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Abstract

Migrating twin boundaries, boundaries in crystals undergoing displacive phase transforma-
tions, coherent precipitates, and coherent exsolution lamellae—all provide examples of co-
herent interfaces propagating in a stressed crystalline framework. The motion of such
boundaries is often reversible or characterized by a sufficiently small hysteresis, so that they
can be considered at equilibrium within the stressed solid; the present paper is concerned with
the conditions of such equilibrium. It is emphasized, following J. W. Gibbs, that a solid
under stress is in equilibrium only if the motion of at least one chemical component (solid
component) of the solid through the framework is considered an impossible process; other
chemical components able to migrate are fluid components. After the additional ‘constraint of
coherency’ for the migration of the interface is examined and expressed mathematically, the
condition of equilibrium can be established, showing the exact dependence of equilibrium on
normal and shear stress along the interface, temperature, and chemical potentials of the
fluid components. The general condition is then applied to the following special cases: (1)
coherent transformations in which the ‘stress-free transformation strain’ is much larger than
any elastic strain, (2) twinning, and (3) infinitesimal transformation strain. The migration
of some low-angle tilt or kink boundaries can be analogous to that of coherent boundaries,
and their equilibrium, if reached, is ruled by the same equations. However, growth across
most high-angle grain boundaries of a polycrystalline aggregate is not constrained in the same
manner; as a consequence it is argued that in presence of a shear stress such boundary cannot

be in reversible equilibrium with respect both to growth and to shear.

Introduction

The general problem of thermodynamic equilib-
rium of stressed solids has concerned many authors
because of its possible applications to mineralogy,
petrology, geophysics, and materials sciences. The
topic has recently been reviewed by Paterson
(1973). Gibbs (1906) originally derived the con-
dition of external equilibrium of a stressed solid in
contact with a fluid, and introduced the distinction
between solid and fluid components of a solid. These
concepts are essential to any study of the thermo-
dynamic equilibrium of a stressed solid and, in par-
ticular, to the present work; because their significance
is often not fully appreciated, Gibbs’ results will be
summarized, and the constraint of solid behavior
defined.

! Present address: Department of Geology and FErindale
College, University of Toronto, Mississauga, Ontario, Can-
ada, L5L 1C6.

At equilibrium a solid-fluid boundary does not and
cannot support any shear stress; there have there-
fore been attempts to generalize Gibbs’ results to
boundaries which support shear stresses (see Pater-
son, 1973). Coherent interfaces are examples of
such boundaries; an understanding of their equilib-
rium has important implications for such problems
as twin-boundary migration, precipitation harden-
ing, solid exsolution, and other phase transforma-
tions within crystals (or glasses at temperatures
sufficiently below their glass transition).

The equilibrium conditions for coherent interfaces
derived in this paper are quite general; they do
not assume that the transformation strain or the
elastic strain are infinitesimal, nor do they assume
that the transformation is isochemical. However, the
thickness of the interfacial region is neglected and
the surface energy is not considered; the applicability
of the results depends on the validity of these latter
assumptions.
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Constraint of Solid Behavior

Gibbs (1906, pp. 184-218) considered a stressed
elastic solid able to dissolve into or crystallize from
a fluid. Let the fluid in contact with the solid at one
point of its boundary be at a pressure P. External
equilibrium is obtained when the solid neither dis-
solves nor grows spontaneously at its boundary with
the fluid. If the solid is of uniform composition and
if molar quantities are used, the chemical potential
p of its component in the fluid at pressure P is
given by (Gibbs, Eq. 385)

p=E—-TS+ PP ¢))

where E, § and 7 are respectively molar energy,
entropy, and volume of the solid in the equilibrium
state considered, and T is the temperature. The
significance of this result is better understood when
considering, as does Gibbs, the following special case.
Three fluid pressures P!, P?, and P? are each applied
on two opposite faces of a rectangular parallelepiped
of the solid, assumed homogeneous. The solid is then
under homogeneous stress, of principal components
—P', —P? and —P°. The condition of equilibrium
with respect to growth or solution becomes for each
pair of faces (Gibbs’ Eqs. 393-395)

E—T8S+ PV = i

E—T5 4+ PP ="

E— T8+ PP =
where p', p?, p® are the values of the chemical po-
tential of the component of the solid in each fluid.
If migration of the component of the solid were
possible, either through the solid itself or through
some external channel, this component would in-
deed migrate from the fluids at the highest pressures
to the fluid at the lowest pressure. Consequently,
equilibrium of a non-hydrostatically stressed solid
must always be understood to be limited by the con-
straint that such migration is not a possible mecha-
nism. This constraint is called here the constraint of
solid behavior. We note (Kamb, 1961) that a chemi-
cal potential for the component of the solid is not
defined within the solid itself.

Gibbs went on to examine (p. 215) the case of a
solid which also contains fluid components «,8, etc.
Recent writers, e.g. Li, Oriani, and Darken (1966)
or Paterson (1973), refer to these as mobile com-
ponents. In Gibbs’ words, fluid components are
such “that there are no passive resistances to the
motion of the fluid components except such as vanish
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with the velocity of the motion.” For these com-
ponents Gibbs shows that a chemical potential can
be defined and is constant throughout the solid and
the fluids when the system is in equilibrium. As
Gibbs’ definition makes clear, a chemical component
a is fluid (and therefore a chemical potential pe
must exist and have a constant value throughout the
system at equilibrium) if « can move independently?
through the solid, regardless of whether or not the
corresponding concentration or concentration varia-
tion of « in the solid can be detected.

