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Abstract

Transmission electron microscope observations of a cryptoperthitic alkali feldspar from
Larvik (Norway) show that the exsolution lamellae are fully coherent, that is, they maintain
full continuity of their lattices across the lamellar interfaces; this confirms X-ray work by pre-
vious authors on other crytoperthites.

Coherency imposes elastic strains in individual lamellae, causing the lattice parameters to
differ from those of unstrained crystals of the compositions. From known elastic constants and
known compositional variation of stress-free lattice parameters, elastic strain and stress com-
ponents in a lamella are calculated as linear functions of (X-X') (where X = mole fraction
KAlSi"O"; X'- average value for bulk crystal). The assumption that elastic strain entails
no volume change and the resulting method of determining compositions of individual
lamellae (Smith, 1961) can therefore be evaluated; an alternate simple method is proposed,
which makes use of the fact that there are linear combinations of two (/r0/) spacings which
are not affected by the elastic strain.

The elastic strain energy varies as (X-X')'. When strain enqpgy is taken into account in
the thermodynamic treatment of exsolution, a 'coherent solvus' can be calculated, with a
crifical temperature 70' to 85"C below the critical temperature of the solvus for uncon-
strained phases (e.9., Luth and Tuttle, 1966). This agrees well with the hitherto unexplained
results of annealing experiments on single crystals by Tuttle and Bowen (1958) and Smith and
MacKenzie (1958).

Lamellar exsolution occurs in many other mineral systems. If the lamellae have retained
coherency, the relevant phase diagram is the coherent solvus, not the unconstrained one
determined in hydrothermal experiments. Other transformations within crystals may also
give rise to elastically strained phases coexisting along coherent interfaces. The correspond-
ing strain energy must be tbken into account in the thermodynamic analysis and the geologic
interpretation of such transformations.

Introduction
Cryptoperthites are lamellar mixtures of exsolved

potassium- and sodium-rich alkali feldspars in
which individual lamellae are too thin to be resolved
optically. Some authors (e.9., Tuttle, 1952) have
restricted the use of the name to those mixtures
in which lamellae have thicknesses of ore p.rn or
more. In accordance with more recent usage, how-
ever, the 'cryptoperthites' considered in this paper
include Tuttle's cryptoperthites and X-ray perthites.

Lattice parameters of the two feldspars coexisting
in a cryptoperthite often do not fit the description
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of any known homogeneous feldspar. Variations
with composition of the lattice parameters of homo-
geneous crystals in the sanidine-high albite series
have been systematically investigated (Donnay and
Donnay, 1952; Orville, 1967; Wright and Stewart,
1968) and are therefore quite well known' Typ-

ically, however, in the K-rich phase of a
toperthite, a "is too long relative to b and c
(Wright and Stewart, 1968). Consequently,
positions of these 'anomalous' phases, as

cryp-

;-
deter-

mined by several X-ray methods using different lat-

tice parameters, are €ontradictory and sometimes
physically impossible (Laves, 1'952; Coombs, 1954;

MacKenzie and Smith, 1956; Smith and MacKenzie,

1 9 5 8 ) .
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Phases coexisting in a cryptoperthite also appear
to be anomalous in their exsolution behavior. The
existence of a two-phase region in the high-tem-
perature alkali feldspar solid solutions below tem-
peratures of 650'C is well documented (e.g., Bowen
and Tuttle, 1950; Orville, 1963; Luth and Tuttle,
1966; Miiller, l97l). Thermodynamic equations of
state have been derived by several authors (Thomp
son and Waldbaum, 1968, 1969; Waldbaum and
Thompson, 1968, 19691' Luth et al, 1.97O, 1972;
Delbove, 1971) and provide a basis for quantitative
treatment of exsolution. However, homogenization
experiments of sanidine-high albite cryptoperthites
(Tuttle and Bowen, 1958; Smith and MacKenzie,
1958) indicate a solvus very significantly lower than
the ones determined in hydrothermal experiments.
These authors attributed the discrepancy to the fact
that they were dealing with natural feldspars, as
opposed to the synthetic ones used in hydrothermal
work. There has been no further discussion of Tuttle
and Bowen's (1958) and Smith and MacKenzie's
(1958) results. The experimental work of Miiller
(1971) shows in fact that for increasing degrees of
Al-Si order, as expected in natural feldspars, the
critical temperature becomes higher, not lower, than
tbr the disordered high-temperature solution series
synthesized in the laboratory.

Many, perhaps most, optically homogeneous high-
temperature alkali feldspars of intermediate com-
positions occurring in nature are cryptoperthites.
The present author also believes that most perthites
are derived from an earlier cryptoperthitic state.
The questions raised by cryptoperthites are there-
fore important for alkali feldspars in general. The
purpose of this paper is to show that cryptoperthite
lamellae are, in many cases, coherent lamellae, and,
that coherent lamellar exsolution quantitatively ex-
plains the lower solvus discussed above.

The anomalous cell parameters of cryptoperthite
phases were qualitatively explained by Laves ( 1952)
and Smith (1961). These authors observe that the
repeat distances are equal in both phases along [010]
and along an irrational direction between [106] and
[108]. The plane which [010] and this irrational di-
rection define corresponds to the orientation deter-
mined for the Schiller plane exhibited by many
moonstones, and to the direction of microperthite
lamellae observed optically. Both Laves and Smith
concluded that the two phases of a cryptoperthite
exsolve as lamellae approximately oriented between

(60t; and (AOt) Uut maintain continuity ol their
lattices along their interf aces. The anomalous param-
eters result from the elastic strain necessary to
satisfy this constraint. smith (1961) further notes
that, in homogeneous crystals, [106] is the direction
in the ac plane along which the repeat distance is
affected least by changes in composition. Smith
therefore suggests that the lamellae are oriented as
observed in order to minimize the required elastic
strain.

Cryptoperthite lamellae have been observed in
transmission electron microscopy (Tervr) (Fleet and
Ribbe, 1963; Bollmann and Nissen, 1968; Brown,
Willaime, and Guillemin, 1.972: Willaime and
Gandais, 1972; Willaime, Brown and Gandais,
1973). TsM observations essentially confirm the
lamellar structure postulated by Laves and by Smith,
with, however, some complexities when the K-rich
phase has partially or totally inverted to triclinic
symmetry (Brown et al, 1972). Further explanations
of the orientation of the lamellae are given by Boll-
mann and Nissen ( 1968), using the O-Iattice theory,
and by Willaime and Brown (1972) and Willaime
(1973) using computer calculations of strain energy
in bi-crystals made of equal amounts of both phases.
Orientations predicted do not differ significantly
from the one given by Smith ( 1961 ).

Coherency

A boundary between two phases across which the
two lattices are in continuity is often referred to as a
coherent boundary or coherent intertace, and an ex-
solving phase which maintains coherent interfaces
with its matrix is accordingly called a coherent
precipitate (e.9., Kelly and Nicholson, 1963). Co-
herent exsolution lamellae may be considered simply
as coherent precipitates with a much larger extent
in two dimensions than in the third.

The requirement that two phases meet along
coherent interfaces generally sets up nonhydrostatic
stresses in each phase. At a given temperature the
Helmholtz energy of a chosen mass of the stressed
phase differs from its value under a hydrostatic pres-
sure P by an amount called the strain energy. The
strain energy is the mechanical work performed by
stresses on the mass of the phase to bring it, at con-
stant temperature, from P to its nonhydrostatically
stressed state. During coherent exsolution strain
energy results in a 'penalty' against exsolution into
two phases; the extent of the two-phase field is there-



fore reduced compared to the hydrostatic soluu:s3
Cahn (1962) first noted this fact and developed the
theory of coherent phase diagrams for exsolution
(coherent solvus) for the case of elastically isotropic
precipitate and matrix, and isotropic stress-free
transformation strain. Christie (1968), Yund and
McCallister (1970) and Willaime (1973) mention
the possible existence of a coherent solvus in alkali
feldspars.

The derivation of the coherent solvus presented
in this paper is exact under the following assump-
tions:

(i) All phases have the same degree of Al-Si
order as sanidine.

