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Abstract

Application of the method of Scatchard (19210) to the direct calculation of binary solvi has the
advantage of not requiring an iterative procedure based on an analytic expression of trial values.
The method is used in the calculation of binary sanidine-high albite solvi based on data from Orville
(1963) and Luth and Tuttle (1966). The data ofthe latter authors has been revised in that a systematic
eruor was found in the original X-ray data. Differences arising in the calculated solvi are dependent
on the determinative curve (2fu0, us composition) employed in the reduction of the raw data, and on
the stoichiometry of the starting materials. No adjustment of the calculated solvi based on the different
determinative curves currently available will result in agreement of the three data sets of Luth and
Tuttle (1966).

Thornpson (1,967) and Thompson and Waldbaum
(1,969a, b) have developed the Margules formula-
tion of the Regular Solution Concept to a point
where it is particularly useful in the analysis of
experimental binary solvus data. In addition to pro-
viding a means for smoothing experimental data and
predicting solvi under conditions where experimental
data are lacking, the approach also provides a means
for calculating thermodynamic excess functions and
their dependence on pressure, temperature, and com-
position.

As outlined by Thompson and Waldbaum, the
calculation of a smoothed solvus from a given set of
experimental data on the composition of coexisting
solvus pairs at a variety of pressure-temp€rature con-
ditions involves:

1. Calculations of Margules mixing parameters of
the G ( Gibbs energy) function (IUH and
146) for each pair of coexisting phases. The
pertinent equations are 87a and 87b of Thomp-
son (1967) .

2. Obtaining regression equations for Ws, and,
Wc2 ds functions of temperature and pressure.
The approach taken by Thompson and Wald-
baum involves sum and difference quantities:
Be = (IVat * Wy)/2RT; Ce : (WH -
We) /2RT as functions of reciprocal tempera-
ture and pressure.

3. Calculation of the solvus limb positions using

the chemical potential equivalence conditions:

lh,t : l.\n (1a)

Itz.r : Itzn (1b)

where A and B refer to phases, and. I and 2
refer to cornponents. The calculation outlined
by Thompson and Waldbaum involves the use
of the Newton-Raphson iteration with some set
of trial, or initial, values for the composition of
the coexisting phases.

Scatchard's Method

An alternative method presented by Scatchard
(1940) has the advantage that a direct calculation of
the binodal curve is possible, with no requirement
of an analytic expansion for trial values. The chem-
ical potential equivalence conditions are again the
basis of this alternative method, as expressed in
terms of the relative activities of the components in
the coexisting phases:

R T  l n  a 1 a  :  R T  l n  a r a

RT ln  a2a :  RT ln  az t

(2a)

(2b)

The relative activity (a) of each component is cal-
culated at specified increments of composition (N2)
at constant pressure and temperature using suitable
equations. If the Margules formulation is employed,
equations 80a and 80b of Thompson (1967, p. 353)
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are used. The computer algorithm' involves a search
of. a1 - @ - Nz space at constant temperature and
pressure for the two compositions which satisfy equa-
tions (2a) and (2b). A graphical illustration of the
method is given in Figure 1, similar to that given by
Scatchard (1940). The determination of Nze and
N2s, the equilibrium solvus pair, involves the loca-
tion of point B in Figure 1. A solvus is constructed
by repeating this process at increments of tempera-
ture for constant pressure (or at increments of pres-
sure for constant temperature). If one is willing to
plot the calculated activities as in Figure 1, then a
simple desk calculator will serve for the calculation
of the solvus. The precision of the method is limited
by the precision of the raw data and by the incre-
ment of N2 used in the search of a1 - az - Nz space.

Application to the Alkali Feldspar Solvus

We have used the procedure to re-evaluate the
data of Luth and Tuttle (1966) and Orville (1963)
concerning the sanidine-high albite solvus. The Mar-
gules formulation was used exclusively and the direct
Wer and Wc2 parumeters were analyzed as functions
of temperature. Only the 2 kbar data from both
sources were considered. The analysis is similar in
general format to that performed by Thompson and
Waldbaum (1969b), but the conclusions differ
somewhat.