When a solid contains fluid components, the con-
straint of solid behavior is that at least one chemical
component of the solid is not free to move through
the solid. Gibbs called such a component a solid
component.? The very definitions of fluid and solid
components imply that there exists a three-dimen-
sional framework which is conserved and with re-
spect to which motion of chemical species may or
may not occur, independently of possible translations
or deformations of the framework itself.

Recognition of the existence of a solid component
and its identification are essential to any considera-
tion of equilibrium of a non-hydrostatically stressed
solid. In this work solid behavior is always assumed.
In practice, for crystals, this means that mechanisms
such as unlimited motion of dislocations or Nabarro-
Herring diffusion creep do not occur, or are so slow,
compared to boundary migration or diffusion of fluid
components, that they can be neglected. We shall
also suppose the fluidity of the fluid components to
be perfect, “leaving it to be determined by experi-
ment how far and in what cases these suppositions
are realized” (Gibbs, 1906, p. 215).

Coherent Transformations and Coherent Interfaces

A coherent transformation in a solid is a phase
transformation in which the three-dimensional
framework is preserved without rupture. This defi-
nition does not exclude the possibility that some

2Not all atomic, ionic, or molecular species which can
move may be able to do so independently; there may be
relations of dependence between them, such as site con-
straints or constraints of electroneutrality (Thompson, 1969).
A set of independent fluid components can nevertheless al-
ways be defined. Conversely, a solid component does not
necessarily correspond to any one atomic, ionic, or molec-
ular species unable to diffuse through the lattice of the
solid. For example, two substitutional species, « and g,
may both be able to diffuse through the lattice but be tied
by a site constraint.
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atomic rearrangement may occur, allowing some
chemical species to change position or migrate. A
coherent transformation is therefore not necessarily
displacive (Buerger, 1948) although displacive
transformations are coherent. In the present paper,
attention is concentrated on crystalline solids.
Generalization to amorphous chain polymers is pos-
sible and may have applications to transition and
exsolution phenomena in glasses at low temperatures.

Let us call the two possible states of a crystal
‘phase’ a and ‘phase’ b.* The transformation of a
crystal from phase a to phase b can be visualized
as the sweeping through the crystal of one or more
boundaries separating domains of b from domains
that are still a. Such a boundary is a coherent
boundary, or coherent interface. In the presence of
such an interface, stresses in @ and b may arise from
the very co-existence of the two phases and from
the constraint that the two lattices be matched across
the interface; stresses may also be imposed at the
external boundaries of the crystal.

There are cases where, instead of sweeping
through the whole crystal, a coherent interface
reaches an equilibrium position. Let us look at a
few examples.

Mechanical Twinning

It is only when their state is affected by nonscalar
parameters such as electric field, magnetic field;, or
stress that twins must be considered to be distinct
phases, as their molar energies may then differ.
Mineralogists are familiar with stress-induced twin-
ning in calcite. Mechanical twinning is found in
many other minerals (DeVore, 1970). The migra-
tion of Dauphiné twin boundaries in quartz under
stress is particularly well documented by Frondel
(1945), Thomas and Wooster (1951), and Tullis
and Tullis (1972). When non-uniform stresses are
applied to the external boundaries of a crystal in
which mechanical twinning is possible, the two

¢ The term phase is often taken to designate only a state
of a substance in which all thermodynamic parameters are
uniform throughout. Because stresses, in particular, are not
assumed uniform here, the term phase simply refers to a
portion of the crystal characterized by a unique equation
of state and by continuous thermodynamic properties.
This broader definition is consistent with usage in the
metallurgical or geological (e.g., Wang, 1968) literature.
By contrast, ‘crystal’ designates the framework which is
conserved, regardless of which state it is in; such usage is
implicit in many studies of displacive or order-disorder
transitions.
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twins may coexist within the crystal, separated by
coherent twin boundaries. As with other phase trans-
formations, the extent to which equilibrium is ac-
tually reached by the migrating twin boundary must
be determined in each case and will depend on
factors such as time, temperature, and what level of
disequilibrium is considered significant. For Dau-
phiné twinning in quartz, hysteresis appears to vanish
at temperatures nearing the o-8 transition (Young,
1962). Stress-induced reversible migration of twin
boundaries is also observed in metals. Basinsky and
Christian (1954a) show how such observed migra-
tion can explain the rubber-like elasticity of low-
temperature face-centered tetragonal twinned phases
in indium-thallium and gold-cadmium alloys.