(ii) All phases have monoclinic symmetry. For
the part of the calculation which applies to room-
temperature conditions, this assumption can only be
justified by the fact that the Na-rich phase-is regu-
larly twinned in such a way as to simulate mono-
clinic symmetry. For the calculation of the coherent
solvus the analysis can be taken to apply exactly
only to that part of the solvus at temperatures above
the monoclinic-triclinic transition of the Na-rich
phase (a restriction similar to that of Thompson and
Waldbaum, 1969). A consequence of monoclinic
syrnmetry is that the stress and strain tensors con-
sidered have one principal axis along the b axis (diad
axis), the two other principal axes being in the ac
plane.

(iii) All relative changes of lattice parameters,
whether due to ,changes in composition or to elastic
deformation, are small enough to be considered in-
finitesimal. The assumptions of infinitesimal strain
and of linear elasticity greatly simplify the calcula-
tions and the representation of strain.

(iv) Each lamella, characterized by a definite set
of stress-free lattice parameters, is bounded by two
infinite parallel coherent boundaries. The thickness
of the composite 'book' of lamellae is much larger
than the thickness of an individual lamella, and there
is no systematic variation in the bulk composition of
the crystal (as averaged over many lamellae) when
moving along a direction perpendicular to the la-
mellae. A very important property of such lamellae
can be stated as follows:

'Th" t*- hydrostatic is often used in this paper to
contrast with coherent. Thus the hydrostatic so/olzs is the
equilibrium exsolution curve for unconstrained phases,
which are therefore under hydrostatic pressure. The hydro-
static equation of state is the equation of state of uniform
homogeneous unconstrained phases.
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If no average stress other than hydrostatic is
applied on the boundaries of the composite,
stresses and strains are uniform within each
lamella. There are no shear stresses on the
lamellae boundaries. The stress normal to the
boundaries is equal to the hydrostatic stress
applied onto the composite. The other two
principal components of stress are parallel to
the boundaries and vary with the composition
of the lamella.

This result is demonstrated in Appendix A.
In reality lamellae are not infinite in their own

plane, and stresses and strains are not uniform in
regions near the edges of a lamella or near the ex-
ternal boundaries of the crystal. Calculations of
stress, elastic strain, and strain energy based on the
assumption of infinite parallel lamellae are neverthe-
less probably applicable if thicknesses of individual
lamellae are less than, say, one tenth of their planar
extent.

(v) Surface energy is neglected. Coherent inter-
facial energy (which will be a further penalty against
exsolution) is generally considered low. Ardell (1968,
1970) calculated specific interfacial energies of 14
and 2l erg cm-2 for coherent 7' particles in Ni-Al
and Ni-Ti alloys, respectively. In feldspars the dis-
tance between two adjacent alkali-ion sites, the only
sites whose population changes across an interface,
is large (-5 A) compared to equivalent distances in
the alloys studied by Ardell. Thus the interfacial
energy in feldspars could be even lower than in
alloys (Ardell andNicholson, 1966). For an average
lamellar thickness of 0.2 pfr, a specific interfacial
enetgy of. 20 ery cm-2 amounts to 2 cal mol-' and
can reasonably be neglected. For higher values of
interfacial energy andf or smaller lamellar thicknesses
the total surface energy may become important.

Transmission Electron Microscopy (TEM)

Tevr samples were prepared from petrographic
thin sections by ion bombardment thinning (Heuer
et al, l97I) and examined with a 100 kV Jnu
(Japan Electron Microscope) and a Siemens 101
with tilting stages. The crystals studied are from a
gray-blue larvikite of the M.I.T. collection, merely
identified as being from Larvik, Norway. Feldspars
from this general area have been studied in detail,
particularly by Oftedahl (1948), Muir and Smith
(1956),  and Smith and Muir (1958).  Some speci-
mens have been examined in Tuu by Bollmann and
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Nissen (1968), Willaime and Gandais (1972) and

Willaime et aI (1973).

The feldspar studied here exhibits a light blue
'schiller'; its composition [mole fraction X = Or/
(Ab + Or)l varies from X = 0.09 to X = 0.74
within a single polished thin section, and averages
X = 0.34. This lack of homogeneity is confirmed by
TBvr observations. 'Large' regions (several tens of
square microns) consist entirely of albite which is
twinned according to the pericline law (Fig. 1).
Other regions, although still mostly albite, contain
irregular lamellae of K-feldspar (Fig. 2). We note
(Fig. 2) that the periodicity of pericline twinning in
albite is variable. Willaime and Gandais (1972) rc-
port a relationship between periodicity of albite
twinning and thickness of albite lamellae in crypto-
perthites; a similar relationship appears to be true
here for pericline twinning.

Most of the crystal, however, is characterized by a
dense alternation of K- and Na-rich lamellae. Figure
3 is a good example of the lamellar structure to
which the elastic analysis of the following section can
be applied. As in Figures 1 and 2, the view is along
the b axis, and the plane of the micrograph is the ac
plane. Because pericline twinning corresponds to a
180o rotation of the albite lattice about the b axis,
the two twin orientations give rise to only one set of
diffraction spots; the other set of spots (Fig. 3b)
belongs to the K-feldspar. Most individual lamellae

Fra. 1. 'Large' region of larvikite alkali feldspar con-
siting solely of albite, regularly twinned according to the
pericline law. Three isolated lattice dislocations are visible.
The view is along the b axis. 100 kV, Iapan Electron
Microscope.

FIc. 2. Irregular exsolution lamellae of K-feldspar, show-
ing as dark areas. The periodicity of pericline twinning
(alternating shades of gray) is variable. The view is along
the b axis. 100 kV, Jrv.

are more than ten times as long as they are thick,

their longest direction (IP, Fig. 3) making a lO7"

angle with the'basal cleavage.
The noticeable variation in intensity within a

lamella is a result of strain contrast: inhomogeneous
strain causes variations in deviation from the Bragg
condition for the electron beam, and hence varia-

tions in intensity of the transmitted beam. This in-

homogeneous strain may seem incompatible with the
property of uniformity demonstrated in Appendix
A; however, it is in fact chiefly due to the thin slicing

necessary for TBIVI observations. Indeed, consider a

slice of crystal approximately perpendicular to the
plane of the lamellae and whose thickness is com-
parable to or smaller than the thickness of indi-
vidual lamellae. The assumption of infinite extent,

acceptable for the original crystal, is no longer valid;

slicing allows a non-uniform relaxation of the origi-

nal stresses and gives rise to the inhomogeneous

strain observed.
Stresses along some directions cannot be relaxed,

however; if boundaries between lamellae are co-

We note (Fig. 3b) that the line segments between

two points of same index, corresponding to the K-

and Na-feldspars, are all parallel to each other and
perpendicular to the lamellae boundaries in real

space. It is shown in Appendix B that such a rela-

tionship, exemplified in Figure B1, is a general prop-

erty of the reciprocal Iattices of coherent lamellae.

PIERRE-YYES F. ROBIN



Therefore, although the strain contrast of Figure 3a
does not permit detection of possible mismatch dis-
locations along the boundaries, the difiraction pat-
tern can be taken as sufficient evidence that the
Iamellae are coherent.s

The absence of mismatch dislocations is con-
firmed by an oblique view of lamellae boundaries
under high magnification (Fig. 4); Moir6 fringes
herent, repeat distances along the lattice direction
IP are still maintained equal in the two types of
lamellae. In other words, the constraint of coherency
is not relaxed for these lattice planes which are
parallel to the axis of the microscope and give rise
to the diffraction pattern of Figure 3b.
(e.9., Hirsch et al, 1965) are visible, but no dislo-
cations can be imaged.

TBrvr thus demonstrates that the crytoperthite la-
mellae studied here are coherent, as were those ex-
amined by Laves and by Smith. Not all cryptoper-
thites are necessarily coherent however; Aberdam
and Kern (1962) and Aberdam et aI (1964) ob-
served 0.1 to 1.1 rrm thick lamellae whose bounda-
ries were senti-coherent, that is, they exhibited
regularly spaced mismatch dislocations. The analysis
of elastic stresses and strains which follows only
applies to those cryptoperthites which have pre-
served full coherency.

