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THERMODYNAMIC MULTICOMPONENT SILICATE
EQUILIBRIUM PHASE CALCULATIONS

L. M. BarroN, McGill University, Montreal, Canada*

ABSTRACT

Phase equilibria of solution phase—solution phase and pure phase—solution
phase type in binary and ternary systems are calculated by computer assuming
excess free energies are constant over the temperature ranges encountered. The
multicomponent activities are calculated with a thermodynamically consistent
equation from a general excess free energy model. Input data are heats of fusion
and partial excess chemical potentials of mixing derived from binary: phase dia-
grams. The system quartz-fayalite-leucite has a calculated internal immiscibil-
ity field at liquidus temperatures above 1100°C. The solid solution liquidus is
calculated for the granite system and diopside-albite-anorthite with an accu-
racy of £8°C, £5 % composition of liquid and +2% of crystal. Isocons of the
coexisting solid solution phase (icophases) are contoured on the ternary liquidus.
An empirical n-component correction free energy with n-independent parameters
is suggested to adjust calculated results to experiments using one (eutectic min-
imum) or two (cotectic line) points. The calculations can be used to guide
experiments.

INTRODUCTION

Modern authors have used a thermodynamic approach to calculate
phase diagrams, guide experimentation, and to restrict the number of
experiments necessary to define a system. This is espeeially valuable
when experimentation times are long or equipment is expensive. More
recently, Thompson and Waldbaum (1969b) and Green (1970) have
used binary phase diagrams to obtain detailed thermodynamic data
based on non-ideal solution models, while Levin (1962), Olson (1965),
Blander (1968), and Thompson and Waldbaum (1969a) have used
thermodynamic data to calculate binary and some, ternary phase
diagrams. These calculations assumed a statistical fit of only one or
two parameters to binary excess free energy data; if more parameters
are added, the necessary formulation of the corresponding n-component
excess chemical potentials rapidly becomes difficult. To complicate
matters further, Lumsden (1966) and Green (1970) have shown that
although the regular and subregular solution models may adequately
fit binary excess free energy values at one temperature, the resulting
excess entropies often do not agree,with those determined by calori-
metry. One solution to this problem -is to use a general excess free

* Present address: Geological Survey of New South Wales, Sydney, Australia.
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energy and excess entropy model but this requires much more primary
data than is usually available. The three purposes of this paper are to:

(a) Develop an easily computerised n-component general excess

free energy model that permits the use of precise binary excess
free energies as opposed to a fitted one or two parameter model.
Excess entropies of mixing are not considered separately and
G” is assumed to be constant over the temperature ranges en-
countered.

(b) Combine this approach with standard equations of phase equi-

libria, to calculate some ternary phase diagrams from binary
data only.

(c) Suggest how the scheme may be extended to higher order systems
and how it may be improved with a correction factor based on a

few experimental points.

SYMBOLS: Throughout this paper all extensive functions are molar
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quantities

superseript z for excess thermodynamic function V
superseript k for correction thermodynamic function V
subscripts (4, B, crystal, liquid) for function ¥V of phases
A, B, ete.

subseripts (4, §, 1, 2) for function V of components ¢, j, 1, 2
function V for component ¢ in phase 4

number of components in the system

gas constant

chemical potential

Gibbs free energy

absolute temperature

mole fraction

activity

activity coefficient

temperature of fusion of pure crystalline component
heat of fusion of pure crystalline component ¢ at T7
heat of transformation of phase B to phase A, both
phases pure in ¢

regular or subregular solution model interaction energy
parameter between components ¢ and j in phase A

values of excess free energy of mixing across the binary 4j
normalized mole fraction of component ¢ in binary j,
from an n-component system

slope of Gff; at Z;;
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PartiaL AxD Total Excess FREE ENERGY AND THE ASYMMETRIC
SoruTioN MODEL

The original definition of the excess quantities can be extended to
chemical potentials (e.g., Thompson 1967) so that for any component 7,
pi(real) = pi(ideal) + ui(excess) where the superseript ° indicates
an excess quantity. However, p;(real) = u! + RTIna; = u! + RTIn N;
4+ RT In v; where v; is an activity coefficient. Since u;(ideal) = u? +
RT In N; it follows that u? = RT In v,. Like other partial molar quan-
tities, u? satisfies Moore (1963), so

(G
3V )

where the differential® is taken directly towards N; = 1 and

pi=G+(1-N)

G= Domi @)

i=1

Consider the n-component regular solution model (Kern and
Weisbrod 1967)

