these con-
ditions, the spectrum could alternatively be repre-
sented by half as many data points where each point
represents the sum of two consecutive channels. For
the statistical quality of the peak to be the same in
either data set, the ratio derived above must take into
account both the peak width and the McA velocity
increment per channel, or specifically:

E = (N — N)V/G/N. )

where Z is the herein defined statistical quality of the
peak, and G is the peak width (FwWHM) in units of
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channel numbers. The peak width in units of mm/sec
can be converted to units of channel numbers by
dividing by the velocity increment per channel, or by
rewriting the formula as

5 = (No — No)VT/¥Na 3

where T is the peak width in mm/sec and » is the

velocity increment per channel also in mm/sec.
The fractional peak dip, p, can be expressed as p =

(Ne — Ny)/ N, leading to another useful form of &,

viz
E = pV N.G 4)

Finally, for pure Lorentzian peaks, the area of the
peak is related to the dip and width parameters; 4 =
mG(No — No)/2 which then rearranged and com-
bined with Equation (2) above gives:

" = ﬁ_ (5)
TV NG

Although experimental conditions employed in the
measurement of spectra vary widely, it is possible to
give typical ranges of the significant spectral
parameters and thereby arrive at the range of ex-
pected peak E values. Background or off-resonance
count is largely determined by the length of time the
spectral measurement is made and the activity of the
source. Currently reported spectra have background
counts on the order of 10° counts per channel which
represents an order of magnitude increase over
typical spectra reported five years ago. The fractional
dip observed with mineral samples depends primarily
upon the Fe concentration of the sample. The
amount of sample used, however, is limited by other
effects such as absorption, saturation, or thickness
broadening. Typical Mdssbauer-effect dips are on the
order of 5 to 10 percent for the major peaks in a spec-
trum but may be less than 1 percent in the case of
sites with small Fe occupancies. Mdssbauer peak-
widths reported for minerals show a narrow range
of about 0.30 + 0.05 mm/sec, although broad-
ened peaks are occasionally encountered. The
velocity increment employed depends on the size of
the McA and the necessity to record the entire spec-
trum simultaneously. As the resolution limit is fixed
by the peak width, there is little or no advantage in
using a velocity increment that is very small com-
pared to the peakwidth. Literature-reported values
are normally in the range of 0.01 to 0.05 mm/
sec/channel, i.e., peaks appear some ten to twenty
channels wide.

Combining these typical parameter ranges leads to
typical statistical peak qualities, %, on the order of
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100-200. Peaks with higher values are exceptionally
well determined by the data whereas peaks of =
values significantly less than 100 are only indistinctly
resolved in the given spectrum.

It remains to demonstrate that E is in fact a
measure of the statistical quality of a spectral peak.
As mentioned above, the statistical quality is a
measure of how well the peak parameters are defined
by a given data set, i.e., how small the errors are in
the determination of the peak parameters from that
data set. Thus the higher the statistical quality,
the higher the precision with which the spectral
parameters can be determined or conversely the
smaller the probable error in the estimates of these
parameters.

Therefore, it can be expected that

Eal/e,

(6)

where ¢, is the relative error in the spectral parameter
under consideration. To demonstrate that this
proportionality holds, a series of M&ssbauer spectra
were numerically simulated as follows. The expres-
sion for the number of counts accumulated in the ith
channel is

_ 24/7G
1+ 4Ny — -’\70)2/(;2

N(,‘) = Nm

+ N.’RO, 1) (D)

where x,, A, and G are, respectively, the location,
area, and width of the peak, and R(0, 1) is a normally
distributed random variable with mean of zero and
variance of 1.0. The normally distributed random
variables were computed by the method of Hamming
(1962). Spectra were simulated with peak widths of
from 2 to 60 channels and = values from 6 to 750.
These values span the range of most spectra normally
encountered.

These single-peak, simulated spectra were then fit
by the usual (Newton-Gauss) least-square methods
which yield estimated standard errors, o, for each of
the fitted parameters. The corresponding relative
standard errors, ¢, = 6,/G, and ¢ = g5/G are shown
plotted in Figure 2 versus the inverse of the ap-
propriate = value for that spectral peak. (The data
points for the relative error in the area ¢4, = 0,/4
which outline a similar curve falling between those
shown, were deleted in the interest of graphical
clarity.) The plot shows that indeed the relative errors
are inverse linear functions of the Z values, i.e.:

€ = (6,/P) = kp/E ®
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where &, is a constant. From Figure 2 the values of
these proportionality constants can be evaluated; for
the relative error in peak location, k, ~ 0.81, for the
relative error in peak area, k4, =~ 1.63, and for the
relative error in the peak width, kg =~ 2.23.