Elastic Analysis

Although actual calculations are lengthy, the
method of ob.taining elastic stresses and strains in
individual lamellae is straightforward. Known
changes of the stress-free lattice parameters of high-
temperature alkali feldspars are used to calculate the
strain components imposed on a lamella of com-
position X (mole fraction KAlSi3O8) which exsolves
from a crystal of average bulk composition Xo but
retains coherency with it. From Hooke's law the
stress and the remaining strain components can then
be calculated as a function of (X - X").

S t re s s -F re e C o mp o sitio nal S t rain

Although lattice parameters do not vary exactly
linearly with X, a linear approximation is sufficient

* The diftraction pattern of Figure 3b satisfies the rela-
tionship of Figure Bl because the two pericline twins give
rise to only one set of diffraction spots. For other orienta-
tions, or other twin laws, the situation is more complicated;
in case of coherency, only mid-points between two twin
spots bear the relationship to the K-feldspar spots which is
shown in Figure Bl. The two twin spots themselves lie on
a line perpendicular to the twin boundaries in real space.
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Frc. 3. (a) Direct image of lamellar structure. Lamellae
make an angle of 107' with the basal cleavage. (b) Electron
diffraction pattern. 100 kV, Jeu.

here; because the data will be applied to exsolution,

tangential values at the anticipated critical composi-

tion are preferable. Slopes of tangents at X : O.33

can be measured directly from Orville's (1967)

curvesl:

STRESS AND STRAIN IN CRYPTOPERTHITE LAMELLAE

:# :0  0567,  : t * :

0.0 t62 ,
( 1 )

d B

0 . 0 1 1 2 ,  - -  :  0 . 0 1 1 6 .
d x

t a b
b d x

A change in lattice parameters is a strain. Within the

nThe triclinicity of the albite phase is ignored; in all
rigor, when that phase is twinned according to the pericline

law, a and c should be replaced by 7/a'r and lf c" ' Similarly'
had the albite been twinned according to the albite law, b
should be replaced by l/b*. The difference is insignificant
here.
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Frc. 4. Thin exsolution lamellae viewed under high
magnification. Moir6 fringes mark the lamellae boundaries,
which are here viewed at an angle. The undulations visible
in every other lamella are probably due to twinning of
the sodium-rich phase. Siemens 101 Electron Microscope.

approximation of monoclinic symmetry, the stress-
free compositional strain coemcients in Eq. 1 are
sumcient to determine the stress-free compositional
strain (or, for short, compositional strain) com-
pletely. The intermediate principal axis of strain is
along the b axis. Compositional strain in the rc
plane is conveniently represented (Fig. 5) by its
Mohr circle (see Nye, 1957). The minimum prin-

cipal axis of strain (point m) makes an angle of
approximately 110' with the a axis, and the corre-
sponding minimum longitudinal strain coefficient is
equal to 0.0105. The maximum longitudinal strain
coemcient is 0.0630 (point M). The Mohr circle
construction thus verifies Smith's ( 1961) obser-
vation that the direction of the contact plane of
cryptoperthites corresponds closely to a minimum
in compositional expansion. Computations of strain
energy by Willaime and Brown (1972) should in
principle give a more exact prediction of the orienta-
tion of the lamellae. In practice, however, longitudi-
nal strain components enter as squared quantities in
the expression of strain energy, while elastic co-
efficients can be verified numerically not to be very
sensitive to small rotations of axes; the orientation
minimizing the strain energy should therefore be
close to the one containing the minimum and inter-
mediate principal axes of compositional strain.

Choice ol Coordinates

Cartesian coordinate axes are chosen with the 1-
axis normal to the lamellae boundaries, the 2-axis
along the crystallographic b axis, and the 3-axis nor-
mal to I and 2 (Fie. 6). Rather than take 110o,
predicted by Figure 5, as the angle between the con-
tact plane and the a-axis. 107' is chosen. more in

m/

FIc. 5. Mohr circle for the stress-free compositional strain in the ac plane. Abscissas of c
and c and the difference between their ordinates are given by Eq. 1. The angle between the
a and c axes is then sumcient to construct the Mohr circle. m: direction of the minimum
principal axis of compositional strain; M: maximum principal axrs.



line with observed values. The new coordinate axes
are approximately the principal axes of composi-
tional strain and are related to the conventional
cqordinate system for monoclinic crystals by a rota-
tion of 17o about the b-axis. Let us call rtri the stress-
free compositional strain. In our system of co-
ordinates the compositional strain coefficients are
therefore

oqz '  -  0 .0162 ,ax
A - - -  A n ^ ^  A n , ^

. i  
:  0.0630, , ;  

:  0.0105, ; i  
= o.

Now, if we take the unstressed lattice of a homo-
geneous crystal with an arbitrary composition Xo as
reference state, the compositional strain of a crystal
of composition X, with respect to that reference
state, is,

nzz: 0'0162(X - f,),

4 r r : 0 . 0 6 3 0 ( X -  X o ) ,

(2a)

T s s  :  0 . 0 1 0 5 ( x  -  f ) , q , " = 0 ,  ( 2 b )

nn I nzz * qaa : 0.0897(X - Xo). (2c)

Elastic Constants

The only published values of elastic constants for
alkali feldspars are by Ryzhova and Aleksandrov
(1965), henceforth called R&A, who measured
acoustic velocities in crystals of various composi-
tions. The reported constants show no systematic
variation with composition and are therefore taken
to be independent of the latter. The non-systematic
variations of the constants are large, however, and
are probably due, as Simmons (1,964), R&A, and
Christensen (1966) point out, to cleavages and
other flaws in the crystals. Two approaches are taken
to correct for these imperfections: (1) Feldspar No.
61 of R&A exhibits a relatively high absolute value
of all its stiffness constants; thus estimated to be a
relatively flawless crystal, its elastic constants are
taken as a first set. (2) A second set, C, is generated
by choosing for the ci1 the highest value calculated
by R&A for all the alkali feldspars they studied (in-
cluding an albite reported by Ryzhova, 1964).

The two sets, reported for the conventional co-
ordinate system, are given in Table 1. Their values,
recalculated for the new coordinate system (Voigt,
1928, p. 593 ), are also given in Table 1. As a way to
estimate the uncertainty of the results due to the
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Fra. 6. Coordinate systems. a, b, c: conventional crystal-
lographic axes for a monoclinic feldspar (D - diad axis).
X, Y, Z: conventional cartesian coordinate axes. 1, 2, 3:
present choice of cartesian coordinate axes.

uncertainty of our knowledge of the elastic con-
stants. all calculations are carried out with the two
sets of constants. Numerical results are given for
each set, the ones corresponding to set C being given
in parentheses.

Stresses and Strains

Let us now consider a cryptoperthite, of average
composition Xo, made up of many coherent exsolu-
tion lamellae. The elastic strain components imposed
on a lamella of composition X are

Tlsln l. Selected Stiffness Constants of Alkali Feldspars'

uo. 612

c l

n o . 6 1 4

,4
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l 3

l 52 3

0 . 3 6 2  0 . 3 5 0
0 . 7 5 0

0 . 4 3 0  0 . 4 9 0
0 . 4 9 3

0 . 3 2 4  0 , 3 5 4
0 . 6 1 5

0 . 3 4 5  0 , 4 6 9

1 . 5 8 1
o.245

t . 7  2 0
0 . 3 5 0

1.581.
o . 3 2 6

L . 7 2 0
o . 4 4 4

I . 0 4 9  0 . 1 3 9  0 . 2 0 3  0 . 3 7 0
- 0 . 1 1 8  - 0 . 0 5 7  - 0 . 1 2 9  - 0 . 0 2 6

1 . 2 8 0  0 , 1 i 0  0 . 3 0 0  0 . 1 7 0
- 0 . r 7 0  - 0 . 1 4 0  - 0 . r 9 0  - o . 0 3 0

1 , 1 4 5  0 . 1 7 3  0 , 2 0 7  0 . 3 1 5
-0.050 -0.069 -0.028 -0.085

t . 4 5 7  0 . 2 0 4  0 . 2 7 9  0 . 3 3 5
-0.054 -0.136 -0.096 -0.081

L Elastic @atmta ne46urea b! a@ustic nethoals de adiobati'e constants;
the @?pectid f,re adiabdtic to isothenaL ia not Large enough to be
Ei4nifi,cdt. Unite dre Mbat.