GI = Z Z N,'N,'W.',' (3)
i=1 >4
where W,; is the interaction energy constant between components ¢
and j. Each binary pair j contributes to the total G°. This can be
interpreted as

[(N,-]Yl—i N)(N..]j_i Ni>Ww'i:|(N¢' + N

The term in square brackets is the value of excess free energy in the
binary 7j at composition Z,; = (N,/N; + N,) and the term in heavy
parentheses is the dilution factor which the binary excess free energy
value is multiplied by to take its contribution into the n-component
system. Making G%; the value to the excess free energy in the binary
ij at Z,;, then G7; becomes

G = 3 2 GL(N. + N)". @)

i=1 >4
This is an asymmetric model and makes use of the actual values of
G7%; that occur in the binaries. The corresponding n-component formula
for u? must be derived by the application of (1) on (4). With respect

* All partial derivatives in this paper are understood to be obtained at con-
stant temperature.
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to component 1, a transformation, with constants C; = N i/ N,
2 < j < n, allows the differential in (1) to be taken directly towards
N, = 1. The resulting general expression for p} is

where
:; d(G
T dZy)’

that is, the slope of G%; in the binary ij at Z;;. Applying the general
formula (5) for three components

T = 2[(Ny + N,)Gi, + (N, + N3)Gis] + Niby, + Nobyy — 67
py = 2[(N, + N2)GT, + (N, + N3)G3] + Nabos + Nifoy — G° (6)
#: - 2[(N1 + Ns)Gfs + (Nz + N3)G;3] + N2032 + N1031 -G

where

5
l

= (Nl + N2)2 72 + (Nl + N3)2Gf3 + (Nz + Na)zG;:s

The form of G%; and 6;; in (5) is completely unspecified. This is an
advantage, for now if we wish to specify a certain model, say an n-
component regular solution model, then (5) may be used to generate
the corresponding explicit equations for pi: with Gf; = [N.N Wi/
N, + N)land 6;; = [(N; — N;)/(N. + N )W .; then by (5) we have

N 22 NNW., ZN,-(Ni_Ni)W-'i

K=22 N Ny T & W xnNy ¢

@
= 2 NW,; -G
iFEi
For a complex type of G%;, u% may be analytically calculated by a short
fifteen card general computer routine which uses (5) with the ap-
propriate substitutions for G7; and 6,;

Non-ideality in every binary system influences the activity of com-
ponent 7 since G in (5) and (7) has contributions from every binary.
Conversely, if another component is added to an n-component system,
data must be available from the n new binary systems introduced
before G7, u* and phase relations can be calculated. For a large number
of components then such calculations should be combined with experi-
mentally determined multicomponent equilibria or else the amount
of required primary data is enormous and often not available.
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EquaTions oF PrASE EQUILIBRIA AND DERIVATION
oF u; CURVES FROM BINARY PHASE DI1AGRAMS

The cryoscopic equation for simple eutectic liquids, used by Bowen
(1928), is

o e
Ina; = 5 (T‘E -7 ®

where a; is the activity of component  in the liquid phase at T, with
reference state pure crystalline 7 at T. Rearranging yields

,u:ERTln'y.-=AH'E(%,_ 1)—RTlnN,. 9
where v; is the activity coefficient of ¢ at Ni and T. Using (9) and
liquidus data from a simple binary phase diagram, a u% curve for com-
ponent Z in the liquid phase may be calculated for the composition
range between N7 = 1 and the simple eutectic composition, but not
on the other side of the eutectic. A modified Gibbs—Duhem integration
was used to complete the uj curve on j’s side of the eutectic. The fact
that u} curves must be continuous in general, more specifically at the
eutectic, permits the estimation of some metastable eutectics. The
position of the predicted eutectic temperature and composition may
be varied until the u3} curves are smooth and continuous at the eutectic
composition after the Gibbs-Duhem integration is used. Using the
existing liquidus data and this technique, the metastable eutectic
in the system anorthite-orthoclase is estimated to be at 1186 = 5°C
at 94.5 & 1 mole percent orthoclase.