Isochemical Coherent Transitions

Displacive, semi-reconstructive, and order-dis-
order transformations (Buerger, 1948) can all be
classified as isochemical coherent transformations.
A few examples are given by Coe (1970). Well
known are the high-low transitions in crystalline
phases of silica and in the feldspars, and the transi-
tion of calcite I to calcite II at high pressure (Bridg-
man, 1939). Which, and to what extent, martensitic
reactions are coherent transitions is a subject of de-
bate in the metallurgical literature. The W-L-R and
B-M crystallographic theories of martensitic trans-
formations (Weschler, Lieberman, and Read, 1933;
Bowles and Mackenzie, 1954) in effect assume co-
herency and have successfully explained many
features of these transformations. Yet electron micros-
copy of Fe-Ni-C alloys reveals that growth of marten-
site is accompanied by the formation of large num-
bers of dislocations, and the boundaries have been
described as semi-coherent (e.g., see Owen, Schoen,
and Srinivasan, 1970). In some systems, however,
the reaction shows remarkably little hysteresis: 20°C
or less in Au-Cd (Chang and Read, 1951); between
2°C and 4°C in In-Th (Burkart and Read, 1953;
Basinsky and Christian, 1954b); it seems accepted
that these ‘thermoelastic martensites’ (Owen et al,
1970) form by truly coherent reactions. The in-
fluence of stresses on the temperature at which some
of these reactions occur has been explored experi-
mentally: for the -8 transition in quartz (Coe and
Paterson, 1969); and for the martensitic reaction in
In-T1 (Burkart and Read, 1953) and Fe-Ni alloys
(Patel and Cohen, 1953). Wang (1968) has also
qualitatively explained the observed smearing out
of the calcite I-calcite II transition in limestones
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over a wide range of confining pressure by the in-
homogeneous stresses arising in such aggregate. Ac-
cording to Wang and Meltzer (1973), the high
absorption of acoustic waves in these limestones over
the same range of pressure also indicates an ex-
tremely rapid migration of the phase boundaries in
response to the alternating stress; their interpreta-
tion suggests that calcite I-II boundaries would be
very close to their equilibrium positions under static
conditions.

Coherent Precipitates

A coherent precipitate is a domain within a crystal
which differs from its host by its composition and,
in general, by its stress-free lattice dimensions, but
yet has retained the continuity of its lattice with the
lattice of the host. A non-hydrostatic and often non-
uniform stress-field is generally present. To.the ex-
tent that these stresses are maintained without creep
and without the corresponding destruction of the
lattice framework, the equilibrium reached implies
the existence of a solid component, common to both
phases, and of at least one fluid component.

A fully coherent precipitate is one which has
maintained coherency on all its boundaries with the
host. Examples of fully coherent precipitates have
been described mostly for metals. The G.P. zones
(Guinier-Preston) in Al-Ag, Al-Zn, and Al-Cu
alloys, cobalt particles in Cu-Co alloys and y’ in
nickel-base alloys are cited by Kelly and Nicholson
(1963). A partially coherent precipitate is one for
which coherency is maintained only along a specific
crystallographic orientation. In metals, the Wid-
manstétten structures of aluminum alloys (Kelly
and Nicholson, 1963) are well-known examples.

There is no general review of the nature of the
boundaries of exsolution lamellae in oxides and
silicates. Fully coherent submicroscopic exsolution
lamellae of augite in pigeonite have been observed
by transmission electron microscopy in lunar and
terrestrial pyroxenes (Christie et al, 1971). The
angular relationships between clinopyroxene host
and exsolution lamellae reported by Robinson et al
(1971) are also often consistent with the assump-
tion of coherency of the boundaries (Robin, 1974b).
Champness and Lorimer (1973) observe calcium-
rich submicroscopic coherent precipitates in an or-
thopyroxene from the Stillwater complex, for which
they propose the name of G.P. zones, by analogy
with metals. Cryptoperthite lamellae in alkali feld-
spar are also generally coherent (Robin, 1974a).
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In summary, known examples of coherent inter-
faces are many, and more are likely to be found with
the increasing use of transmission electron micro-
scopes. It must be emphasized again, however, that
whether or not a coherent interface is able to migrate
to an equilibrium position must be justified in each
case or be explicitly acknowledged as an assumption.

Method

Equilibrium Criterion

Gibbs demonstrated Eq. 1 by using the following
minimum energy criterion:

“For the equilibrium of any isolated system it
is necessary and sufficient that, in all possible
variations in the state of the system which do
not alter its entropy, the variation of its energy
shall either vanish or be positive.”

As there have been arguments in the literature
regarding the definition and use of energy functions
other than internal energy for solids under stress
(see Paterson, 1973), we will use the same criterion
as Gibbs. As a result, it will be found that one of
the conditions of equilibrium is that the temperature
be uniform throughout the system. This is, of course
a result which could be accepted and bypassed by
using the Helmholtz energy. The advantage would
be minor, however, and Gibbs’ treatment will be
followed instead.

Let us then consider a portion of crystal which
contains a coherent interface at equilibrium separat-
ing phases a and b. Isolate this volume by a “fixed
envelope which is impermeable to matter and to
heat, and to which the solid is firmly attached
wherever they meet” (Gibbs, 1906, p. 187). We
assume that stresses, compositions, energy and en-
tropy densities, etc., although not necessarily uni-
form, vary continuously within each phase.

