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Abstract

Application of the method of Scatchard (1940) to the direct calculation of binary solvi has the
advantage of not requiring an iterative procedure based on an analytic expression of trial values.
The method is used in the calculation of binary sanidine-high albite solvi based on data from Orville
(1963) and Luth and Tuttle (1966). The data of the latter authors has been revised in that a systematic
error was found in the original X-ray data. Differences arising in the calculated solvi are dependent
on the determinative curve (285,, vs composition) employed in the reduction of the raw data, and on
the stoichiometry of the starting materials. No adjustment of the calculated solvi based on the different
determinative curves currently available will result in agreement of the three data sets of Luth and

Tuttle (1966).

Thompson (1967) and Thompson and Waldbaum
(1969a, b) have developed the Margules formula-
tion of the Regular Solution Concept to a point
where it is particularly useful in the analysis of
experimental binary solvus data. In addition to pro-
viding a means for smoothing experimental data and
predicting solvi under conditions where experimental
data are lacking, the approach also provides a means
for calculating thermodynamic excess functions and
their dependence on pressure, temperature, and com-
position.

As outlined by Thompson and Waldbaum, the
calculation of a smoothed solvus from a given set of
experimental data on the composition of coexisting
solvus pairs at a variety of pressure-temperature con-
ditions involves:

1. Calculations of Margules mixing parameters of
the G ( Gibbs energy) function (Wg, and
Waz) for each pair of coexisting phases. The
pertinent equations are 87a and 87b of Thomp-
son (1967).

2. Obtaining regression equations for W, and
Wee as functions of temperature and pressure.
The approach taken by Thompson and Wald-
baum involves sum and difference quantities:
Be = (We1 + Wes)/2RT; Cq = (Wg, —
Wea2)/2RT as functions of reciprocal tempera-
ture and pressure.

3. Calculation of the solvus limb positions using

the chemical potential equivalence conditions:

(1a)
(1b)

Mi1a = MaB

Moa = M2B

where A and B refer to phases, and 1 and 2
refer to components. The calculation outlined
by Thompson and Waldbaum involves the use
of the Newton-Raphson iteration with some set
of trial, or initial, values for the composition of
the coexisting phases.

Scatchard’s Method

An alternative method presented by Scatchard
(1940) has the advantage that a direct calculation of
the binodal curve is possible, with no requirement
of an analytic expansion for trial values. The chem-
ical potential equivalence conditions are again the
basis of this alternative method, as expressed in
terms of the relative activities of the components in
the coexisting phases:

(2a)
(2b)

RT Inayy, = RT In a3
RT In Qosg — RT In dsp

The relative activity (a) of each component is cal-
culated at specified increments of composition (N3)
at constant pressure and temperature using suitable
equations. If the Margules formulation is employed,
equations 80a and 80b of Thompson (1967, p. 353)
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are used. The computer algorithm* involves a search
of @, — a, — N, space at constant temperature and
pressure for the two compositions which satisfy equa-
tions (2a) and (2b). A graphical illustration of the
method is given in Figure 1, similar to that given by
Scatchard (1940). The determination of Na, and
N.g, the equilibrium solvus pair, involves the loca-
tion of point B in Figure 1. A solvus is constructed
by repeating this process at increments of tempera-
ture for constant pressure (or at increments of pres-
sure for constant temperature). If one is willing to
plot the calculated activities as in Figure 1, then a
simple desk calculator will serve for the calculation
of the solvus. The precision of the method is limited
by the precision of the raw data and by the incre-
ment of N, used in the search of ¢y — a; — N, space.

Application to the Alkali Feldspar Solvus

We have used the procedure to re-evaluate the
data of Luth and Tuttle (1966) and Orville (1963)
concerning the sanidine-high albite solvus. The Mar-
gules formulation was used exclusively and the direct
Wi and W, parameters were analyzed as functions
of temperature. Only the 2 kbar data from both
sources were considered. The analysis is similar in
general format to that performed by Thompson and
Waldbaum (1969b), but the conclusions differ
somewhat.