For the case of solution phase A4 in equilibrium with solution phase B,
Kern and Weisbrod (1967) have shown, using u,, = py + RT In a4,
and piz = uip + RT In a,5 with standard states of the end members
of phases A and B being pure in component I at T, then for the reaction
B— A4

z E N o T
Mip — MHia = RT In <N1;> + AH13.4<1 = E) (10)
1

Similarly, with standard states of end members of phases A and B
being pure in component 2 at T,

t — uia = BT (1_—_N_)] | o(_£>
H2p pea = BT In |:(1 — NlB) + A4l 1 e (10)
where the temperature dependence of AH?,, is taken to be zero. Using
the concept of a moving first or second order approximation to a general
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G?, curves of u? may be obtained from binary phase diagrams of two
coexisting solution phases by substituting the regular solution model,
G° = N.N,Wis, or the subregular solution model, G* = N:N(N W2 +
N,W.;) into equations (10). Minimum and maximum values for the
error envelope about u® are obtained by combination of reasonable
errors in reading points of the phase diagram. A technique of curve
smoothing within the error envelope in N; > .5, combined with a
Gibbs-Duhem integration in N; < .5 results in curves for 3 that are
smooth and continuous in 0 < N; < 1 but the curves are not con-
strained to the shapes of regular solution or subregular solution model
4 curves. When two phases 4 and B form by unmixing of a single
phase, the above scheme can again be used with the additional re-
strictions of

Bix = Kp Q;qa = Gip (11)

(Kern and Weisbrod 1967) and AH?,, = O for T3 5 0. One additional
assumption that may be made with two immiscible phases is that
W.; is the same for both phases, and the equations that result for
generating u® curves for both models have already been developed
(Kern and Weisbrod 1967; Thompson 1967; Thompson and Waldbaum
1969Db).

ComPUTER CALCULATION OF PHASE EQUILIBRIA

A Fortran IV computer program GAPMIS has been designed, at
a specified temperature, to find by elimination, two areas A and B in
a ternary such that there exists activities g; so that

a; (in area A) = a, (in area B)
for components ¢+ = 1, 2, 3.

These two areas are then reduced in size until activity matching has
been demonstrated for two parallelograms of .005 mole fraction size,
with the resulting tie-line joining them. Isotherms are mapped out
by moving the initial search areas A and B at each specified temperature.
The data for calculating the ternary activities in the areas are derived
using %, data for the appropriate phase from the associated binary
phase diagrams, combined with (6) and a; = N. exp (ui/RT). The
actual input format of the G%; data used by GAPMIS is the two curves,
%, i, fitted in several parabolic segments. It is necessary, for calcula-
tions of solution erystal-liquid type equilibria, to refer activities in
the crystal to a fused state at the same composition and temperature
using (10), before activities may be matched with the coexisting liquid
phase at the same temperature. Strictly binary solid solution phases
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require activity matching for only the two components in the crys-
talline phase. Equilibria involving two immiscible phases, either solid
or liquid, are governed by (11) and activity matching of the necessary
components. Simple eutectic liquidus temperatures are calculated using
a rearrangement of (8)

T = —1T° _M_ - (12)

(RT; In N, — AHY)

with isotherms being hand contoured. The general procedures may be
extended to quaternary systems with activity matching in parallel-
piped volumes. Isotherms for a simple eutectic liquidus would better
be determined by activity matching between liquid and fused pure
crystal than by (12) with hand contouring.

GENERAL TERNARY RESULTS AND SUGGESTIONS

Repeatedly it was found that the predominant sign of the three
binary G7;’s was the same as the predominant sign of caleulated minus
experimental liquidus temperatures. This is consistent with a three-
component matrix reducing the strength of two-component interactions,
the result being that the calculated absolute values of an n-component
G* are too large. Since the sign of excess entropy need not be the same
as the sign of G", this consistency of sign also suggests that excess
entropy considerations (outside of the general G model used here)
are of secondary importance to the three component matrix effect.
Corrections to ideality assume the form of G(real) = G(ideal) +
G"(excess) and p.(real) = p;(ideal) + p3(excess), so that an empirical
correction to a predicted n-component non-ideality should take the
form of

G(real) = G(ideal) + G"(excess) + G*(correction) and
ui(real) = p;(ideal) + u5(excess) + pui(correction). (13)
There are several constraints which u! and G* must satisfy, such as

(a) both G* and x* must approach zero towards any binary,

(b) G* should have at least n-independent parameters so that in the
case of an (n + 1) phase point, the n-liquidus surfaces may be
adjusted independently to the experimental eutectic temperature
and composition,

(c) the sign of the parameters should reflect the sign of the correction
due to the n-component matrix effect mentioned above.
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One empirical model for G* which satisfies these restrictions is

¢ = [H IMa-nw - N,-)] S N.K, (14)

i=1 §>i i=1

with the resulting expression for xf, linear in K,

us = L[(xs — x5,) i N,K; + K.-N.] (15)

i=1

where

n n n n (N"+N1)
Be= (1 — N, — N, = FTR
HIIO-N=N),  as= 2 LGN Ny

both independent of choice of component 7, and

xs; = (N: + 1) ;(i__ NI’ - N,) ’

dependent on choice of component 7. The points used in calculating
K, are arbitrarily chosen as invariant points or points on univariant
curves: the data required are temperature, composition of liquid and
the composition of the coexisting solid solution phase, and these are
used in conjunction with equations (15), (13), and (9). Since com-
positions of small crystals are difficult to determine, melting experi-
ments are more suitable than crystallization experiments. The pre-
liminary calculated results can be used to guide the placing of the few
required experimental runs. If the compositions of the solid solution
phases are not known then more liquidus points on the cotectic are
required and it becomes difficult to solve for K.

