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THERMODYNAMIC MULTICOMPONENT SILICATE
EQUILIBRIUM PHASE CALCULATIONS

L. M. BennoN, McGill Uniuersitg, Montreal, Canada'

AssrRAcr

Phase equilibria of solution phase-solution phase and pure phase-solution
phase type in binary and ternary systems are calculated by computer assuming
excess free energies are constant over the temperature ranges encountered. The
multicomponent activities are calculated with a thermodynamically consistent
equation from a general excess free energy model. Input data are heats of fusion
and partial excess che-ical potentials of mixing derived from binary phase dia-
grams. The system quartz-fayaliteJeucite has a calculated internal immissibil-
ity field at liquidus temperatures above ll@'C. The solid solution liquidus is
calculated for the granite system and diopside-albite-anorthite with an accu-
racy of :!8'C, -+5 Vo composilion of Iiquid and -+2Vo of crystal. Isocons of the
coexisting solid solution phase (icophases) are contoured on the ternary liquidus.
An empirical zr-component correction free energy with n-independent parameters
is suggested to adjust calculated results to experiments using orire (eutectic min-
imum) or two (cotectic line) points. The calcula.tions can be used to guide
experiments.

INrnonucrron

Modern authors have used a thermodynamic approach to calculate
phase diagrams, guide experimentation, and to restrict the number of
experiments necessary to define a system. This is espeeially valuable
when experimentation times are long or equipment is expensive. More
recently, Thompson and Waldbaum (1969b) and Green (1g20) hilve
used binary phase diagrams to obtain detailed thermodynamic data
based on non-ideal solution models, while Levin (1962), Olson (1965),
Blander (1968), and Thompson and Waldbaum (lg69a) hdve used
thermodynamic data to calculate binary and some,.ternary phase
diagrams. These calculations assumed a statistical fit of only one or
two parameters to binary excess free energy data; if more parameteffi
are added, the necessary formulation of the corresponding ??-component
excess chemical potentials rapidly becomes difrcult. To complicate
matters further, Lumsden (1966) and Green (1970) have shown that
although the regular and subregular solution models may adequat€ly
fit binary excess free energy values at one temperature, the resulting
excess entropies often do not agree )with those determined by calori-
metry. One solution to this problen.is to use a generdl excess free

'Present address: Geological Survey of New'So.uth Wales, Sydney, Australia.
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energy and excess entropy model but this requires much more primary

data than is usually available. The three purposes of this paper are to:

(a) Develop an easily computerised n-component general excess
free energy model that permit3 the use of precise binary excess

free energies as opposed fo a fitted one or two parameter model.

Excess entropies of mixing are not considered separately and

G' is assumed to be constant over the temperature ranges en-

countered.
(b) Combine this approach with standard equations of phase equi-

Iibria to calculate some ternary phase diagrams from binary

data only.
(c) Suggest how the scheme may be extended to higher order systems

and how it may be improved with a correction factor based on a

few experimental points.

SYMBOLS: Throughout this paper all extensive functions are molar
quantities

superscript, a for excess thermodynamic function 7
superscript /c for correction thermodynamic function 7
subscripts (A, B, crystal, liquid) for function I/ of phases
A, B, etc.
subscripts Q, i,lr 2) for function 7 of components i, i,1,2
function I/ for component i in phase /'
number of components in the system
gas constant
chemical potential
Gibbs free energy
absolute temperature
mole fraction
activity

y ectivity coefficient
f3 temperature of fusion of pure crystalline component f
AHi heat of fusion of pure crystalline component i at Ti
AHiun heat of transformation of phase B to phase .d-, both

phases pure in i
Wrin regular or subregular solution model interaction energy

parameter between components i and i in phase ,4

ffi, values of excess free energy of mixing &cross the binary ij
Z;r normalized mole frastion of component i in binary ei,

from an ?l-component sYstem
|tt slope of Gi, at Z;1

v'
vr
VA

v.
Vtn
n
R

It

G
T
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Penrrer, eNu Torer, Excnss Fnnn ENpncy AND THE Asylrunrnrc
Sor,urroN Moonr,