A reanalysis of the Luth and Tuttle (1966) data is
necessary in that the data as presented incorporate a
systematic error. These authors observed that the
compositions of cosynthetic feldspars crystallized at
a given pressure and temperature appeared to depend
on the molar (Na,O + K,0)/ALO,; ratio of the
starting materials. They presented data, largely for
2000 bars, on the compositions of the cosynthetic
feldspars crystallized from peraluminous, (Na,O +
K,0)/ALO; < 1, peralkaline, (Na,O 4+ K,0)/AL,0,
> 1, and stoichiometric starting materials under
hydrothermal conditions. Luth and Tuttle (1966,
p. 1363) noted that the compositions of the phases
were determined by the 26z, method (Bowen and
Tuttle, 1950) using a “working curve” based on a

* A program in the FocAL language and a sample calcu-
lation have been deposited with the National Auxiliary
Publications Service. To obtain a copy of this material,
order NAPS Document 02203 from Microfiche Publica-
tions, 305 East 46th Street, New York, N. Y. 10017, enclos-
ing $1.50 for microfiche or $5.00 for photocopies. Please
check the most recent issue of this journal for the current
address and prices.
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FI1G. 1. Relative activities of NaAlSisOs (a:) and KAlSi:Os
(a:) at 600°C and 2 kbar. The compositions of the coexist-
ing binodal phases are indicated as point B. The curve was
calculated using the Margules parameters listed in Equa-
tion 1 in Table 1.

series of alkali feldspars prepared by Dr. H. Seck.
The working curve was to be presented in a later paper.
Luth and Querol-Sufié (1970) published chemical
data and unit cell parameters for these feldspars.
They noted that the starting materials were apparently
peraluminous in that corundum (4 quartz) was found
in the crystallized products. This feature was also
noted by Seck (1971, 1972). To relate 263, (CuKa,)
and composition, Luth and Querol-Suiié (1970) give

N, = 20.467 — 0.9313 (26z01) 3)
for the alkali feldspar series they studied, but

N, = 19.885 — 0.9029 (263,,) “@

for the high albite-sanidine series of Orville (1967).
In terms of either equation, the compositions (in wt
percent KAISi;Os) listed by Luth and Tuttle (1966)
are inconsistent with their associated 26 values if
CuK« to CuKe; conversions are taken into account.
Thus we must conclude that the “working curve”
employed by Luth and Tuttle (1966) was inappro-
priate, and that a revision of their composition data
is necessary.

Margules Parameters

The raw data (26z,,) given by Luth and Tuttle (1966)
permit evaluation of the effects of different starting
materials and of determinative curves on the calculated
Margules parameters and the solvi obtained from
them. This analysis should provide some insight on
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the level of statistical significance to be attached to the
Margules parameters in the calculation of thermo-
dynamic excess and mixing functions. The Margules
parameters obtained by linear least squares regression
analysis, from the raw data of Luth and Tuttle (1966),
are given in Table 1. The peralkaline data have been
treated using only equation (3); the peraluminous and
stoichiometric data have been treated using both
equations (3) and (4). Also given in Table 1 are the
Margules parameters we obtained using the four
data points selected by Thompson and Waldbaum
(1969a) from Orville’s (1963) data. Separate columns
in Table 1 give the calculated critical solution points
for each data set. Critical solution points were obtained
by calculation of the maximum spinodal temperature
from equation (90) of Thompson (1967).

Calculated Binodal Curves

Figure 2a illustrates the differences in the calcu-
lated solvi when the raw data for all three (peralka-
line, peraluminous, and stoichiometric) starting ma-
terials are analyzed using the same determinative
equation, or working curve. It is not surprising that
Figure 2a is very similar in form to that given by
Luth and Tuttle (1966, Figure 6), though the
coordinates differ somewhat. The Na- and K-limbs
of the peralkaline and peraluminous solvi are clearly
distinct. For the stoichiometric solvus its Na-limb
essentially coincides with the Na-limb of the peralu-
minous solvus and its K-limb with the K-limb of the
peralkaline solvus. Unit-cell refinements of X-ray
powder diffraction data by Luth and Tuttle (1966)
and by Luth and Querol-Sufi¢ (1970) demonstrated
that the unit-cell parameters for alkali feldspars
crystallized from peralkaline starting materials dif-
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fered significantly from those crystallized from per-
aluminous starting materials. It would thus seem
inappropriate to use the same determinative curve for
both the peralkaline and peraluminous raw data of
Luth and Tuttle even though this was done by some
authors, as well as to calculate the solvi shown in
Figure 2a.