States and Coordinate Systems

During a migration of the interface a portion of
the lattice changes phase, and the corresponding
strain is not necessarily infinitesimal. In order to de-
scribe such finite strain one must carefully distinguish
between the identification of lattice points and their
location. Identification of points is accomplished by
the use of a reference state and a reference coordi-
nate system; location of these points in the actual
coherent equilibrium state or in variational depar-
tures from the equilibrium state is done by their
coordinates in the equilibrium coordinate system.
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Both coordinate systems are assumed rectangular
cartesian and of same handedness.

The coordinates of a point or of a vector in the
reference state (noted by a prime) can be regarded
mainly as a ‘tagging’ system. Therefore, the reference
state does not have to have any physical reality and
can be chosen as is convenient for any particular
problem; it must, however, preserve continuity with
the actual state. It is sometimes convenient to
choose the reference state and its coordinate system
to coincide with the equilibrium state and coordinate
system; the distinction between identification and
position of points must be maintained, however.
Physical quantities like energy, entropy, chemical
concentrations exist only in an actual state; their
densities, however, can be defined with respect to
volumes of the lattice equal to unity in the reference
state, in which case these densities will also be noted
by a primed lower-case letter. Force vectors also only
exist in an actual state, and their components are
defined in the equilibrium coordinates; in defining
stresses or the stress tensor, however, the unit areas
used and their orientations are the ones of the lattice
in the reference state.

A point in the solid, identified by its reference
state coordinates, x;/, has in the equilibrium state the

coordinates x; (i = 1, 2, 3). We can define the
quantities
dx;
X, i = ('*)x,-' (2)

The set of x;; is a description of the local deforma-
tion or strain between the reference and the equilib-
rium states. If the reference state and coordinates are
chosen so as to coincide with the equilibrium state
and coordinates, then at equilibrium, x;; = §; (Kro-
necker’s §).

Fundamental Equation of State

Let us first consider a crystal which does not con-
tain any fluid component. Under conditions where
we can neglect body forces, the energy density of
the crystal is only a function of the state of strain
and of the entropy content. We thus write the funda-
mental equation of state of each phase as

ta _ _sap. a ga

e = e"(x;;", 8" 3)
e’ = e"(x:;",8")
where e’ and s’ are respectively energy and entropy
densities, or, more precisely, energy and entropy
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in the equilibrium state of a small volume of phase
which is equal to unity in the reference state. All
units of mass, volumes, and areas are chosen small
enough so that properties can be considered uni-
form within them.

In an actual state, the position of a point of the
framework may differ from its equilibrium position
by a variational amount 8x;, and, consequently, so
may the local strain, 8x;; (see the virtual deform-
ations of Murnaghan, 1951, p. 44-50). The entropy
density may also vary by 8s’, and therefore, from
Eq. 3, the internal energy variation is given by

I4 4
e = () e+ ()

(Einstein’s summation convention on repeated sub-
scripts is used in this paper) which we rewrite as

de’ = a,; ox;; + T &' 4)
As Gibbs (1906, p. 186) pointed out, o, is the ith
component, in the equilibrium coordinates, of the
force acting (in the equilibrium state) on a surface
element which would be equal to a unit area in the
reference state and would be perpendicular to the j
axis of the reference coordinate system. (If the
reference state coincides with the equilibrium state,
or only differs from the equilibrium state by an
infinitesimal strain, o¢;; is the stress as defined in in-
finitesimal strain elasticity).

Besides displacements and entropy density
changes throughout each phase, there is another
possible variation of the system from its equilib-
rium state: the interface may migrate through the
solid, its migration corresponding to a change in
phase at the interface and preserving coherency.
We need to examine this last variation carefully.

Geometry of a Migrating Coherent Interface

Figure la represents portions of phases a and b
and a portion of interface in the equilibrium state.
These portions are chosen small enough for stresses
and entropy to be and to remain uniform within
each phase and for the variational migration of the
interface to be uniform. Figure 1c is the configura-
tion after such a migration. As Figure 1 shows, this
migration can be decomposed into the following
sequence:

(1) An imaginary cut is made along the inter-
face.

(2) Points in ¢ are moved by a distance 8x%,
points in b are moved by a distance 8x;®
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(Fig. 1b). The relative displacement of
b with respect to a is

oxt — ox.® = QP
(3)

A volume of one phase is transformed
into a volume of the other phase having
the same mass, thereby reestablishing
coherency. Points which are not affected
by this phase change are not moved (Fig.
1c).

We can make the following remarks:

(i) The direction of Q'P’ is imposed by the

states of strain of the lattice in @ and b
and is therefore not an independent pa-
rameter subject to variations.
The length of Q'P’ is proportional to the
mass transferred from a to b. Let O be
the intersection of the direction. of Q’P’
with the new position of the interface
(Fig. 1c). We must have |OP’|/|0Q’| =
p%/p?, where p® and p® are molar densities
of a and b, respectively, in the equilib-
rium state.

We want to normalize variations to a unit varia-
tion. Figure 1 represents configurations of the actual
state. Let us choose an element of area of interface
in the actual state which has an area of unity in the
reference state. Let us then consider a particular
migration in which one mole is transformed from
phase a to phase b over this chosen arca element;
we call v; the corresponding particular vector Q'P’.
For an arbitrary migration we have, therefore,

(ii)

ox,t — ox,° = dg Vv, (%)

where 8g is the arbitrary parameter, positive or nega-
tive; 8g is in fact the number of moles transformed
from a to b across one unit area of interface in the
reference state.