The original definition of the excess quantities can be extended to
chemical potentials (e.g., Thompson 1967) so that for any component f,
p;(real) : pr(id,eal) | pi@rcess) where the superscript " indicates
an excess quantity. However, r,,Jreal) : pi + RT ln u; : pi + RT ln N;
+ nT h 7; where 7; is an activity coefficient. Since p,t(i.d,eq,l) : pi *
RT ln N; it follows that p'u : RT ln 7n. Like other partial molar quan-
tities, pi satisfies Moore (1963), so

pi:G"+(1 -1r,) f f i  (1)

rvhere the differential'is taken d,i,rectlg towards ly', : 1 and

G" : i t'iN'
i - 1

Consider the a-component regular solution model (Kern and
Weisbrod 1967)

G":  > lNoN,w, ,
i - r  i > i

where l7;r is the interaction energy constant between components i
and j. Each binary pair ij contributes to the total G'. This can be
interpreted as

t("+*)k+*)',0}", * trr,)'
The term in square brackets is the value of excess free energy in the
binary aJ at composilion Zn, : (N;/N; * //n) and the term in heavy
parentheses is lhe diluti,on factor which the binary excess free energy
value is multiplied by to take its contribution into the n-component
system. Making Gi, tlne value to the excess free energy in the binary
ij at Zr;, then Gin becomes

G":  ' " ie i ,w,*N,) , .  (4)

This is an asymmetri. -oa"f u"U , rU". use of the actual values of
Gi, that occur in the binaries. The corresponding n-component formula
for pl must be derived by the application of (1) on (4). With respect

'All partial derivatives in this paper .are understood to be obtained at con-
stant temperature.

(2)

(3)
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to component 7, a transformation, with constants C; N,/Nr,
2 < j 1! n, allows the differential in (1) to be taken directly towards
N, : 1. The resulting general expression for pi is

t i  :2 i ( " ,aN; )Gi i  +  iN,s , ,  -  G"  (E)

where

^ d(Gi,)a,i = 
T@i ,

that is, the slope of Gio in the binary ii at Zai. Applying the general

formula (5) for three components

pi : 2l(N, -f N,)Gi, * (N, + N,)Ci,l -f N,0," + Ns?," - G',

pz : 2l(N, -l N,)Gi, * (N, + NJGi,l * N,d,, + N,0,, - G' (6)

pi : 2l(N,+ lrf3)Gi, * (ff, + NJGi,l * N,0", + N,0", - G'

where

G' : (N' I N,)"Gi, * (N, * NJ'Gi, + (N, -f N")"Gi"

The form of Gio and 0;; in (5) is completely unspecifi.ed. This is an
advantage, for now if we wish to specify a certain model, say arr n-

component regular solution model, then (5) may be used to generate

the corresponding explicit equations for pl: with Gio : lI'{rNiW;i/
(l/, * Ns)'l and g,i : [(N; - N,)/(tr[, * N )]W;t then by (5) we have

. . r _ o  $  N r N i l I / , i  r  i N r ( N r - N r ) I I l i r _ / - ,pi : z 
k@=frj - ?* (t/, * r/) (z)

:D*'* '-G"
For a complex type of Gi,, p: may be analytically calculated by a short
fifteen card general computer routine which uses (5) with the ap-
propriate substitutions for Gir and d;;.

Non-ideality in every binary system influences the activity of com-
ponent i since G" in (5) and (7) has contributions from every binary.
Conversely, if another component is added to an rz-component system,
data must be available from the n rlew binary systems introduced
before G', p,i and phase relations ca,n be calculated. For a large number
of components then such calculations should be combined with experi-
mentally determined multicomponent equilibria or else the amount
of required primary data is errormous and often not available.
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EeuerroNs op Puesn Eeurr,rsnre eNo Dnmv,q.ttolr
or pl Cunws FRoM BrNeny Psesn Drecneus