2 nyrhoro dd AlekBandfr, (tg6il, rable J, conventidtul coordindtes'

3 b.po"it" oet of eldstic cotut@ts fM Rvzh@a dnd A-L.ekBdildro' (196il'

Idbie J, dd f|a Evzhda (L964). conrdtaonaL coordTnacea'
4

Elastic @notantd reeal'@Lated in n@ cooriLitute systa' i|l-uettuted in

Figu?e 6,
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That is, the lamella is elastically constrained to match
the lattice of the 'average crystal' across the coherent
boundary plane. Equations 3 are rigorously exact
only to the extent that compositional strain coeffi-
cients and elastic constants are independent of com-
position.

Elastic strain and stress components are related by
Hooke's law, which, for our purpose, can be written
(matrix notation; see Nye, 1957):

0 t  :  C + :  C f E :  O e :  G t :  € O  :  0 ,  1 + a )

The solution of Eq. 4b, using numerical values
from Eq. 3 and from Table 1, is

ozz :  cz: -0.0230( X - xo) Mbar, 1sa)
(-  0.0257)

ota  :  cs :  -0 .0106(  X  -  Xo)  Mbar ,  (5b)
(  -  0 .0140)

€ r r : € r : * 0 . 0 1 g 2 ( X -  X o )  ,  ( 5 c )
(+0 .0164)

2e ' s :  es :  - 0 .0024 (X -  xo )
( -  0.0083)

, (5d)

where the parentheses denote values calculated for
the elastic constants of set C (see Table 1 ).

The volumetric strain is

er  I  ez *  e,  :  -0.0085(X -  f , ) .  (5e)
( -  0 .0103 )

If a hydrostatic pressure P is acting on the crystal,
the lattice of the homogeneous crystal Xo under the
pressure P may be taken as a new reference state. fn
that case, Eqs. 3, 5c, and 5d still give the elastic
strain components provided the effect of pressure
on compositional strain coefficients and elastic con-
stants can be neglected (an assumption to be justi-
fied later). The principal stress components or, 02,
and o3 are increased by -P over their values in
Eqs. 4b and 5a, b.

Composition Determinations From Lattice
Parameters

Equations 3 and 5 determine all the components
of elastic strain in a lamella of composition X co-
herent within a crystal of average composition Xo.
The various methods of determining compositions
from X-ray lattice parameters can therefore be
evaluated.

Figure 7 is the Mohr circle for the elastic strain
in (010). It shows that the (201) spacing, d66y, is
elastically increa:sed in the K-rich lamellae t(X -

X') >0l and elastically decreased in the Na-rich
lamellae l(X - X') <01. Consequently, if d12s1y is
used without precautions to determine compositions,
the K-rich lamellae will be found richer in potassium
and the Na-rich lamellae poorer than either really
are. If their real compositions are already close to

(3)
"t),1*r,j

Flc. 7. Mohr circle for elastic strain in the ac plane. The relative change of d*o, sFacinB is
equal to the longitudinal strain e," in a direction normal to (hOI), noted here n<mr. (Elastic
constants of R&A's crystal No. 61).
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end members, the d15s1y method may thus yield
physically impossible results such as X > l or X < 0

as reported by Coombs ( 1954).
Figure 7 shows that, contrary to dOo11, dp6ay is

elastically deteased in the K-rich lamellae and
increased in the Na-rich ones. There is a linear
combination of deo11 and drto+t which is neither
increased nor decreased by the elastic strain (Ap-

pendix C); such linear combination is therefore a

function ol composition alone and can be used to

determine the composition of the lamellae.
Smith (1961) suggested the use of the volume of

the lattice cell to determine compositions of crypto-
perthite lamellae, under the assumption that this
volume is unaffected by elastic strain, i.e., thal er i
e2 * e3 = 0. In fact, when the lamellae are coherently
maintained within a large crystal, the variation of
the cell volume with composition is no longer given

by Eq. 2c as implied by Smith; this variation must
be corrected by the elastic volume change given by
Eq. 5e. Comparison of Eqs. 2c and 5e shows that
Smith's assumption leads to an underestimate of X
for the K-rich phase and to an overestimate for the
Na-rich phase, by approximately 0.1(X-X").lf X"
is known, the appropriate correction can thus be
made. However, such method of determining com-
positions is unnecessarily complicated.5

Wright and Stewart (1968, p. 7l) state that,
whenever they observe anomalous cell parameters,
"b, c, ot both are too low relative to q to define a
consistent structural state." Considerations presented
here indicate in fact that if both phases have the
Al-Si order of sanidine, Wright and Stewart's state-
ment is true only for the K-rich phase; the Na-rich
phase on the contrary has its b and c cell dimensions
'stretched', and therefore too large relative to a.
Wright and Stewart's statement may stem from the
fact that "the character of the sodium phase is
usually much more poorly known" (Wright and
Stewart, 1968, p. 72). Also, the average composition

uJan Tullis (1973, personal communication) has devel-
oped another method of obtaining compositions of coherent
cryptoperthite lamellae by correcting X-ray lattice param-
eters for the elastic strain. Her elastic analysis is more
exact than the one given here as it does not assume that
elastic moduli and compositional strain coefficients are
independent of composition. The method J. Tullis suggests
is therefore, in principle, more accurate than the one pre-
sented in Appendix C; although more complicated, it should
become valuable when our knowledge of the elastic con-
stants of alkali feldspars improves sufficiently to warrant
the added accuracy.
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X" of a cryptoperthitic feldspar is usually closer

to that of the albite phase than to that of the K-

feldspar; the elastic distortion of the albite should

thus be less important and more likely to escape

attention.
Because cryptoperthite lamellae are too thin to be

resolved by standard microprobe techniques, direct
chemical analysis will require a combination of

micro-analysis and electron microscopy (e.g., Lori-

mer and Champness, 1973) .In the meantime, meth-

ods which use lattice parameters and which take

elastic strain into account are probably sufficient. In

powders, however, the smallest grain size (say 10

pm) may not always sufficiently exceed the thickness

of the largest lamellae (up to 1 p.m or more) to

prevent some non-uniform stress-relaxation. One

would thus expect a broadening of the diffraction

peaks and a corresponding loss of accuracy. This

danger is probably small for lamellar thicknesses of

0.2 pm or less.

Total Strain

Equations 2 $ve the stress-free compositional

strain 1ri. Equations 3, 4b, and 5c,d give the elastic

strain e;i. The two strains can be added to give the

total strain e4 of a lamella X with respect to an un-

strained crystal of composition Xo. It is an inuariant
plane strain (see Appendix B). The total strain be-

tween coherent lamellae Xo and XD is therefore given

by

9 2 2 : € 3 3 : 0 1

e r r : 0 . 0 8 1 2 ( X " -  X u ) ,
(0.0794)

e r a :  - 0 . 0 0 1 2 ( X " -  X b )
( - 0.0042)

Figure 8 is the Mohr circle (in the ac plane) for
the total strain between the lamellae as constructed
from Eq. 6. Point 3 corresponds to the direction of
the 3-axis, that is the direction of the contact planes.
In general, other lattice directions do not have the
same orientation in the two kinds of lamellae; the
angular deviation of a direction [pOr] between the
two lattices is given by the difference between its
ordinate and the ordinate of point 3 in Figure 8' If
this angular deviation is plotted os the angle which

[pOr] makes with the a axis, a sine curve is obtained,
similar to the curve measured experimentally by
Laves (1952). The amplitude of the sine curve is
equal to the diameter of the Mohr circle of Figure 8
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multiplied by (X" - Xb).In Laves' (1952) Figure
16, the amplitude is 0.068; we conclude that the
composition difference in the crystal he studied was

X " -  X b : 0 . 8 3 8 ( 0 . 8 5 7 ) .