A reanalysis of the Luth and Tuttle (1966) data is
necessary in that the data as presented incorporate a
systematic error. These authors observed that the
compositions of cosynthetic feldspars crystallized at
a given pressure and temperature appeared to depend
on the molar (NarO + KrO)/AlzO' ratio of the
starting materials. They presented data, largely for
2000 bars, on the compositions of the cosynthetic
feldspars crystallized from peraluminous, (NarO *
KrO)/AlrOa ( l, peralkaline, (Na,O + K,O)/AlrO3

hydrothermal conditions. Luth and Tuttle (1966,
p. 1363) noted that the compositions of the phases
were determined by the 20zor method (Bowen and
Tuttle, 1950) using a "working curve" based on a

'A program in the rocer language and a sample calcu-
lation have been deposited with the National Auxiliary
Publications Service. To obtain a copy of this material,
order NAPS Document 022O3 from Microfiche Publica-
tions, 305 East 46th Street, New York, N. Y. 10017, enclos-
ing $1.50 for microfiche or $5.0o for photocopies. Please
check the most recent issue of this iournal for the current
address and prices.
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Fra. 1. Relative activities of NaAlSisO" (a') and KAISLO"
(d,) at 600"C and 2 kbar. The compositions of the coexist-
ing binodal phases are indicated as point B. The curve was
calculated using the Margules parameters listed in Equa-
tion 1 in Table l

series of alkali feldspars prepared by Dr. H. Seck.
The working curve was to be presented in a later paper.
Luth and Querol-Sufl6 (1970) published chemical
data and unit cell parameters for these feldspars.
They noted that the starting materials were apparently
peraluminous in that corundum (*quartz) was found
in the crystallized products. This feature was also
noted by Seck (1971, 1972). To relate 20zo' (CuKa')
and composition, Luth and Querol-Sun6 (1970) give

Nz : 2O.467 - 0.9313 (202o,) (3)

for the alkali feldspar series they studied, but

Nz : 19.885 - 0.9029 (2ko) (4)

for the high albite-sanidine series of Orville (1967).
In terms of either equation, the compositions (in wt
percent KAISiBOs) listed by Luth and Tuttle (1966)
are inconsistent with their associated 20 values if
CuKcu to CuKol conversions are taken into account.
Thus we must conclude that the "working curve"
employed by Luth and Tuttle (1966) was inappro-
priate, and that a revision of their composition data
is necessary.

Margules Parameters

The raw data (202o) given by Luth and Tuttle (1966)
permit evaluation of the effects of different starting
materials and of determinative curves on the calculated
Margules parameters and the solvi obtained from
them. This analysis should provide some insight on
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the level of statistical significance to be attached to the
Margules parameters in the calculation of thermo-
dynamic excess and mixing functions. The Margules
parameters obtained by linear least squares regression
analysis, from the raw data of Luth and Tuttle (1966),
are given in Table l. The peralkaline data have been
treated using only equation (3); the peraluminous and
stoichiometric data have been treated using both
equations (3) and (4). Also given in Table I are the
Margules parameters we obtained using the four
data points selected by Thompson and Waldbaum
(1969a) from Orville's (1963) data. Separate columns
in Table I give the calculated critical solution points
for each data set. Critical solution points were obtained
by calculation of the maximum spinodal temperature
from equation (90) of Thompson (1967).

Catrculated Binodal Curves

Figure 2a illustrates the differences in the calcu-
lated solvi when the raw data for all three (peralka-
line, peraluminous, and stoichiometric) starting ma-
terials are analyz-ed using the same determinative
equation, or working curve. It is not surprising that
Figure 2a is very similar in form to that given by
Luth and Tuttle (1966, Figure 6), though the
coordinates differ somewhat. The Na- and Klimbs
of the peralkaline and peraluminous solvi are clearly
distinct. For the stoichiometric solvus its Na-limb
essentially coincides with the Nalimb of the peralu-
minous solvus and its K-limb with the K-limb of the
peralkaline solvus. Unit-cell refinements of X-ray
powder diffraction data by Luth and Tuttle (1.966)
and by Luth and Querol-Sufi6 (1970) demonstrated
that the unit-cell parameters for alkali feldspars
crystallized from peralkaline starting materials dif-
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fered significantly from those crystallized from per-
aluminous starting materials. It would thus seem
inappropriate to use the same determinative curve for
both the peralkaline and peraluminous raw data of
Luth and Tuttle even though this was done by some
authors. as well as to calculate the solvi shown in
Figure 2a.