The position at equilibrium of the interface within
the lattice can be ‘mapped’ in the reference state.
The variational growth of b at the expense of a
(or vice-versa) is mapped in the reference state as
a displacement of the interface by a distance 81’
perpendicular to it. From the definition of v;, 8,
for the same arbitrary migration as in Eq. 5, is given
by

81 = dg/p’ (6)

where o is the molar density of the region swept by
the interface in the reference state. The sign con-
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Fic. 1. Migration of a coherent interface in the actual
state. Lines have been drawn in ¢ and b to help visualiza-
tion; they can be interpreted as the traces of two sets of
lattice planes preserved in the transformation.

vention on v; and 8g is such that 81" is positive when
b grows at the expense of a.

Equations 5 and 6 express completely the con-
straint of coherency. They show how the growth of
each phase and the relative displacements of a
and b at a particular point of the interface are func-
tions of only one independent parameter, 8g.

In the rest of the paper v; is called the char-
acteristic vector* of the coherent boundary; in gen-
eral, if the interface is curved and elastic strains are
not uniform within each phase, v; is a function of
position on the interface.

Conditions of Equilibrium

The total change in energy of the system for an
arbitrary variation from the equilibrium state is now
stated to be zero or positive. Using Eq. 4, this state-
ment is written

6E = f (0. 0%, %+ T 8’ d ¥V’
-
+ f (o:° 8x; % + T8’y dV’
vib

+ fA (e —e™srda >0 6

where V7 and A’ are respectively volume and area
in the reference state.

*The transformation of the region swept by the inter-
face is an invariant plane strain (see Wayman, 1964). In
the transformation the length and orientation of any vector
parallel to the interface are not affected, and OP’ is trans-
formed into OQ’ (Figure 1). OP’ and OQ’ are colinear and
their orientation is therefore that of the only nondegenerate
characteristic vector (or eigenvector) of the transformation;
the corresponding eigenvalue is p®/p".
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Not all variations in Eq. 7 are independent, how-
ever:
(1) The total entropy is constrained to remain
constant:

f as'“dV'+f 8’ d vV’
Ve Vb

+ f " — s 8rda =0. (8
T
Eqgs. 7 and 8 can be satisfied for any arbitrary
transfer of entropy only if (Gibbs, 1906, p. 186,
Eq. 364)

®

(2) Variational displacements, 8x;, are con-
tinuous throughout the volumes of a and
b and are zero whenever the crystal meets
the fixed envelope. Green’s divergence
theorem gives therefore

T = constant throughout the system

f 0',"; Bx,'.? d V’ = f U',,;? n/,-u 6x,-a dA,
‘e A’

- f 0'.','.? 5x1-adV'
Ve ,

and similarly

b b = b _s b b ’
fvba,.,. ox, b dV _f el n’? axdd
, -

- o oxt AV,
v'hb
where n’;* and n’;® are unit vectors normal
to the interface in the reference state,
drawn outward from ¢ and b; clearly n’/
=—n';%. By using Eq. 5 the sum of the
two above integrals can be rewritten as

f ol ox; $dAdV + f oo bx; 5 dV’
Jyra Ve
= —[ o n’ v, 6gdA’
JAr

(10)
+ [ swe 4 abw et an
’

- f 05,5 0x;" AV — f i ox:" d V.
via pet

(3) From Eq. 6, 8’ is not independent but a
function of 8g.

Therefore, by inserting Egs. 6, 8, 9, and 10 into

Eq. 7, the total variation of energy of the system is
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oF = —

Ve

0',','";' 6x,'adV, = f 0',',-'? 5xide'
Vb
+ f (e, + o0n'%) 6x,> dA’
ar

2 b ra ra
e’ — Ts e’ — Ts
=+ f ( o - g — o3 0; Vi)
Tk

-6gdd4’ >0 1n

The variational terms in each integral of Eq. 11
are now independent. The equilibrium conditions
are therefore obtained by equating the Eulerian of
each integral to zero:

(1) o,; = 0, throughout @ and b. (12)
This is the usual equation of mechanical
equilibrium in the absence of body forces.

2) o W + o> M2 = 0 on the inter-
face. (13)
Eq. 13 is the condition of mechanical
equilibrium on the interface. All com-
ponents of the stress tensor need not be
equal. It is convenient to define T;, the
stress on the interface,

—a;' 0", (14
T; is the i* component in the equilibrium
coordinates of the force on a across an
element of area of interface equal to unity
in the reference state.

The last condition of equilibrium, and
the most important result of this analysis,
is

o @ 2t
T,-——-al-,-n,- =

(3)

1 1o re ra
e’ — Ts e’ — Ts
7 - 7 —Twv.=0
p P
on the interface.
If molar energies and entropies are used, as p’

is a molar density, Eq. 15 becomes

(15)

(B —T8H) —(E°— T8 - T,v, =0

or

(16a)
FF— F —Twv, =0 (16b)

where F°, F* are molar Helmholtz energies. T, and v,
are vectors in the equilibrium coordinates, and can be
resolved into components normal and tangential to
the interface at that point:

v, = en; + v,
T, = —Pn; + 7,

where n; is a unit vector normal to the interface out-
ward from a in the equilibrium state. Then
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T;vi = —Pe + v,7;.