CONCLUSIONS

The calculated systems quartz-fayalite-leucite, diopside-albite-
anorthite, and quartz-albite-orthoclase are shown in Figures 1, 2, and
4. The sources of liquidus-solidus data for these systems are presented
in Table 1. Molecular weights and heats of fusion are from Waldbaum
and Robie (1968), except the heat of fusion of leucite which was esti-
mated to be 6770 cals/mole from the systems leucite-quartz and
leucite-forsterite.

In the system quartz-fayalite-leucite, Figure 1, the calculated im-
miscibility fields are considerably larger than the experimental ones,
a reflection of the three-component matrix effect mentioned previously.
The minimum temperature of the internal immiscibility field is about
1090 = 10°C in both cases. The calculated internal immiseibility
field completely cuts across the field of crystallization of fayalite and
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TABLE 1

SOURCES OF THERMODYNAMIC DATA

SYSTEM SOURCE

quartz-fayalite-leucite Roedder {1951)
diopside-albite-anorthite Bowen (1928)
quartz-albite-orthoclase J. Schairer in Levin et al. (1964)

quartz-fayalite

quartz-foraterite

Fig. 786, Krauskopf (1967) fig. 14.1.
Levin et al. (1964) 586, 682, 696

levin et al. (1964) fig. 598, 683, 803,
Turner and Verhoogen (1960) page 126.

forsterite-leucite Levin et al. (1964) fig. 803, 811

fayalite-leucite .a’: from forsterite-leucite

leucite-quartz Levin et al. (1964) fig. 412, 795, 803,
Turner and Verhoogen (1960) page 107.

quartz-albite Iuth (1966-67)

quartzeorthoclase Iuth (1966-67)

orthoclase-anorthite Levin et al. (1964) fig. 795, 799,

diopside-albite Bowen (1928)

diopside-anorthite Bowen (1928)

albite-orthoclase Waldbaum and Thompson (1969) part 1V

albite-anorthite Deer ot al. (1966)

encroaches 250°C into the field of leucite. Actually, the line orthoclase-
fayalite crosses the immiscibility field between 1290 and 1320°C and
is cut by the immiscibility tie-lines in this area. This means that a
critically undersaturated liquid below the line orthoclase-fayalite could
exsolve a liquid above the line which would eventually fractionate to
free quartz, orthoclase and fayalite. If a few more components were
added it is entirely possible that this trend of immiseibility could occur
In systems close to natural rock systems. Philpotts (1970) has recently
found field evidence that liquids of quartz syenite composition show
immiscibility phenomena with liquids of feldspathoidal basalt com-
position in the Monteregian province of Quebec.

The shape of the calculated internal immiscibility field is quite
irregular although smooth. Now it is reasonable that an immiseibility
field should be elongated or stretched towards binary compositions
that support the liquid structures causing immisecibility, and if there
are three such structures then an irregular immiscibility field would
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Tio. 1. Low temperature liquid immiscibility field calculated in quartz-fayalite-
leucite

result, with the additional possibility of a three liquid field occurring
if the non-ideality is large enough. There are at least three common
well defined crystalline silicate structures, and the evidence suggests
that upon melting these structures locally persist up to high tempera-
tures (Porai-Koshits, 1953-1963). Ternary immiscibility fields are
inevitably shown with smooth regular isotherms and liquidus intersec-
tions but perhaps this is assumed rather than proven experimentally
(see McTaggart in Levin et al., 1964, Figure 783).

Alkemade’s rule (Levin et al., 1964) of ‘maximum temperatures along
a binary join is violated by the liquidus surfaces of fayalite and leucite
as they approach the binary fayalite-leucite. Consider the sources
of the data for this binary: AH¢,, is estimated from the liquidus surfaces
in quartz-leucite and forsterite-leucite, and ui,., #ra for fayalite-leucite
are assumed to be the same as for pZ,, ul.. from forsterite-leucite.
Both of these sources are open to question, but as there is no published
data on AH?,, or the binary liquidus in fayalite-leucite, the assumptions

leu
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Fre. 2. Liquidus surfaces and plagioclase icophases caleulated in diopside-albite-
anorthite

are necessary, and the calculated results must be of a preliminary
nature.