The = values of Figure 2 were calculated from the
ideal input spectral parameter values. The increased
spread of points at small & values is due in part to the
small difference between the E values obtained in this
manner and the = values obtained by using the least-
squares fitted values of area, width, etc, and in part
due to the imprecision of the error estimates of small
£ value peaks.

Thus from Figure 2 or the algebraic expressions,
the probable error in the determination of the various
spectral parameters of isolated peaks can be deter-
mined from a knowledge of their E values. The
observed parameter esd’s for a number of isolated

4”."’0 F
3%
6P
2% /
a
-]
1%
219
638
076
015
©30
+60
OG/D i i 1 i —]
0 005 010 015 020 025
;:;-1
-

FiG. 2. Plot of relative error of peak parameters versus inverse of
peak = value. Symbols refer to various peak widths employed.
Upper line and associated data points refer to relative error in peak
width, lower line and associated data points refer to relative error
in peak location. Relative error in peak area (not shown) falls in
between.
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peaks from actual spectra were checked against these
relations and excellent agreement was found.

Ruby (1973) has recently introduced several new
parameters useful in characterizing Mdssbauer spec-
tra, including a parameter, S, which, ‘‘has the proper-
ties desired for a figure of merit or for a measure of
the quality of a (spectral) measurement.” This S
value is a characteristic of the entire spectrum and
therefore is closely related to the component peak =
values. Ruby defines S,

i
§ = N. Y oGy’ )
where p(i) is the fractional dip observed in the ith
channel, and the summation extends over the /
channels comprising the spectrum. For a Lorentzian
peak of maximum dip, p,, the fractional dip observed
in any channel is given by

p() = po/(1 + 48°/G?)

where 8 is the separation of the ith channel from the
peak maximum and G is the peak width, both in units
of channel-numbers. In a spectrum with peaks that
are many channels wide, one of the channels will be
sufficiently close to the center of the peak to be con-
sidered to show the maximum fractional dip of p,,
ie., &6 = zero, for this channel. For successive
neighboring channels, d = £ 1, £ 2, £ 3 ... Then:

(10

1
S = N. 2 (po/1 + 48°/G) an

or

S = Nupo{l +2 21/ + 41°/G*}  (12)

The value of the infinite series in curly braces can be
numerically evaluated and is equal to 0.25xG. Then:

S = 0.257p*,N..G
orinterms of £,

S =0.257E? (13)

for a single-peak spectrum. For a multipeak spec-
trum, two extreme cases must be isolated. For
non-overlapping peaks the contribution to .S of the
ith channel is due to one or another of the component
peaks (but not more than one) and therefore is in-
cluded in one of the component peak E values, thus:

S(fion-overlapped) = 0.257ZE (i)

However, for overlapped spectra, the dip observed in
the ith channel is due to more than one component
peak. In the extreme case of complete overlap of two
peaks, po = pa + ps, and from above:
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S(completely overlapped) = 0.25x[ZZ()]?
In general, then, S lies between these two extremes:

0.257[ZE()I = S = 0.257ZE (i)

depending upon the degree of overlap of the com-
ponent peaks in a particular spectrum.

Effect of Peak Overlap on Errors in
Parameter Determination

In Figure 1, the separation of the peaks is large
enough that their characteristic parameters can be
determined essentially to the precision given by
Equation (8). However, for spectra with successively
smaller separations, the overlap of one distribution
on the other decreases the precision with which all
parameters of the two peaks can be determined. Con-
sider the envelope formed from the sum of two
(Lorentzian shaped) peaks which are moved closer
and closer together. The separation of the envelope
maxima is shown in Figure 3 as a function of the
separation of two equal height, equal width peaks. At
a peak separation of several peak widths (such as
shown in Fig. 1) the envelope consists of two maxima
with a local minimum at the midpoint between the
peaks. The envelope maxima are located essentially
at the component peak maxima and the envelope
heights at the maxima are only slightly greater than
the heights of the peaks. As the peaks are moved
closer together, (1) the heights of the envelope max-
ima rise, but (2) the height of the midpoint minimum
rises faster and (3) the location of the envelope max-
ima moves from directly over the peaks towards the
peak midpoint. At a critical peak separation (equal to
1/4/3 peak widths for equal height peaks) the two
envelope maxima have coalesced into a single max-
imum located at the component peak midpoint.
Moving the peaks still closer merely increases the
height and decreases the width of the single envelope
maximum. Since the sum of two equal-width Lorent-
zian peaks of area 4, and A4, located at the same point
is identical to a single Lorentzian peak of area A, +
A, the single maximum looks more and more like a
single peak as the component peak separation is
decreased towards zero. It is in this region of peak
separations (below ~ 0.6 I') where the eye no longer
discerns separate maxima, that there is a rapid
decrease in the precision with which ali peak
parameters can be determined.