If the reference state is chosen to coincide with the
actual coherent equilibrium state, the definition of v,
makes

e= PP - P

where 7, V7* are molar volumes in the equilibrium
state. Then the equilibrium condition becomes

(B" — 18" 4+ PPH

—(E"—= T84+ PV) —yir; = 0 (16c¢)

where, it is recalled, —P and r; are respectively the
normal stress and the components of the tangential
stress on a across the interface.

In spite of their familiar look, the expressions in
parentheses should not be confused with the expression
of G, or u, defined for phases under hydrostatic
pressure: (i) P is only one component of a nonhydro-
static stress tensor; (ii) equality of the two parentheses
does not ensure equilibrium, unless v,7;, = 0; (iii) in
the most general case of equilibrium, when the inter-
face is curved and stresses within each phase are not
uniform (e.g., coherent boundaries within grains of a
stressed polycrystalline aggregate), the terms in
parentheses do not maintain a constant value along the
interface,

Existence of Fluid Components

In developing Eq. 16 it was assumed that there
was no fluid component in the solid. As noted earlier,
Gibbs (1906, p. 215-218) points out that a chemical
potential can be defined in the solid for each fluid
component by (Gibbs’ Eq. 467)

8¢’ = o, 0x,; + T o' + 2 u® 80’ (17)

and demonstrates that 2 is constant throughout the
system at equilibrium; p’® is the molar density of o,
that is, the number of moles of component « in
the equilibrium state in a volume of solid equal to
unity in the reference state. The demonstration is
in fact formally identical to the demonstration that
the temperature is uniform. It is sufficient to treat
p’« like 8/, and pq like T in Eqs. 4, 7, 8, and 9. The
final equilibrium equation therefore becomes

(B = T8 — X2 u*x"") —
(B~ T8 — > u"X") — T, =0 (18a)

where X%e, X%« are ratios of the molar density of
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fluid component « to the molar density of the solid
component in a and b respectively. Only inde-
pendent fluid components are included in the sum-
mation.

If the reference state is chosen to coincide with
the equilibrium state (or if it only differs from the
equilibrium state by an infinitesimal strain), and T;
and v; are decomposed into normal and tangential
components, Eq. 18a becomes

(B = TS "+ PP" — > uX"®) — (E° — TS°

+ PP — 2 uX") — v, =0  (18b)

In the most general case, only temperature, T,
and chemical potentials of the fluid components, u¢,
have a constant value throughout a volume at
equilibrium.

Case of Finite Transformation Strain

Let us consider here a situation in which the stress-
free transformation strain is finite and much larger
than any elastic strain of either phase. In practice such
a transition is not coherent unless a composition plane
exists over which the two phases can be matched with
stresses which do not exceed the strength of the mineral.
Let us therefore assume that we are dealing with a
coherent interface along such a plane, at equilibrium
at a temperature 7. The characteristic vector of the
transformation across this plane is chiefly determined
by the stress-free transformation strain.

We first restrict our discussion to a solid with no
fluid component. At the temperature 7, a and b would
also be in equilibrium if both were under a hydrostatic
pressure Pe. If F*, F*°, ¥ V"° are the molar
Helmholtz energies and molar volumes at Pe and T,
this equilibrium is described by the equation of hydro-

static equilibrium
(F-b,e —— Fa.e) + Pe( Vb.e - Va,e) - 0 (19)

When a and b are at equilibrium across the coherent
interface under stress, the equilibrium condition
(Eq. 16¢) is

F*%) + (AF" — AF) + P(V*° — 7*°)
+ PAP® — AP —yr =0 20)

(Fb,e _

where AF®, AF?, AV and AV are molar strain energies
and volume changes when going from hydrostatic
pressure Pe to the coherent situation; v is the absolute
value of the tangential component, v,, of the character-
istic vector, and 7 is the resolved shear stress in the
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direction of v, (hence y,m; = 7). Because the trans-
formation strain is much larger than the elastic
strains, as soon as r is of the same order of magnitude
as the stresses required to maintain coherency the
term ~r is much larger than the elastic strain energy
terms AF®, AF®, and also than PAV®, PAV?; a fortiori,
the differences (AF® — AF®) and P(AV® — AV”) are
negligible compared to yr. Consequently, subtracting
Eq. 19 from Eq. 20, the equilibrium condition reduces
to

(P—PYAV —yr =0, @n

where AP is now the molar volume difference
AP = P — P~ PP — P

By combining Eq. 19 with Eq. 16b instead of Eq.

16¢, Eq. 21 can also be written

T,'U,' = _I)e AV.