It seems reasonably clear that the determinative
equation (4) based on the data of Luth and Querol-
Sufi6 (1970) is appropriate for the peraluminous
data. Since the unit-cell parameters of feldspars
crystallized from both stoichiometric and peralkaline
starting materials are similar to unit-cell parameters
given by Orville (1967) for the sanidine-high albite
series (Luth and Tuttle, 1966, Figure T,Table 2) it
seems reasonable to use determinative equation (3)
for both the peralkaline and stoichiometric data. The
eftect of the different determinative equations on the
calculated solvi is shown in Figure 2b for the stoichio-
metric starting materials. This effect is large and is
in the same sense as that obcerved for the peralumi-
nous starting materials.

Figure 3a illustrates the contrast in conclusions
which can be drawn simply as a function of the
determinative equation employed. The pattern shown
in this figure is particularly satisfying if one is
attempting to construct a model which stresses a
smooth shift of the solvus limbs with changing
(Na2O + K2O)/Al2Os ratio. However, our conclu-
sion is that the stoichiometric data should be ana-
lyzed in terms of equation (4), as in Figure 2a, not
in terms of equation (3), as shown in Figure 3a.

The agreement between the solvi calculated from
Orville's (1963) data, as selected by Thompson and
Waldbaum (1969b), and the revised peralkaline

T.q.st-n 1. Margules Mixing Parameters for Sanidine-High Albite Crystalline Solutions at 2kbar
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* Data set 6 from Orvitle (f963), as selectedby Thornpson andllaldbaun (tS69b). A11 other data fronLuth and T\:tt le
(1966) .
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Flo. 2. Calculated alkali feldspar solvi at 2 kbar. Numbers
on the curves refer to the equations listed in Table I from
which the solvus was calculated.

data of Luth and Tuttle (1966) shown in Figure 3b
appears to be satisfactory. The level of agreement
is surprising in terms of the differences in the Mar-
gules parameters shown in Table 1. The solvus cal-
culated directly from the "adjusted" Margules param-
eters given by Thompson and Waldbaum (1969b) is
also shown in Figure 3b. It should be noted that the
Margules parameters given by Thompson and Wald-
baum (1969a) were adjusted to incorporate the ef-
fects of the equilibrium monoclinic-triclinic kansfor-
mation in the sodic feldspars, but were based (in
part) on the Luth and Tuttle (1966) peralkaline
data.

On the basis of their graphic portrayal of the
experimental results, Luth and Tuttle (1966) con-
cluded that the three solvi representing crystalliza-
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tion from peraluminous, peralkaline, and stoichio-
metric starting materials were difterent. Thompson
and Waldbaum (1969b) supported this conclusion
with respect to the peralkaline and peraluminous
data. However, in terms of their analysis, the stoichio-
metric and peraluminous data were not clearly
separable. Thompson and Waldbaum (1969b) also
concluded that the Luth and Tuttle (1966) per-
alkaline data were very similar to the peralkaline data
of Orville (1963). Examination of solvi shown in
Figures 2a, 3a, and 3b provides some support for
these conclusions; however, examination of the Mar-
gules parameters and their standard errors suggests
that these conclusions are on somewhat shaky ground.