It seems reasonably clear that the determinative
equation (4) based on the data of Luth and Querol-
Suié (1970) is appropriate for the peraluminous
data. Since the unit-cell parameters of feldspars
crystallized from both stoichiometric and peralkaline
starting materials are similar to unit-cell parameters
given by Orville (1967) for the sanidine-high albite
series (Luth and Tuttle, 1966, Figure 7, Table 2) it
seems reasonable to use determinative equation (3)
for both the peralkaline and stoichiometric data. The
effect of the different determinative equations on the
calculated solvi is shown in Figure 2b for the stoichio-
metric starting materials. This effect is large and is
in the same sense as that observed for the peralumi-
nous starting materials.

Figure 3a illustrates the contrast in conclusions
which can be drawn simply as a function of the
determinative equation employed. The pattern shown
in this figure is particularly satisfying if one is
attempting to construct a model which stresses a
smooth shift of the solvus limbs with changing
(Na,O + K;0)/Al,0; ratio. However, our conclu-
sion is that the stoichiometric data should be ana-
lyzed in terms of equation (4), as in Figure 2a, not
in terms of equation (3), as shown in Figure 3a.

The agreement between the solvi calculated from
Orville’s (1963) data, as selected by Thompson and
Waldbaum (1969b), and the revised peralkaline

TaBLE 1. Margules Mixing Parameters for Sanidine-High Albite Crystalline Solutions at 2 kbar
1 7 ) = - ——
N A W se” W se ese o se W se ese i T w.(c)
Data Set Bql s1 B g2 c Mz
(cal) (cal/K) (ca}) (cal) (cal/K) (cal) (°c)  (m.t.)
1. Peralkaline L | 233(2007) -0.5201(2.2k95) 269 | 11191(1627) T7.k453(1.8237) 218 | 11 670 0.38
2. Peraluminous 4| 2069(1028) -0.9159(1.1718) 10k 7TT17(651)  3.9595(0.7H18) 66 8 652 0.40
3. Peraluminous 3| -951(1534) -3.8062(1.7490) 155 10985(817)  T7.4721(0.9310) 83 8 6k9  0.37
L. Stoichiometric U | 2929(1134) -0.3119(1.2671) 156 6902(647)  3.0510(0.7229) 89 | 12 665 o0.L2
5. Stoichiometric 3| 1361(1k92) -1.6826(1.6669) 206 9298(731)  5.5375(0.8165) 101 12 66L  0.39
6. Peralkaline-0 - | W181(525) +1.8527(0.5972) 79 10662(900)  6.8447(1.0221) 134 L 670 0.35

* Data set 6 from Orville (1963), as selected by Thompson and Taldbaun (1969b).

(1966).

@ Equation 3 or 4 given in text.

# se and ese refer to standard error terms for the coefficients

(wGl’ WGZ) respectively.

All other data from Luth and Tuttle

and the dependent variables

v : . .
(hryr Vg1 Yigps Ygp)

N indicates the number of observations used in the least squares analysis.

T, and Ng(c)

are the calculated critical temperature and composition obtained from the given data set.
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Fia. 2. Calculated alkali feldspar solvi at 2 kbar. Numbers
on the curves refer to the equations listed in Table 1 from
which the solvus was calculated.

data of Luth and Tuttle (1966) shown in Figure 3b
appears to be satisfactory. The level of agreement
is surprising in terms of the differences in the Mar-
gules parameters shown in Table 1. The solvus cal-
culated directly from the “adjusted” Margules param-
eters given by Thompson and Waldbaum (1969b) is
also shown in Figure 3b. It should be noted that the
Margules parameters given by Thompson and Wald-
baum (1969a) were adjusted to incorporate the ef-
fects of the equilibrium monoclinic-triclinic transfor-
mation in the sodic feldspars, but were based (in
part) on the Luth and Tuttle (1966) peralkaline
data.