Eq. 21 can be differentiated with respect to T and
gives

P _ _A_S) _ 97 _
(dT ap) AV —var =0
(using the Clausius-Clapeyron equation for dP¢/dT,
and neglecting dy/dT). Therefore the following
relations must be satisfied for the maintenance of
equilibrium:

(22)

, g_lg) A8 dP°

at constant 7: (6T . =P = 41’ (23)

at constant P: (ﬂ) = —AS- 24)
8T P, equil. Y

Patel and Cohen (1953) combined Egs. 23 and
24 to explain the effects of hydrostatic compression,
uniaxial compression, and uniaxial tension on the
martensitic reaction in iron-nickel and iron-nickel-
carbon alloys.

Finite Strain with Fluid Components

Coherent transformations characterized by large
finite strains may also involve fluid components. A
possible case, for example, is the ortho (Pbca) to
clino (P2y/c) transition in the pyroxene quadri-
lateral; formation of shear-induced lamellae of
clinopyroxene in orthopyroxene is reported by
several authors (e.g., Coe and Miiller, 1973) and,
at temperatures where cation diffusion is sufficiently
rapid, such clinopyroxene lamellae could become
richer than the host in Fe and Ca, becoming in ef-
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fect shear-induced pigeonite lamellae (Robin,
1974¢).
An analogous argument leads to an equilibrium

condition similar to Eq. 20):

(F*° 4+ PP"*) — (F*° 4+ PP*°) — y7

= 2 ui(X"T — X% (25)
Case of Finite Simple Shear and No Fluid
Component
In this case 7* = 7* = V, and (see Fig. 2)
v = Vtan ¢. (26)
Eq. 16b becomes
FF— F — Vrtany =0 (27
Eq. 24 becomes
sT _ Ptany
(6T)P. equil. N AS (28)

Eqs. 27 and 28 are identical to the results of Coe
(1970), except for a different sign convention on AS.

Finite Strain Twinning

Twins are at equilibrium with each other under
any hydrostatic pressure, and in particular when
the hydrostatic pressure is equal to the normal com-
ponent of stress P. If the stress-free transformation
strain (a finite simple shear) satisfies the assump-
tions of this section, the equilibrium condition (Eq.
21) becomes

yr>~0
or

(29

In its equilibrium position, such a twin boundary
does not support any resolved shear stress. This
does not mean that other shear stress components
are zero. The finite resolved shear stress which is
often required to move a twin boundary is thus a
measure of the disequilibrium (yr is a molar energy)
that the boundary can support before migrating.

Tr>~0

Infinitesimal Transformation Strain

If the transformation strain is very small, the
reference state can be chosen such that the strain of
the lattice with respect to the reference state is in-
finitesimal in any actual state of the system. The
characteristic vector of the transformation is (see
Appendix)
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b b
v. = Vl2(e;; — " )n;" — (e’ — e’ )n,"]

or
N = V(Z Ae,—,-n,-a = Aekkn,-a) (30)
where e;%, e;” are the symmetric strain tensors with
respect to the reference state, and Ae,; is therefore
the total transformation strain across the interface.
The scalar product T;v; may be expressed as
Tv, = PQr; Ae;n;® + P Aey) (31a)
If the coordinate system is such that its 1-axis is per-
pendicular to the interface at the point under con-
sideration,
Aeyy = Aezz = Aeyy = 0, Aey, = Aeyy,
[ VAeu, D, = 27Ae12, U3 = ZVAela
T, = 0'11“ = o'ub = o1, I = Ulza . 0'12b = Oi2,
Ty = Ul3a = ¢7'13l7 = O3
and therefore
Tw; = V(o Aey + 2015 Aeyy + 20y Ays),
or, in matrix notation,

(31b)

T,-U,- = 7(0'1 Ae1 + 05 Ae5 + Og Aee) (310)

We recognize the decomposition —Pe +v;r; obtained
previously. The equilibrium condition follows im-
mediately by inserting Eq. 31 into Eqgs. 16 or 18.

Previous Results and Discussion

In spite of their many possible applications, only
a few attempts to obtain results analogous to the
ones presented here can be found in the literature.
The works of Patel and Cohen (1953) and of Coe
(1970), for finite transformation strain and no fluid
component, have already been mentioned. Oriani
(1966) considered the equilibrium of a coherent
spherical precipitate of an isotropic phase 8 in an
isotropic matrix «, the stress-free transformation
strain being itself infinitesimal and isotropic. Because
of the symmetry of the situation, pressure is hydro-
static and uniform in 3, and the characteristic vector
of the transformation is everywhere normal to the
interface. Oriani’s problem is thus not different from
that of finding the equilibrium between a solid matrix
« and a spherical inclusion of fluid 8 which can
dissolve the solid. McLellan (1970) and Paterson
(1973) give the condition of equilibrium of a co-
herent interface, when the strain is infinitesimal and
there are no fluid components, as
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F1G. 2. Characteristic vector, for finite simple shear. The
vector vi has only a tangential component, of modulus +.
The transformation is more easily characterized by its
shear angle y. When a molar volume V changes phase
across a unit area of interface, |Q'P’] = v = V tan y;
hence Eq. 26.

F%— F° — Vs;; Ae;; = 0. 32)

Although Eq. 32 appears to ignore the fact that
the stresses are in general not equal on both sides
of the interface, the last term does reduce to Eq.
31 when the proper coherency conditions for Ae;
are taken into account. Fletcher (1973) also
reached the proper equilibrium condition for in-
finitesimal strain.