Elastic Strain Energy

The Helmholtz elastic strain energy in a lamellh X
is the mechanical work necessary to bring the lamella
from a state of hydrostatic pressure P to its non-
hydrostatically stressed state at constant tempera-
ture. This elastic strain energy is given by

A,t : -P(c, * e, * er) * tr(arc" * o"e"), (7)

where F is the Helmholtz energy per unit volume, €i
are the elastic strains, and.ar,o, are the nonhydrostatic
stress components which are added to the pressure p
and are given by Eqs. 5a, b. If we take V : 2.5 cal
bar-' mol-' for the molar volume of alkali feldspars,
and use Eqs. 3 and 5a, b, c, the molar strain energy
can be calculated:

AF:  -p  aV. '  +  k (x  _  f ) , ,  (8 )

where k : 603.6 (704.6) cal mol-r and AZ"' is the
molar colume change due to elastic strain.

Efiects ol Pressure and Temperature

Pressure and temperature can affect our results by
changing the compositional strain coefficients and bv
changing the elastic constants.

PIERRE.YVES F. ROBIN

Frc. 8. Mohr circle for total strain between lamellae in the ac plane. The segment a.d. is
equal to the angular deviation of a lattice direction [p0r] between the two lattices in cryptoper-
thites. (Elastic constants of R&A's crystal No. 6l ).

Strains brought about by a hydrostatic pressure of
5 kbar (for R&A's No. 61), are, in our coordinates

cz :  -0.00125 and es :  -0.00137. (9)
Similarly, thermal expansions expected from a rise
in temperature to 605'C (analbite, Stewart and von
Limbach, 1967) are

6, :  f0.0033 and s3 :  f0.0034. (10)

Only the variations of these quantities with composi-
tion contribute to hydrostatic compositional strain.
We have already noted that elastic constants do not
depend greatly on compositions; variations in the
numerical values in Eq. 9 with composition will
therefore be negligible compared to the correspond-
ing compositional strain coefficients. There are no
complete thermal expansion data for alkali feldspars
other than pure albite. However, values of thermal
expansion of a sanidine to 605oC are not likely to
differ from the ones in Eq. 10 by more than 0.001
(corresponding to a 30 percent difference in thermal
expansion coefficients); even then, corrections on
}nzz/dp and 6qss/6r would only amount to 6 and 10
percent respectively.

The only complete study of the effect of both
pressure and temperature on the elastic constants of
a silicate is the one of Frisillo and Barsch (1972)
on various crystals of bronzite. For a 5 kbar pressure
increase, their data indicate a relative increase in

t 3
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value of the Cii between 2.5 and 4 percent for i =

i < 3, between 1.5 and 2percent of i = i ) 4, and
5 to 10 percent for i * j. For i - j the stifiness co-
efficients decrea.se by 9 to 15 percent when tempera-
ture is increased to 600'C.

Simmons (1964) measured compressional wave
velocities under confining pressure in various min-
erals, among them a microcline, and noted a rapid
increase in these velocities as confining pressure was
raised from O to 2 kbar. Simmons attributed this
increase to crack closure resulting from the pressure
increase. Christensen's (1966) observation that this
effect was much more pronounced for propagation
directions normal to the major cleavages of a perthite
and an albite reinforced Simmons' conclusion. Thus,
stifiness constants measured at room pressure may
be significantly lower than the intrinsic values for
flawless crystals; however, the room pressure veloci-
ties measured by R&A generally equal or exceed the
2 kbar values obtained by Christensen. The crystals
used by R&A must therefore have been of higher
quality than Christensen's, and the correction for
cracks may accordingly be much smaller.

For other minerals, only equivalent isotropic
elastic properties are usually studied as a function of
pressure and temperature. Temperature has the most
pronounced effects and may decrease the bulk modu-
lus (stiffness) by as much as 15 percent between
room temperature and 600'C.

In conclusion, temperature will only affect com-
positional strain coefficients by 10 percent at most in
an unknown sense. Temperature may decrease the
stiftnesses by as much as L5 percent. On the other
hand, intrinsic values of these stiffnesses may be
higher than the ones used here (Table 1) by an
unknown amount and are increased further by pres-
sure. Altogether, the net eftect of pressure and
temperature on our numerical results should not ex-
ceed 20 percent; this is less than the present un-
certainty in the values of elastic constants of alkali
feldspars.

Coherent Solvus

Possible Mechanisms during Coherent Exsolution

Diftusion of alkali ions through the framework
structure and coherent boundary migration are
mechanisms which are necessary for the develop-
ment of a crytoperthite. These mechanisms may not
occur at significant rates at room temperature. When
studying the coherent solvus, however, we are con-
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cerned with the equilibrium reached when the above
mechanisms are possible.

It is essential to note that, of the mechanisms
which are usually assumed possible in heterogeneous
equilibrium studies, not all are possible during
cryptoperthite formation. Anomalous parameters

can only be maintained by nonhydrostatic stresses. It

is clear that if all species could difiuse without con-

straints, the structure would behave like a fluid

rather than like a solid and could support no stresses

at equilibrium. In fact the thermodynamic descrip-

tion of a stressed solid requires making a distinction

between solid components, unable to diffuse through

the solid, and. fluid components which describe the

possible changes in composition (Gibbs, 1906, p.

215-218: see also Robin, I974a, for a more exten-

sive discussion).
During cryptoperthite exsolution, Na and K cat-

ions are able to diffuse through the feldspar frame-

work. On the other hand, constraints on the other
constituents of the silicate framework are such that

no independent long-range diffusion of the corre-

sponding chemical species permits the destruction of

the framework itself; in fact, site constraints are such

that even Na and K do not migrate independently.

Therefore, if no Ca is present, there is only one

independent fl uid component.
The alkali feldspar formula can be chosen as solid

component; that is, the number of moles of the solid

component in any given volume of crystal is equal

to the sum of the number of moles (gram formula

weight) of KAISLOe and that of NaAlSisOe. (That

this component is solid is better understood with the

remark that N lattice cells of the crystal contain 4 N
moles of that component, independently of any pos-

sible strain of the lattice or of any variation in com-
position.) The variable composition can be de-

scribed by the mole fraction X of KAlSiBO8.u
The fundamental equation of state of the solid is

then of the form (Gibbs, 1906, Eq. 468)

d E :  T  d S  +  V 6 n i  d e ; r  *  p , d x ,  ( 1 1 a )

whereby

6In all rigor the fluid cbmponent implied by the choice of
X as descriptive variable is KNa-', while the corresponding
solid component is NaAlSieOs. Indeed, when expressed in
terms of these two components the NaAISLO" content of an
alkali feldspar is, paradoxically, constant and independent
of the'actual'composition of the feldspar:

KxNa'-xAlSLO" - (KNa-' )r(NaAlSLOe)''
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,E, ,S, and Z are respectively molar energy, entropy,
and volume (the mole being of the solid component);
enr is the total strain (which can be defined only
because of the maintenance of the unbroken frame-
work).

The constraint of coherency of the interfaces
amounts to the further requirement that the frame-
work be maintained even when a phase boundary
migrates through it; the equilibrium condition of
coherent interfaces is given by Robin (l97aa).

In this section, the strain energy (Eq. 8) and Thomp-
son and Waldbaum's (1969)'hydrostatic' equation of
state are combined into the equation of thermo-
dynamic equilibrium of coherent interfaces. The
coherent solvus can then be determined exactlv.

Equilibr ium C ondit ions

At equilibrium we must have (Gibbs, 1906, p. 215)

p" : p' : constant throughout the system. (12)

The condition of equilibrium of the interfaces (Robin,
1974a, Eq. l8) reduces to

( F "  +  P V " )  -  ( F ' *  n V u T :  p ( x "  -  x u ) .  ( 1 3 )

Although Eq. 13 may look familiar, it should be
pointed out that -P is only one component of the
stress tensor, the one acting normal to the boundaries,
and that there is only one chemical potential. tf G is
the molar Gibbs energy of the feldspar of same
composition X, atthe same temperature, and under the
hydrostatic pressure P alone, we have

F + P V : G + a F + P A V ' t .  ( 1 4 )

We may define the functionf : F + PV.FromEqs. 8
and 14,

6:G+k(x -  f , ) ' . (1 5)

The energy function f, can be represented on an
energy-composition diagram (Fig. 9). Although the
applicability of { to coherent equilibrium had to be
established quite differently, { is quite similar to the
function defined by Cahn (1962). In fact the expression
of fr reduces to that given by Cahn when the same
assumptions of isotropic elasticity and isotropic
compositional strain are made; only then, however,
does the strain energy become independent of the
shape of the precipitate (Crum, cited by Nabarro,
1940). The function f, will therefore be designated here
as the Cahn energy.