On the basis of their graphic portrayal of the
experimental results, Luth and Tuttle (1966) con-
cluded that the three solvi representing crystalliza-
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tion from peraluminous, peralkaline, and stoichio-
metric starting materials were different. Thompson
and Waldbaum (1969b) supported this conclusion
with respect to the peralkaline and peraluminous
data. However, in terms of their analysis, the stoichio-
metric and peraluminous data were not clearly
separable. Thompson and Waldbaum (1969b) also
concluded that the Luth and Tuttle (1966) per-
alkaline data were very similar to the peralkaline data
of Orville (1963). Examination of solvi shown in
Figures 2a, 3a, and 3b provides some support for
these conclusions; however, examination of the Mar-
gules parameters and their standard errors suggests
that these conclusions are on somewhat shaky ground.

Statistical Analysis

A simple statistical test to help evaluate differ-
ences between the Margules parameters, Wy, and
W), which are regression coefficients, involves (1)
calculation of the difference between the calculated
value of Wg;, for any two regression equations as a
function of temperature, and (2) comparison of this
result with the calculated variance of this difference.
The ratio of the difference and the square root of
the variance serves to estimate ¢, which in turn serves
to evaluate the significance level of the difference
between two regression equations. Table 2 lists the
temperature intervals over which the difference be-
tween the We ;) values is significant at the 0.95 (two-
sided Student’s ¢ test) level using this method. Only
the region 500 < T(°C) < 700 was evaluated in
this connection in view of the data distribution. We
infer that beyond the interval given in Table 2 the
two regression equations do not yield W) values
which are significantly different.

As noted previously the preferred representation
of the peralkaline, peraluminous, and stoichiometric
raw data of Luth and Tuttle (1966) are equations
(1), (3), and (4) of Table 1. Considering only the
analysis for these regression curves, as given in
Table 2, the three regression equations for both Wey
and W, appear to be significantly different at the
0.95 probability level over a relatively large tempera-
ture interval. The effect of the determinative curve
used is illustrated by comparing cases 2 and 3 or 4
and 5 (Table 1) as shown in Table 2. In the case of
different treatments of the peraluminous data (2 and
3) and of the stoichiometric data (4 and 5), the
regression curves are also distinct over a significant
temperature interval. In fact the temperature interval
may be considerably greater in this case.
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Conclusions

Although the analysis of the Luth and Tuttle
(1966) data is complicated by lack of certainty
as to which determinative curve (if either) is ap-
propriate, it appears that no currently available
set of determinative curves can bring all three data
sets into agreement. Regardless of the cause under-
lying the differences in the solvi, the differences
appear to be real and significant. More recent studies
by Seck (1972) and by Luth, Martin, and Fenn
(1973) confirm differences between solvi obtained
from peraluminous and those from peralkaline start-
ing materials. At low (P < 2.5 kbar) pressures, the
differences between the peralkaline and the peralum-
inous solvi are similar to those shown in Figure 3a.

600

T (°C)

500

600

T (°C)

500

Fi6. 3. Calculated alkali feldspar solvi at 2 kbar. As in
Figure 2 the numbers refer to the equations of Table 1.
Refer to the text for a discussion of the significance of each
solvus in this Figure and in Figure 2.
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TaBLE 2. Temperature Intervals Over Which the 2 kbar
Margules Are Significantly Different
g 1 2 3 b 3 &
1 | mmem—-- 605-630 500-655 545690 610-630 585-700
2 500-660 ~mmmmmm 500-670 505-685 NONE  545-700
3 565-665 500-635 -=====- 500-700 500-670  500-620
4 500-660 NONE  500=635 me=ew== 510-680 500-T700
5 565-645 545-650 615-625 500-6U5 mwmmmmm 575-T00
6 NONE  500-670 Sh5-630 500-670 500-650 ======-s

The temperature intervals given above, in °C, are those over
whlch the Margules parameters W (upper triangular matrix) and
G (lower trisngular matrix) are significantly different at the
55 level using the Student's t test in comparing the two data
sets, from Table 1, shown in the first column and row.

Appendix: Procedure for Computation of Binary
Solvus Compositions

The following procedure is an outline of the steps
involved in calculation of binary solvi. The method
involved is that used graphically by Scatchard
(1940). Analytic expressions are derived from the
presentation by Thompson (1967) for the most part.
A FocaL program which has been used on an 8K PDP
8/¢ has been deposited with NAPS.* Duplicate
punched paper tape copies of the program are avail-
able from the authors.

Procedure
1. Obtain functional relationships for W¢; and Wee
(Thompson, 1967) such as:
Wg = A, + B,T(°K) + C,P(bars)

+ D,PT;
A, + B,T + C,P + D,PT

by standard least squares techniques from the
experimental data.