Statistical Analysis

A simple statistical test to help evaluate differ-
ences between the Margules parameters, Ws6y and
IZs1a1, which are regression coefficients, involves (1)
calculation of the difference between the calculated
value of W66 for any two regression equations as a
function of temperature, and (2) comparison of this
result with the calculated variance of this difference.
The ratio of the difierence and the square root of
the variance serves to estimate t, which in turn serves
to evaluate the significance level of the difference
between two regression equations. Table 2 lists the
temperature intervals over which the difference be-
tween the 1761ay values is significant at the 0.95 (two-
sided Student's / test) level using this method. Only
the region 50O < Z("C) < 700 was evaluated in
this connection in view of the data distribution. We
infer that beyond the interval given in Table 2 the
two regression equations do not yield W6piy values
which are significantly different.

As noted previously the preferred representation
of the peralkaline, peraluminous, and stoichiometric
raw data of Luth and Tuttle (1.966) are equations
(1), (3), and (4) of Table 1. Considering only the
analysig for these regression curves, as given in
Table 2, the three regression equations fotboth Wet
and Wez appear to be significantly different at the
0.95 probability level over a relatively large tempera-
ture interval. The effect of the determinative curve
used is illustrated by comparing cases 2 arlLd 3 or 4
and 5 (Table 1) as shown in Table 2. In the case of
difierent treatments of the peraluminous data (2 and
3) and of the stoichiometric data (4 and 5), the
regression curves are also distinct over a significant
temperature interval. In fact the temperature interval
mav be considerably greater in this case.



Conclusions

Although the analysis of the
(1966) data is complicated by
as to which determinative curve
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Luth and Tuttle
lack of certainty
(if either) is ap-

BINARY SOLVI

Test-e 2. Temperature Intervals Over Which the
Margules Are Significantly Different
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2 kbar

Data
Set

propriate, it appears that no currently available
set of determinative curves can bring all three data
sets into agreement. Regardless of the cause under-
lying the difierences in the solvi, the differences
appeat to be real and significant. More recent studies
by Seck (1,972) and by Luth, Martin, and Fenn
(1973) confirm differences between solvi obtained
frorn peraluminous and those from peralkaline start-
ing materials. At low (P < 2.5 kbar) pressures, the
difterences between the peralkaline and the peralum-
inous solvi are similar to those shown in Figure 3a.

N 2

Frc. 3. Calculated alkali feldspar solvi at 2 kbar. As in
Figure 2 the numbers refer to the equations of Table l.
Refer to the text for a discussion of the significance of each
solvus in this Figure and in Figure 2.
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4
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Ttre tenperature interyals given above, in "C, are those over
which the l4argules parmeters 1\l^. (upper trlaogular retrix) and
14^^ (tower triangular retrix) aYd significantly diffefent at the

oY!5 tevet using the Stud.ent's t test j.n conparlng the tvo data
sets, fron Table l, shom in the flrst colum antl row,
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joo-66o -------
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>w-o>>

5AO-67O )u)-oo)

5OO-7OO

)uu-o+)
joo-6T0

6ro-630
NONE

,oo-6Ta
tro-680

,85-7cn

joa-62a

5OO-TOo

575-704

Appendix: Procedure for Computation of Binary
Solvus Compositions

The following procedure is an outline of the steps
involved in calculation of binary solvi. The method
involved is that used graphically by Scatchard
(1940). Analytic expressions are derived from the
presentation by Thompson (1967) for the most part.
A noclr program which has been used on an 8r ppp

8/e has been deposited with NAPS.I Duplicate
punched paper tape copies of the program are avail-
able from the authors.

Procedure

1. Obtain functional relationships for Wer and llsz
(Thompson, 1967) such as:

Wcr : At + BLT(oK) * C'P(bars)

*  DTPT;

W a z :  A 2 + B 2 T * C " P + D I P T

by standard least squares techniques from the
experimental data.

2. Calculate the critical constants from the maxima
on the spinodal curve using:

aRT ,o: f f i+2wo, ( t -3N, )

+ 2WGr( l  -  3N, )

which can be transformed to:

T " : a R ( 6 N r " ( W n r - W e r )

+ 2N22(4Wo, -  Slzor)

+ 2N2(2Wn, - l loJ)

(1a )

(1b )

(2)

I Footnote on page 1010.