PIERRE.YVES F, ROBIN

It is shown in Appendix D that under the present
(1 lb) constraint of coherencv

(1  6 )

Conditions of equilibrium 12 and 13 are therefore
equivalent to a rule of common tangent (Fig. 9).
Figure 9 provides, in fact, an intuitive explanation of
the phenomenon of coherent exsolution; the strain
energy term, k(X - Xo)', can be regarded as the
thermodynamic "cost" of coherency when a lamella
exsolves within a crystal of average composition X".
The Cahn energy fr is specific to one bulk composition
X'. Rs Cahn (1962) pointed out, however, the co-
existing compositions are independent of X', because, in

6 :  G  +  k x ' -  2 k x o x  +  k x o "

the last two terms do not affect the abscissae of the
points of tangency. We also see that because the
parabola k(X -,f)'is concave upward, compositions
of coexisting coherent lamellae always lie in the range
between the compositions of coexisting feldspars in
hydrostatic equilibrium under the pressure P and at
the same temperature. In other words, the coherent
solvus is always inside the hydrostatic solvus.

Determination of the Coherent Solous

Thompson and Waldbaum (1969) and Luth, Martin,
and Fenn (1972) find that alkali feldspar solid solutions
are adequately described by a Margules expansion of G
of the form

G: xrpro * x, tr ,o + RT(& ln & * x" ln xz)

I (ll/, x" * w, x) xt x2 (J7)

where X2 = X, Xr - I - X, and Wr and Wz aft
linear functions of P and 7. Thompson (1967) ex-
presses analytically the rule of common tangent for
such an equation of state. When the same algebraic
treatment is performed on 4 (Appendix E), we find
that the system of two equations yielding the coexist-
ing compositions at a given P and T is formally
identical to Thompson's (1967) Equations 81, with
the difference that W1 and lilz must be replaced by
(W' -  k) andlYz - k).

Thompson and Waldbaum's (1969) expressions
of. Wr and Wz Gn cal mol-l) become, for an arbi-
trarily chosen pressure of 1 kbar,

(#),,,,
(*). ": (#)..,,

Wt : 6420 - 4.632 T,

Wz :  7784 -  3.857 T.



Frc. 9. Energy-composition curves. The dashed curve
is a plot of d - Xt pf - Xrrzo using the equation of state of
Thompson and Waldbaum (1969). The solid curve is a plot
of O - Xwf - Xzpzo,for k : 603.6 cal rno1-t (No. 61). Note
that the slope ol the common tangent to the A curve is a func-
tion of Xo.

To obtain the coherent solvus at I kbar we must use

l Y ' - k : 5 8 1 6 - 4 . 6 3 2 7 ,
(571 5)

l V " - k : 7 1 8 0 - 3 . 8 5 7 T .
(7079)

The corresponding binodal curves are shown in Fig-
ure 10. For the hydrostatic solws, at a pressure of
1 kbar, the critical conditions are

X. : 0'3334'

T " : 9 3 4 . 6 4  K : 6 6 1 . 5 o C .

For the coherent solvus under the same P, on the
other hand,

X. : 0.3274
(0.3264),

T . : 8 6 2 . 2 3 K : 5 8 9 . 1 o C .
(850.14  K :  577.0oC)

Depending on the choice of elastic constants for
alkali feldspars we therefore predict a critical tem-
perature for the coherent solvus which is 72"C to
85'C below the critical temperature for the hydro-
static solvus.

Comparison with Experimental Obseruations

Tuttle and Bowen (1958, Table 2 and Figs. 7
and 9), henceforth called T&B, report a series of

l 3  1 1

experiments in which they maintained several sani-
dine-high albite cryptoperthites (0.42 < X' < 0.55)
at successively higher temperatures for long periods
of time, and determined the compositions of the co-
existing lamellae from their (201) spacings. In all
cases the crystals had become homogeneous at
610'C. Although T&B had no runs between 550'C
and 610oC, they estimated a critical temperature of
570'C. T&B's cryptoperthite solvus broadens very
rapidly with lowering temperature and is therefore
not entirely contained within the hydrostatic solvus,
whereas a coherent solvus should be. However,
Smith and MacKenzie (1958)-S&Mnuestioned
T&B's use of the (201) method for composition de-
terminations of cryptoperthites. S&M carried out
similar experiments and used a* and 7* to determine
the composition of the sodium-rich phase in their

700 "c
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5 0 0

4 0 0

300
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Frc. 10. Temperature-composition diagram. The dashed
curve is the hydrostatic solvus at I kbar. The solid curves
are the coherent solvi corresponding to the elastic con-
stants of R&A's crystal No. 61 (k - 603.6 cal mol-') and
of C (ft - 704.6 cal mol-1). The dotted curve is the
spinodal for ft - 603.6 cal mof1.
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samples and in those of T&B. The solvus they con-
sequently drew (S&M, Figs. 3 and 4) has the same
critical temperature, T" = 570oC, but is much nar-
rower than that of T&B; it is entirely contained
within any of the various room pressure hydrostatic
solvi given by Bowen and Tuttle (1950), Orville
(1963), Luth and Tuttle (1966) and Miiller (1971).

As shown earlier (Fig. 7 and related discussion),
composition determination by the (201) method
exaggerates the potassium-content of the K-rich
phase and underrates that of the Na-rich phase in
cryptoperthites. It therefore leads to too broad a
solvus. S&M's curve should theretore be preferred,
although coherency stresses may also affect the pa-
rameters o* and yx of the twinned albite.

The agreement between the critical temperature
inferred from experimental data and the theoretical
result presented above is surprisingly good. This
agreement strongly suggests that the observed co-
herency of cryptoperthite lamellae is indeed a suf-
ficient cause for their abnormal exsolution behavior.

Discussion

Uniqueness of Coherent Solous

Elastic constants and compositional strain co-
efficients have been assumed to be independent of
compositions, thus leading to a constant value of ihe
coefficient k in Eq. 8. Because the compositional strain
coefficients in particular are not quite constant, a more
refined analysis would result in k being replaced by
some linear function of X and Xo. By performing the
calculations of Appendix E on the function { so
obtained, it is easy to see that the coherent solvus
would no longer be independent of the average
composition ,f. llhe importance of this effect has not
been explored.

Coherent Spinodal

The coherent solvus gives the compositions of
coexisting lamellae X" and Xb in equilibriumwithinthe
constraint of coherency; the two types of lamellae are
in particular fully equilibrated with respect to alkali-
ion exchange. Let us now consider a homogeneous
crystal of composition )f whose temperature has been
lowered so as to bring it within the coherent solvus. If,
furthermore, f is within the coherent spinodal at that
temperature, any arbitrarily small fluctuations in
composition within the crystal are energetically
profitable and thus occur spontaneously. The coherent
spinodal, therefore, refers to the bounds to the Nerage

composition )f of an unstable phase within which the
mechanism of coherent spinodal decomposition is
possible; it should not be confused with the coherent
solvus.

Because the lattice framework remains unbroken.
the energy associated with a coherent composition
fluctuation also includes a strain-energy term. To the
extent that fluctuations can be considered to be along
the l-direction alone (that is, they preserve the
symmetry of Appendix A), the relevant energy
function is still the Cahn energy{ given by Eq. 15. The
coherent spinodal can thus be calculated from the
condition (d"6/ax\p ,r : 0, or @'G/ ax\p ,r : -2k,

and is shown in Figure 10.