2. Calculate the critical constants from the maxima
on the spinodal curve using:

(1a)

War = (1b)

aRT
N1N2

4+ 2We(1 — 3Ny) @

which can be transformed to:

0O = + 2W01(1 - 3N2)

T, = aR(6N (Wg: — We)
+ 2N (AWeq, — 5Wes)

+ 2Nz(2 WGz - WGI)) (3)

* Footnote on page 1010.
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where T, is the spinodal temperature for a given
N,, and N; = 1 — N,, with other symbols as
defined by Thompson (1967). Equation (2) is
from Thompson (1967, p. 356, equation 90).

3. Calculate binodal (solvus) compositions which
simultaneously satisfy the conditions:

(4a)

A4 = dyp,
and a,4 = a3

(4b)

a; is the relative activity, A and B refer to
phases, 1 and 2 refer to components as in Thomp-
son (1967) a; = Niyij. @14 = Niayia = (1 —
N2A)71A = vi4 — NgAylA and from Thompson’s
(1967, p. 352) equations 80a and 80b:

Yi; = €Xp ((NZiz/RT)(Z Wey — Wer

+ 2N2;'( WGZ = WG))) (5)

Y2i = eXp (1/RT)(Wgs + 2Ny (W -

- 2W02) + N2;2(5 WG'2 - 4W01)

+ 2N21'3( WGl = WGZ)) (6)

For convenience let: X = 2Wge — Wen, (7a)
Y= Wg — Wea; (7b)

then X — 3Y = SWg, — 4Wg,. (7¢)

Then

aia = (1 — Npu) exp (N2 X — 2N,,° Y)/aRT) (8)

aip = (1 — Nyp) exp (No5" X — 2N,5° Y)/aRT) (9)

Ay = Nygexp (X + Y — 2N, X
4+ Naa®(X — 3Y) + 2N, Y)/aRT) (10)
ap = Nopexp (X + Y — 2Ny X

+ N’ (X — 3Y) + 2N, Y)/aRT) (11)

The procedure which we have used in calculation
of the isobaric solvus involves a search of Noy —Nsjg
space at a specific pressure and temperature to find
the unique Nos and N.p values which satisfy the
simultaneous equilibrium conditions given in equa-
tions 4a and 4b. The nature of the search is readily
visualized in terms of Figure 1, a plot of calculated
a; and a, values at 600°C and 2 kbar for a data set
pertinent to the alkali feldspar system (1 =
NaAlSizOs, 2 = KAISi;Oy). This diagram is ident-
ical in form to that given by Scatchard (1940). Using

W. C. LUTH AND P. M. FENN

this diagram for the explanation we consider the fol-

lowing stages in the calculation.

1. a4 is calculated for N., = 0.08, then a,3 is cal-
culated for N.p = 0.74. Since a,p < a4 the
trial Noy, and N,y values are beyond the solvus
limbs.

2. Then N, is reset to 0.72, and ayp is recalculated.
Again, a;p < a4, so the process is repeated for
Noz = 0.70, 0.68, and 0.66 in sequence. When
N.p = 0.66 we find that a1z >a14. Nop is reset
to 0.68, and the decrement in N.p is changed
from 0.02 to 0.005, and the process repeated,
using smaller and smaller decrements of N2y until
the desired value (Nop = .676) is obtained. Note
that No, has been held constant at 0.08 through-
out this process, and we have been concerned
with the evaluation of a4 and aiz.

3. a.4 and app are calculated for Noy = 0.08 and
Nsp = 0.676. Since a3, < aop, Nay is clearly out-
side the solvus limb and N:p must lie inside the
other solvus limb. Consequently No, is reset to
0.10 and Nz to 0.676 + 0.05 = 0.726 and the
process outlined in (1) and (2) is repeated. In-
crements of No, and N,z are reduced such that
the desired No4 and N,y values of 0.110 and
0.682 are obtained, for this pressure and tem-
perature.

4. A new temperature (and pressure if desired) is
reset and the entire process is repeated in order
to obtain new values.

This method is extremely flexible in terms of the
increments in N2, and Nop used in the evaluation
process, and the specific initial Ny and Nap trial
values (0.08 and 0.74 in the above example)
employed.
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