As above for the single-peak spectra, a larger
number of two-peak spectra were simulated on an
Ism 360-91 at UCLA and on a UNIVAC 1108 at the
University of Wisconsin, Madison. For these spectra
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the normally distributed random numbers were
generated using the Hamming (1962) method for the
spectra simulated on the IBM computer and the Mar-
saglia, McLaren, and Bray (1967) procedure on the
Univac computer. About 150 total spectra were
generated. These spectra had A values (peak separa-
tions expressed in units of peak widths) of 0.0 to 2.0
and & values from 8 to 200. Several different ratios
between the areas of the two peaks were used as well
as several different peak widths. In all cases the gen-
erating values of the peak widths of the two com-
ponent peaks were kept equal. This is in keeping with
real spectra where drastically different peak widths
in the same spectra are the exception.

The simulated two-peak spectra were then fit (or
attempted) by the usual (Newton-Gauss) full-matrix
least-squares methods. Starting parameters were
usually rough approximations of the ideal generating
values but it was found that the number of steps to
convergence and general least-squares refinement
behavior was the same even if the exact input values
were used as starting parameters. Refinement was
done with two models, the first with no parameter
constraints, i.e., the location, area, and widths of
both peaks were simultaneously refined, and in the
second model the widths of both peaks were con-
strained to be equal.

The behavior of the refinement procedure depends
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F16. 3. Separation of maxima of the envelope formed by two
partially coalesced equal-area, equal-width Lorentzian peaks, as a
function of component peak separation. Separations are given in
units of peak widths.
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on the relative peak separation, A. For A values
greater than 0.6 T, all simulated cases smoothly and
rapidly converged. The convergence criterion used
was that all parameter changes on the ‘“final” cycle
must be less than 2 percent of their respective es-
timated standard errors. This criterion is in fact much
more severe than normally employed, but was
deemed necessary in a few critical cases.

For A values below ~ 0.6 T', convergence behavior
depended upon the = values as well. For a series of
spectra with peaks having similar & values but with
steadily decreasing peak separations, the number of
cycles to reach convergence increased. As the A
values decrease, the parameter values tend to oscillate
roughly about the input or ideal values, and for small
enough A values these oscillations increase on suc-
cessive least-squares cycles. That is, the fit between
observed number of counts and calculated values be-
comes worse. As the magnitude of the standard
errors of the spectral parameters becomes large com-
pared to the parameters themselves, the probability
of divergence increases rapidly. As the relative
parameter errors depend on the peak E values, then

1000

>
S
s
a
@
~

F1G. 4. Plot of relative peak parameter error (times peak = value)
versus peak separation. Figure 4a shows the relative error in peak
area times = value, i.e., Zey, versus peak separation, A, for un-
constrained refinement. Figure 4b shows a similar plot for relative
error in peak location for the cases of no constraints (circles) or
peak widths constrained to be equal (triangles). In Figure 4c the
relative error in peak width times Z value is shown for no con-
straint.
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this oscillation and divergence behavior occurs at
larger peak separations when dealing with smaller
peaks. The exact cut-off point, beyond which a
unique least-squares solution cannot be found, de-
pends on A and Z values, the number of constraints,
the particular statistical noise distribution, and the
specific mathematical routines employed.

Figure 4 summarizes the relation of relative error,
peak separation, A, and peak quality, . Holding for
the moment the E values of the peaks constant,
Figure 4 may be interpreted as a simple plot of
relative spectral parameter error versus peak separa-
tion. Note that on a semilog scale, as A decreases
below ~ 0.6 (peak widths), the probable error in
determining the various peak parameters increases
spectacularly.

In Figure 4 the solid points refer to cases where the
least-squares solution converged. The open points
refer to error estimates from least-squares solutions
which diverged. Ordinarily, unless convergence oc-
curs, i.e., unless the parameter changes decrease to
zero, the least-squares procedure cannot supply cor-
rect parameter error estimates. However, if the cor-
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rect parameter values are known (as is this case where
the ideal generating values are specified), then the
errors furnished by a least-squares cycle starting with
the correct parameters are good approximations of
the true errors. It can be seen (Fig. 4) that the open
points plot along with the closed points and allow ex-
trapolation to very small A values where no cases of
convergence occurred.