The calculated system diopside-albite-anorthite, Figure 2, compares
very well with Bowen’s (1928) experimental results, Figure 3. In
general the ternary liquidus calculated is high by 2-15°C with an
average of 8°C. Bowen's paths for the equilibrium crystallization of
liquids D and E permit the checking of temperatures and crystal
compositions calculated from a similar path mapped out using Figure
2. Table 2 shows the correspondence, with data source 3 resulting
from carefully plotting Bowen’s quoted compositions on his diagram
and interpolating temperatures using the isotherms. In four cdses this
changed temperatures by as much as 4-5°C. The compositions of
crystals at H and O are fixed by the bulk composition only, so here
the temperatures are the things to compare. The exercise in working
out & crystallizing path using the isocons of the coexisting plagioclase
immediately indicates the usefulness of the isocons. Further details
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are provided in another paper to be published, but in general it can be
stated that any type of erystallization path may be constructed easily
and quickly using the isocons. Much important information ecan be
obtained from these paths, but they can only be defined by extensive
crystallization experimentation or by the simpler use of the isocons,
Therefore a new term for this type of contour is proposed. The con-
tours are lines on the liquidus of constant composition of the coexist-
ing solid solution phase. The term suggested is icophase, short for
isocophase, with i for equal composition and cophase for the coexisting
phase. As a suggestion it would be worthwhile if simplified systems of
geological importance were redone experimentally with the purpose
of obtaining icophases of the main minerals that are solid solutions.
The solvus of feldspars in An-Or-Ab would require two sets of ico-
phases as the solid solution is ternary. Graphical construction of
erystallization paths may be replaced by computer if the information
contained in the icophases is fitted to an analytical function of the
liquid ecomposition.

REFERENCE

o Exparimental points
Bowan (1928)

......... leotherm

T'ia. 3. Comparison of calculated and experimental liquids surfaces and cooling
paths in diopside-albite-anorthite
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The calculations done on the granite system, Figure 4, yield slightly
higher temperatures than the experimental results. Table 3 shows the
results at the ternary minimum. The quoted accuracy of the binary
eutectic in quartz-orthoclase is 990 = 20°C so that the ternary
minimum might only be depressed one or two degrees below the
eutectic in quartz-orthoclase. If the experimental ternary minimum
1s accurate, the calculations would suggest that the eutectic in quartz-
orthoclase is near 982°C. One important fact shown by the calculated
icophases in Figure 4 is that the compositions of the coexisting alkali
feldspars change quite rapidly in the region of the minimum, especially
on the cotectic line towards albite. A change along the cotectic of 10
percent Ab in the liquid changes the composition of the coexisting
feldspar by as much as 25 percent Or. A strange thing also happens
if liquids close to Or are fractionally crystallized, for it appears to be
possible for the coexisting crystal to first get poorer in Or, but then as
the liquid swings and approaches the minimum from Ab, the crystal
will then increase in Or: the same composition of alkali feldspar can
crystallize at two different temperatures along the same crystallization
path. It would be interesting to see if this could be demonstrated in
the field.

TABLE 2
EGUILIBRIUM CRYSTALLIZATION IN
DIOPSTDE-ALBITE~ANCRTHITE

MOLE PERCENT VARIATION IN PLAGIOCLASE

source liquid mole % first first last

data Dio/Ab/An erystal diopside liquid
T X T X [ 4
1 D 18 D 1375 80 M 1216 66 H 1200 50
2 D 41 D 1385 80 K 1215 62 H 1200 50
B D 4 D 1380 80 M 1220 66 H 1200 50
1 B 13 E 1480 95 N 1245 85 0 1237 82
2 B 16 E 1480 94 N 1255 84 0 1251 82
3 E T E 1480 95 N 1249 85 01241 B2

SOURCES 1: Bowen (1928), 2: celculated, 3: Bowen (1928)



822 L. M. BARRON

REFERENCE

X : ternary minimum  988°C
205 quartz

340 albite
365 orthoclase
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Fic. 4. Liquidus surfaces and alkali-feldspar icophases calculated in the granite
system.
TABLE 3

PERNARY MINIMUM 1IN THE GRANITE  SYSTEM

Source Composition Weight Percent Temperature
Qtz Ab or *cent
Calculated 29.5 34.0 36.5 988
Experiment 35.0 27.0 38.0 975 %

# Krauskopf (1967)
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