(3)
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where Z" is the spinodal temperature for a given
Nz, and Nr : 1 - Nz, with other s'mbols as
defined by Thompson (1967). Equation (2) is
from Thompson (1967, p. 356, equation 9O).

3. Calculate binodal (solvus) compositions which
simultaneously satisfv the conditions:

Clt l .  :  Ota ' (4a)

and ez.r : aze (4b)

a;7 is the relative activity. A and B refer to
phases, I and 2 refer to components as in Thomp
son (1967) e i j :  Ni ly i l .c t ta  = Nr.eyr ,  :  (1  -

Nzt)yre = yr:- Nrnf tn and from Thompson's
(1967, p. 352) equations 80a and 80b:

?1, : exp ((Nrt'z/RT)(2W|" - We,

-f 2Nu(I{n, - Wn,)) (5)

^yzr : exp (0/Rf)(\i l", * 2N2i(WcF

- 2We) *  l r r r ' (5  We, -  4Wer)

* 2Nri"(lvn,, - wn)) (6)

For convenience let: X = 2Wez - lVer, Qa)

Y -  W n r -  W o r | (7b)

then  X -  3Y :  5Wo,  -  4Wor .  Qc)

Then

are : ( l  -  Nrr) exp ((Nre' X - 2N2az Y)/o.RT') (8)

a1s : ( l  -  Nr") exp ((Nr"2 X - 2N"Bz D/o,RT') (9)

a z A :  N z , s .  e x p ( ( X l  Y - 2 N 2 a X

*  N,n" (x  -  3Y)  *  2N,n"Y) /aRT)  (10)

a z a :  N z n  e x p ( ( X +  Y - 2 N 2 B X

*  N"" ' (X  -  3Y)  I  ZN,u"  Y) /aRT)  ( t l )

The procedure which we have used in calculation
of the isobaric solvus involves a search of Nze -Nz"

space at a specific pressure and temperature 3o find
the unique Nza and N2s values which satisfy the
simultaneous equilibrium conditions given in equa-
tions 4a and 4b. The nature of the search is readily
visualized in terms of Figure 1, a plot of calculated
ar and ap valuqs at 600'C and 2 kbar for a data set
pertinent to the alkali feldspar system (t :
NaAlSi3O6, 2 : KAlSiaOe). This diagram is ident-
ical in form to that given by Scatchard (1940). Using

this diagram for the explanation we consider the fol-
lowing stages in the calculation.
l. arn is calculated for Nre = 0.08, then arr is cal-

culated for N2, = O.74. Since ara 1 au the
trial Nee and Nsr values are beyond the solvus
limbs.

2. Then Nzr is reset to 0.72, and ara is recalculated.
Again, a1p 1 c\4, so the pro€ess is repeated for
Nz-a : 0.70, 0.68, and 0;66 in sequence. When
Nzr '= 0.66 we find that dtn )chr. Nes is reset
to 0.68, and the decrement in Nzr is changed
from 0.02 to 0.005, and the process repeated,
using smaller and smaller decrements of N:r until
the desired value (Nza - .676) is obtained. Note
that Nea has been held constant at 0.08 through-
out this process, and we have been concerned
with the evaluation oI aya and 4"s.

3. q"n and as are calculated for Nze = 0.08 and
Nzn = 0.676. Since a2a I azn, Nen is clearly out-
side the solvus limb and Nzr must lie inside the
other solvus limb. Consequently N2a is reset to
0.10 and Nzr to 0.676 + 0.05 = 0.726 andthe
process outlined in (1) and (2) is repeated. In-
crements of N2a and Nj2r are reduced such that
the desired Nze and Nga values of 0'110 and
0.682 arc obtained, for this pressure and tem-
perature.

4. A new temperature (and pressure if desired) is
reset and the entire process is repeated in order
to obtain new values.

This method is extremely flexible in terms of the

increments in Nze and Ne, used in the evaluation
process, and the specific initial N2n and Np, trial
values (0.08 and 0.74 in the above example)
employed.
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