In further explanation of the application of Figure
4, consider a peak, of & =~ 50, overlapped partially by
a second peak. If it is desired to determine the relative
area of this first peak to + 10 percent, then the ques-
tion arises how close may the overlap between the
two peaks be? For this case e, = 04/4 = 0.1 and the
product € & = 5. Figure 4b shows that the two peaks
must be separated by at least 0.9 I" (if the individual T’
values are independently determined) in order for the
relative error to be less than 10 percent. If the peak in
question has a Z value of about 200, then ¢ & = 20,
and separations of A = 0.5 " or more will yield area
estimates to better than 10 percent for no constraints.

With spectra displaying poorly defined peaks (low
Z values) the estimates of the parameters of the weak
peak are imprecise and, furthermore, the estimates of
the probable errors in these parameters furnished by
the least-squares method are then also imprecise. In
Figure 4 the relative error estimates are plotted only
for those simulated spectra with peaks having &
values of 20 or greater. Error estimates from weaker
peaks are less precise and consequently would show a
significantly greater spread in such a plot. Use of such
imprecisely determined error estimates (rather than
the true estimates which can be obtained from Fig. 4)
may be misleading. As an example, a spectrum was
generated from two equal area peaks each having =
values of 100 and a separation of A = 0.3 T'. This
simulated spectrum was least-squares fit with two
peaks, without constraint. The fit converged with the
two best-fit peaks having strongly dissimilar areas
and widths. Because of the small A value the fit is
highly imprecise, and one of the peaks had a best-fit
Z value of only 14. The error estimates of the param-
eters of both peaks then were very imprecisely de-
termined by the least-squares procedure and were in
this case severely underestimated. In fact, by using
the least-squares-furnished error estimates, it could
be shown that the difference in peak areas between
the two fitted peaks amounted to six sigma, i.e.,
statistically highly significant. If the correct error
estimates were taken from Figure 4, the difference
between the fitted peak areas was found to be about
one sigma, i.e., statistically insignificant.
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Regardless of overlap, the parameters of the
envelope remain defined. Therefore, if it is possible to
specify any relationship (constraint) between the
parameters of the component peaks, the precision
with which the remaining parameters are defined in-
creases. The effect of constraints of the peak widths is
illustrated in Figure 4b. The lower set of points
(triangles) shows the (Z-scaled) expected errors in
peak location versus peak separation for spectra with
peak widths constrained to be equal. Note that the
expected errors are in all cases smaller than for the
unconstrained refinement or, put another way, that
for the same size probable error, a more severe peak
overlap may be tolerated. A similar ‘“‘smaller error”
curve for expected area errors, when peak widths are
constrained, can be drawn. For constrained peak
widths, the expected error in the peak width itself is
essentially independent of overlap since the width of
the envelope remains well defined.

Application to Actual Spectra

The foregoing treatment, including Figure 4, is
applicable to real (as opposed to simulated) spectra.
The actual errors in real spectra, however, are larger
than those due to counting statistics alone. The ad-
ditional sources of parameter imprecision include:

(a) systematic errors in the data due, e.g., to spec-
trometer drift, thickness or cosine line-broad-
ening, and others;

(b) errors in the model, including wrong number
of peaks, deviations from Lorentzian form;

(c) overlap of more than two peaks;

(d) simultaneous refinement of one or more
background parameters.

The magnitude of the errors derived above from
simulated spectra then must be considered lower
limits of the errors expected with real spectra.
Nevertheless, with weak or closely overlapped peaks
the error due to counting statistics is likely to be the
dominant source of parameter imprecision.
Examples of real spectra fit with peaks having
separation of less than ~ 0.6 T' (i.e., separate maxima
not discernible to the eye) are abundant in mineral-
ogical studies. A typical example is the fitting of two
(ferrous-iron) doublets to the spectrum of Trelavour
biotite by Hogg and Meads (1970). From their illus-
trated spectrum the following can be evaluated:
N, =22 X 10% p =~ 3.9 percent, v = 1/28 mm/sec,
' ~ 0.39 mm/sec, and thus = values are in the
range of 100 to 150. Component peak separations
are about 0.51 T" and thus from Figure 4a the uncer-
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tainty in the area of each peak is about 13 to 19 per-
cent of its area. Consequently, site occupancy ratios
computed from such peak areas have similarly high
uncertainty levels. This example is not extreme in that
it represents a higher off-resonance count and wider
peak separation than many. In cases where the com-
ponent peaks (either real or imagined) are more
closely overlapped, least-squares convergence is often
only obtained through the mechanism of constrain-
ing peak widths and/or areas, as discussed above.
Obviously, whenever strongly overlapped peaks are
fitted, both author and reader should proceed with
caution as well as a generous uncertainty estimate.
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