'End Regions'

The coherent two-phase equilibrium, like the
stress analysis on which it is based, assumes infinite
parallel lamellae. Figures 3 and 4, however, show
that the lamellae thin out and end, or, conversely,
fork. In the 'end-regions,' the stress and strain com-
ponents and the strain energy are not uniform. The
strain energy in particular is higher than in the
idealized lamellar structure. Boundary migration and
diffusion will thus continue in such regions and lead
to a closer and closer approximation of that idealized
structure. This expansion or regression of lamellae
along their edges must be an important mechanism
leading to their overall thickening.

Loss ol Coherency

Although the coherent solvus is a stable solvus
within the ,constraint of coherency, the loss of co-
herency (when possible) leads to a lowering of the
total free energy. For example, at 500oC, 1 kbar,
and X" = 0.40 (Fig. 9), loss of coherency lowers
the average free energy by 63 cal mol-I (segment
CH, Fig. 9). To the extent that loss of coherency
is considered possible, our coherent equilibrium is
therefore only a metastable equilibrium. It may hap-
pen on the other hand that unconstrained feldspars
do not nucleate; in such case the strained cryptoper-
thite would set higher activities for the feldspar com-
ponents and could thus cause metastable growth of
other phases. We note that the activities of Or and
Ab at a given temperature depend on the average
composition Xo of the cryptoperthite (Fig. 9).

E u olutio n ol C ry p t o perthit es

We can now sketch the cooling history of a high-
temperature alkali feldspar as follows:

PIERRE.YVES F. ROBIN



(i) composition fluctuations and spinodal de-
composition;

(ii) formation of discrete lamellae having sharp
boundaries;

(iii) thickening of these lamellae, together with
gradual readjustment of their compositions
as temperature drops;

(iv) monoclinic-triclinic transition of the albite
phase and consequent twinning;

(v) monoclinic-triclinic transition of the potas-
sium feldspar and consequent twinning.

Except for the displacive transition in Na-rich
phases, the monoclinic transition in alkali feldspars
is accompanied by Al-Si ordering and by large
changes in dimensions of the lattice cell. The tem-
peratures of these transitions are therefore likely to
be strongly affected by the constraint of coherency
and may be quite different from corresponding tem-
peratures in single phase crystals.

The above sequence of events can be quenched at
any stage by rapid cooling (except again for the dis-
placive transition in Na-rich phases). On the con-
trary, long term annealing at a sufficiently high
temperature will allow a loss of coherency. Crypto-
p€rthites are thus not found in large batholiths but
are instead restricted to extrusive rocks or small
intrusive bodies in which cooling must have been
slow enough to permit alkali-ion diftusion, but fast
enough to prevent nucleation and growth of un-
strained phases. There are intermediate situations
where a cryptoperthitic feldspar coexists with un-
strained phases, the latter growing at the expense of
the former. Several examples of coexisting macro-
perthites and cryptoperthites described in the litera-
ture-ag. Moorhouse (1959): Plate 3-D and Fig.
159-B; Tschermak (1864),  Brogger (1890),  both
reproducedbyBarth (1969, Figs. 1-15 and 1-16)-
can be interpreted in this manner.

Other Minerals

The analysis presented here can be extended to
other mineral systems in which coherent exsolution
may occur.

Plagioclase Feldspars

The peristerite solvus of sodium-rich plagioclases
is a likely candidate. Indeed peristerites have many
features in common with cryptoperthites. The Schil-
ler eftect which they exhibit was first interpreted by
Laves (i951) as due to the coexistence of two
plagioclase phases. Typical end-member com-

l3t3

positions are An2 and Anzz (wt percent of the
CaAlzSizOs component) with rather large variations
(e.9., Ribbe, 1960). Fleer and Ribbe (1965) ob-
served almost perfect peristerite lamellae in Tetr,t.
Although Fleet and Ribbe interpreted the electron
diffraction patterns as the superposition of normal
reciprocal lattices for the two end-member composi-
tions (their Fig. 4), the actual patterns (their Fig. 2)
are better interpreted as two anomalous reciprocal
lattices which satisfy the relationship of Figure B1.
Indeed anomalous lattice parameters have been re-
corded in peristerites, and Viswanathan and Eber-
hard (1968) assigned the anomalies to 'distortion'.

Korekawa, Nissen, and Phil l ip (1970) studied an
oligoclase (Anrou) by X-ray and Tru, and in-
terpreted the lattice-parameter fluctuations observed
as composition fluctuations; in the present termi-
nology the latter would be called coherent (com-
pare in particular their Figure 5 with the pres-
ent Figure B1). Korekawa et aI may thus have
observed an early coherent spinodal decomposition
stage of peristerite formation. Coexisting single-
phase crystals of albite and oligoclase hlve been
observed by Evans (1964) and Crawford (1966)
and thus evidence the existence of a hydrostatic
peristerite solvus. Iiyama (1966) observed the
three-phase field sanidine-albite-oligoclase experi-
mentally and determined that the crest of the peri-
sterite solvus was between 700o and 800"C. The
three distinct phases observed by X-rays in some
single crystals (Viswanathan and Eberhard, 1968)
may in fact be the coherent counterpart of the hydro-
static three-phase field.

Schiller efiect and lamellar structures are also ob-
served for more Ca-rich plagioclases and have been
interpreted as exsolution lamellae; X-ray and Tnrvr
results are difficult to interpret. however.

Clinopyroxenes

Robinson et ol (1971) noted that the assumption
of continuity of lattices between host and lamellae in
clinopyroxenes readily explained observed orienta-
tions of the lamellae in natural pyroxenes. TBvt ob-
servations of lunar pyroxenes (Christie et al, 1971)
are also fully compatible with coherency of the
lamellae. Clinopyroxene exsolution may thus well be
a coherent process in many cases, as suggested by
Champness and Lorimer (1971). A more extensive
discussion of the coherency of clinopyroxene exsolu-
tion lamellae is given by Robin (1974b).

Exsolution lamellae are observed in manv other
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mineral systems; however, only a detailed study can
determine in each case whether these lamellae are
coherent or not.

Coherency, strain energy, and their thermody-
namic implications have wider applications than to
coherent exsolution. If two or more phases coexist
within an unbroken lattice framework and are thus
compelled to match along coherent interfaces, they
in general acquire a strain energy which they would
not have if coherency were not maintained. If, as in
this paper, the phases can be considered to be in
equilibrium with respect to well-defined mechanisms
(migration of fluid components, cation ordering,
displacive strain), the inclusion of strain energy in
the thermodynamic analysis of such transformations
is in principle straightforward. Such analysis is
clearly required if these phase equilibria are to be
used as reliable geothermomete{s or geobarometers.

Appendix A: Uniformity of Stresses and
Strains within Lamellae

Consider a set of lamellae which satisfy the following
conditions:

1. The lattice framework behaves elastically; that is, it
is not broken or disrupted by the stresses.

2. Boundaries between lamellae are coherent.
3. The boundaries are infinite, parallel planes.
4. Each lamella is characterized by a definite set of

stress-free lattice parameters which is a function of
its composition.

5. The thickness of the 'book' of lamellae is much larger
than the thickness of an individual lamella, and there
is no systematic variation in the composition of the
crystal (as averaged over many lamellae) when mov-
ing along a direction perpendicular to the lamellae.

We choose a cartesian coordinate system such that the
I-axis is perpendicular to the plane of the lamellae, the 2-
and 3-axes being therefore parallel to the lamellae bound-
aries.

Because of Condition 3, the origin in the 2,3 plane is
arbitrary, and thus

o ; t , z  :  0 ,  C i i , s  :  0 ,  f o t  i ,  j  :  1 , 2 , 3 ,

where

6 . i i . n :  0 a ; 1 f  \ x p .

The three equations of equilibrium reduce to'

d r i . r  :  0 ,  f o r  i :  1 , 2 , 3 .

Hence, art, drg Srld drs are constant throughout the com-
posite. If only a hydrostatic pressure P is applied to the
external boundaries. a" = -P and ar" = dra = 0,

Similarly, because of Conditions l, 2 and 3, compatibility
equations (e.g., Sokolnikoft, 7956, p. 28) reduce to

€ z z , t : 0 ,  € s s , r r  :  0 ,  € z e J t : 0 ,  ( A l )

where the strain, ert, can be of compositional as well as
elastic origin arrid et1,*r denotes 62et1fdx* |xt.