Kamb (1959) and Paterson (1973) give the fol-
lowing equilibrium equation for a ‘grain boundary’
supporting a shear stress:

(B — T8+ PP)—(E°—T§"+PVP)=0 (33)
where P is, as before, the normal component of
stress on the interface.

Although Kamb (1959) does not detail his deri-
vation, the only stated assumptions are that “there
is no slippage at the interface and . . . the shear
stress is continuous across the interface . . . ,” con-
ditions which are fulfilled by a coherent interface.
There is also no assumption which would exclude
a coherent boundary in Paterson’s derivation. The
discrepancy between Egs. 33 and 16 therefore re-
quires examination.

The very notion of equilibrium with respect to
a possible grain growth requires that such grain
growth be reversible. That is, if the state of the
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system is altered by a small variational growth of,
say, phase b, at the expense of a, the reverse varia-
tion must bring the system to its original state. In
particular, in presence of a shear stress, points of
one phase must have recovered their original posi-
tion with respect to points of the other phase. If
this requirement were not met, the sum of the two
variations would amount to a slip; slip then being
a possible mechanism, equilibrium would require no
shear component of stress along the interface. On
the contrary, when the above requirement of re-
versibility is met, it can be verified that any varia-
tional migration of the boundary must occur in a
way similar to that described in Figure 1, and can
therefore be described by a characteristic vector v;.

At this point it is important to recognize that
the migration of an interface, as in Figures 1 or 2,
is indeed not restricted to coherent interfaces. We
may, for example, consider a row of parallel edge-
dislocations oriented as in Figure 3. When condi-
tions are such that these dislocations cannot climb
and do not move independently from one another,
this boundary migrates like the coherent boundaries
of Figures 1 or 2. Growth of kink bands constitutes
another possible example.

Therefore, in order to obtain Eq. 33, Kamb
(1959) and Paterson (1973) had to implicitly as-
sume that for a grain boundary supporting a shear
stress the characteristic vector v; was perpendicular
to the interface (and therefore y; = 0 in Eq. 16).
This is particularly clear in Paterson’s derivation,
in which an imaginary, inert, and permeable matrix

Fig. 3. Wall of gliding edge dislocations. The full lines
are traces of glide planes. Simultaneous gliding of the
dislocations results in a shear deformation of the frame-
work, essentially similar to the interface migrations pre-
sented in Figures 1 and 2.
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applies the stress to the solid. To calculate the
change in potential energy of the matrix for a varia-
tional growth of the crystal, Paterson assumes that
points of the matrix are moved along a direction
perpendicular to the interface to meet the new sur-
face of the crystal. If contact between the solid
and the matrix is assumed to be reestablished by
moving points of the matrix along some different
direction, a different value for the change in po-
tential energy results; yet, there is no a priori reason
to choose between these two assumptions.

Kamb (1959) and Paterson (1973) sought to
apply Eq. 33 to the grain boundaries in polycrystal-
line aggregates. However, contrary to the subgrain
or the kink boundaries envisaged above, random
high-angle grain boundaries generally have no mech-
anism which could constrain their migration in pres-
ence of a shear stress to be reversible in the same
manner. Indeed, because of the generally complete
disruption of the lattices along the boundary, the
position of the a lattice has no way of influencing
(or of being influenced by) the position of the b
lattice. It is possible to conceive equilibrium with
respect to growth while at the same time the bound-
ary is sliding irreversibly. In reality, however, sliding
along the boundary is likely to occur much faster
than any phase growth across it; growth, or equilib-
rium with respect to it, would therefore obtain when
the grain boundary no longer supports any shear
stress, in which case Gibbs’ equilibrium condition
applies.

Except for theories of preferred orientations,
Gibbs equilibrium condition has so far not been
used in mineralogical problems. By contrast, equi-
librium conditions for coherent interfaces have
found applications in various problems of phase
changes in the solid state (Patel and Cohen, 1953;
Coe, 1970; Robin, 1974a,c) and are likely to find
more as the microscopic study of interfaces develops.

Appendix

The infinitesimal strain with respect to the reference state
can be characterized by the symmetric strain tensors

b b b
Cii = %(xi.j + x;.5) — &

(A1)
e;;" = %(&? + xi,?) — 0.
The characteristic vector is
v, = V(xi,’; — x; 7)m;*
or, using Eq. Al,
ve = Pl2(e.’ — et — (%, — x;. 001 (A2)
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The fact that the transformation strain leaves the plane of
the interface invariant is expressed by

(x1,: (A3)

where t. is any vector tangent to the interface at the point
under consideration. Also, the molar volume change is

— X9t =0

vn” = V(enb — ey (A4)

The term (x;..° — x;,:") m;® = ki of Eq. A2 can be
evaluated. From Eq. A3, k. = 0. Also

a b a a_ a
kn” = (x;; — x;,on;'n;" =

e;;", from Eq. A4.

Therefore k; is normal to the interface and equal to

- b_
= &

ki = (eklcb - ekku)nia
Inserting into Eq. A2, we obtain finally

b b
v, = I7[2((3”' — e ;" — (ep — ewm;’]

(A5) = (30)
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