Within a lamella of constant composition (Condition 4)
any strain variation must be of elastic origin. Eqs. Al then
become (in matrix notation)

The assumption of linear irtfinitesimal elasticity is made
in Eq. A2; the result demonstrated here is more general

however, A demonstration for finite strain and nonlinear
elasticity would require care in defining instantaneous stress,
strain and elastic constants.

All eigenvalues of a symmetric matrix of elastic co-
efficients, such as in Eq. 42, are positive; otherwise there
would be combinations of non-zero stresses for which the
strain energy would be zpro or negative, which is impossi-
ble. The determinant of F,q. A2 is therefore non-zero, and
the only solution to Eq. A2 is the trivial one:

C 2 , t t  :  6 t J t  :  d l , r r  :  0 .  ( A 3 )

Stress components ozz, cm aDd 6zt cztr therefore only vary
linearly with xr within a lamella. The sense along the l-axis
is arbitrary (Condition 5), and, therefore, by reason of
symmetry, a2z' aB and an are constant within lamellae'
They do not have the same value in lamellae of different
compositions, however.

'Part of the theorem demonstrated here is a special case
of a more general theorem given by Eshelby (1957).

Eshelby shows tbat if no stresses are applied at infinity'
stresses and strains are uniform within coherent ellipsoidal
inclusions. (Eshelby does not use the term coherent; in

the present terminology, however, the problem he treats is

the one of coherent inclusions.) In the general case, only
one phase, the inclusion, can be surrounded by an el-
lipsoid, Under the conditions of this appendix, where

ellipsoids are reduced to the two parallel planes bounding
a lamella, the distinction between host and inclusion disap-
pears: Eshelby's result consequently applies to all lamellae.

Appendix B: Reciprocal Lattices of
Coherent Lamellae

Consider a crystal made of lamellae of only two distinct
compositions and satisfying conditions I to 5 of Appendix
A. (In Appendix A the number of possible lamella com-
positions is not restricted to two). Each lamella is in a
homogeneous state of strain and lattices in all lamellae of

one kind are superposable by a parallel translation. The two
lattices, corresponding to the two kinds of lamellae, are
related to each other by a unique linear transformation
which must leave the plane of the bbundaries invariant, a

direct consequence of the constraint of coherency. The
linear transformation is thus an inuariant plane strain (les)
-See Wayman (1964). A classic result of linear trans-
formation theory is that linear transformations can be
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characterized in general by three distinct eigentsectors and
associated eigenoalues. An eigenvector is a vector whose
direction is unchanged in the transformation; its eigenvalue
is the ratio of the length of the transformed vector to the
original, In an bs, any two non-collinear vectors in the
invariant plane (IP) can be arbitrarily chosen as eigen-
vectors, and their corresponding eigenvalues are 1, Unless
the transformation is an identity, the third eigenvector of
an Ips is not arbitrary; in what follows, this third eigen-
vector is designated as the characteristic uector of the lps.

Properties of an Ips can be restated as follows:
1. One lattice plane direction, (hkl), the direction of the

lamellae boundaries, i,e., the IP, is identical in both
kinds of lamellae; that is, (ftftl) has the same orienta-
tion and the same repeat distances within it in both
lattices. However, dup is not the same.

2. One lattice direction, fttqrl, direction of the char-
acteristic vector, is also common to the two lattices,
but barring identity, the repeat distance along lpqrl
is not the same in the two lattices. The ratio of these
repeat distances is the eigenvalue associated to the
characteristic vector and is also the ratio of the (hkl)
spacings in the two lattices.

There is no reason, in general, for (hkl) and lpqrl to
be rational.

Consider a lattice plane in real space, (mno), which con-
tains the characteristic vector lpqrl. Neither the direction
nor the spacing of. (mno) are affected by the Irs, or,
in other words, (mno), has the same direction and spacing
in the two types of lamellae. Therefore, in reciprocal space,

1 3 1 5

reciprocal points mno coincide for the two lattices. All
such po'ints define a plane P* through 000 which is per-
pendicular to lpqrl. The two reciprocal lattices are there-
fore related by an Irs, the IP of which is P*.

Consider now, in real space, lattice planes (hkl) panllel
to the IP. The (hkl) spacing is not the same in the two
lamellae. In reciprocal space, the two corresponding hkl
points lie on a line perpendicular to the (hkl) plane. The
direction of this line is the direction of the characteristic
vector of the Ips in reciprocal space.

The relationship between direct and reciprocal lattices
for the two types of lamellae is shown in Figure B1,

Appendix C: Determination of Composition of
Cryptoperthite Larnellae from Two (h0t) Spacings
Figure 7 is the Mohr circle for elastic strain, constructed

from numerical values in Eqs. 3 and 5; we can measure
from it that

| 6d(204)
X _ X6f f i :  

-0 '0095 ( -0.0087) ,  (Cla)

_ | _6d(20r) _-x  
-7- f f iD:  +0 '0137 (+0 '0146) '  (Clb)

where d(h0l) is the (lz0l) spacing and 6d(ft0l) is the change
in spacing due to elastic strain.

Because variations in spacing, whether elastic or com-
positional, are small compared to the values of these spac-
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Appendix E: Coexisting Compositions on a
Coherent Solvus

Equations giving the coherent solvus are obtained from o
exactly as the hydrostatic solvus is obtained from G (Thompson,
1967). Coexisting compositions must satisfy the system

l - -  , . (aa\  l "  l - -  , , (ao\  I '
16 

- r,\;k) 
",) 

: 
Ld 

- *,\;;,) 
",,1, 

(Era)

[* - , /iq\ l' : [r * 
",(iq) 

l'.
La 

-r n'\ax,lr.r) :  
Lt - n'\a&lr,r)

(Erb)

Fro. c1. Determinative parameter for anomalous crypto- 
Takingo as given in Eq' 15' with d as in Eq' 17' Eq' El becomes

1Jl'I':il.I:f J,.* ;:f,:':lif ;:::'."T:'.fi.;:ilftT Rr tn xt * x,"'(w,' - k) + 2x: x2"'(w, - tY,)
the two spacings are known, their linear combination can be : R1" ln Xru * X"u'(W, - k)
calculated and the corresponding composition read from
the curve. The coefficient in the linear combination depends * 2 Xru Xru, (W, _ Wr), (E2a)
to some extent on which elastic constants are held to be
true; the elastic constants chosen here are those oJ R&^As RT ln Xz" _f Xr"^(W, _ k) + 2Xr" X:'(W, _ W")
crystal No. 61. I-attice spacing data are from Orville (1967
Table 3C). :  RT ln X"u t Xru'(Iy, _ k)

ings, Eqs. Cl can be combined into

o.or37 ff i+ o.ooes ff i | :0.

* 2x,o xru'(ll/, - wr). (E2b)

/^^\ The system E2 is formally identical to the system of equations
\\'z) giving the hydrostatic solvus (Thompson, 1967, Eqs. 8l).

where d|(hOI) is some average value of tbe (r0D spacing for
high temperature alkali feldspars. Taking d0(204)/il(201) :
0.435, Eq. C2 becomes

6d(204) + 0.30 6d(20r) : 0. ic:l

The combinati* t r,,:"'rtlrameters dOo4) + o.3o d(201)
is therefore not affected by the elastic strain; its value (Fig. Cl)
is function only of the composition of the lamella and can be
used to determine that composition when the two spacings
are known,

Appendix D: Expression for the Chemical Potential

By definitiono : E - ?.f + PV,andtherefore, from Eq. 11a,

d d  :  S  d T  !  V o i ;  d e n i  I  P  d V  +  V  d P  +  p d x .

The constraint on any lamella which exsolves or changes
composition is that it keeps matching the average crystal in the
2-and 3-directions. In any change ofcomposition ofthe coherent
Iamella at constant P and 7 we therefore have

d € z z :  d e s s :  d e . , " :  O ,

Because there are no shear stresses parallel to the boundaries,
we thus have

V o n ;  d e ; ;  -  V o r r d e n :  - P  d V ,

A variation of o at constant P and T is therefore given by
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