The cryoscopic equation for simple eutectic liquids, used by Bowen
(1928), is

. ^H.2 | | +) (8)I n a o : E \ n -  
r t

where ou is the activity of component i in the liquid phase at ?, with
reference state pure crystalline i at T. Rearranging yields

t t i  = Rr hr,  :  ^rr(#r- t)  -  Rr rnNt

where 7n is the activity coefficient of. i at Ni and ?. Using (g) and
liquidus data from a simple binary phase diagram, a p."; curve for com-
ponent i in the liquid phase may be calculated for the composition
range between Ni : I and the simple eutectic composition, but not
on the other side of the eutectic. A modified Gibbs-Duhem integration
was used to complete the pi curve on 1's side of the eutectic. The fact
lhat pi curves must be continuous in general, more specifi.cally at the
eutectic, permits the estimation of some metastable eutectics. The
position of the predicted eutectic temperature and composition may
be varied until the pri curves are smooth and continuous at the eutectic
composition after the Gibbs-Duhem integration is used. Using the
existing liquidus data and this technique, the metastable eutectic
in the system anorthite-orthoclase is estimated to be at 1186 + soO
at 94.5 * 1 mole percent orthoclase.

For the case of solution phase,4. in equilibrium with solution phase B,
Kern and Weisbrod (1967) have shown, using Fre : rrie + nT lrt a1a,
and p1s : rrin * RT ln or" with standard states of the end members
of phases -4 and B being pure in component I at T, then for the reaction
B ---+ A

(e)

(10)

Similarly, with standard states of end members of phases A and B
being pure in component 2 al, T,

t t i " - r . t i e :n r , ' [ ! l  
- { ' , ] l  /  ? \

--- - 'L(l - N,')l + ^1/;" '{\1 - 
n) 

(10)

where the temperature dependence of. A[iuo is taken to be zero. Using
the concept of a mou'ing first or second order approximation to a general

r.tia - r.Lid : Rr tn(#) + dm"^(r -k)
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G', curves of. pi may be obtained from binary phase diagrams of two

coexisting solution phases by substituting the regular solution model,
G" : NtNzW12, or the subregular solution model, G" : ly'tNr(NrWn *
N"Wrr) into equations (10). Minimum and maximum values for the

error envelope a,bout p,i are obtained by combination of reasonable
errors in reading points of the phase diagram. A technique of curve
smoothing within the error envelope in N, ) .5, combined with a

Gibbs-Duhem integration in Nr ( .5 results in curves for pi lhat arc
smooth and continuous in 0 3 Nr ( 1 but the curves are not con-
strained to the shapes of regular solution or subregular solution model
pri curves. When two phases ,4. and B form by unmixing of a single
phase, the above scheme can again be used with the additional re-
strictions of

ttfe : Pfa, a;.s,  :  &ia (11)

(Kern and Weisbrod 1967) and LHi"o : 0 for Ti * 0' one additional
assumption that may be made with two immiscible phases is that

W6 is the same for both phases, and the equations that result for
generating pi curves for both models have already been developed
(Kern and Weisbrod 1967; Thompson 1967; Thompson and Waldbaum
1969b).

Coupurpn Cer,cur,erroN op Pnesp EQurr,rsnre

A Fortran IV computer program GAPMIS has been designed, at
a specified temperature, to find by elimination' two areas /' and B in
a ternary such that there erists activities or so that

a; (in area A) : o, (in area B)

for comPonents i : 1,2, 3'

These two areas are then reduced in size until activity matching has

been demonstrated for two parallelograms of .005 mole fraction size,
with the resulting tieline joining them. Isotherms are mapped out

by moving the initial search areas,4 and B at each specified temperature.
The data for calculating the ternary activities in the areas &re derived
using Gio data for the appropriate phase from the associated binary
phase diagrams, combined with (6) and er : N; exp (p]/RT)' The

actual input format of the Gl, data used by GAPMIS is the two curves,

tri, trli, fitted in several parabolic segments. It is necessary, for calcula-
tions of solution crystal-liquid type equilibria, to refer activities in

the crystal to a fused state at the same composition and temperature
using (10), before activities may be matched with the coexisting liquid
phase at the same temperature. strictly binary solid solution phases
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require activity matching for only the two components in the crys-
talline phase. Equilibria involving two immiscible phases, either solid
or liquid, are governed by (11) and activity matching of the necessary
components. Simple eutectic liquidus temperatures are calculated using
a rearrangement of (8)

T=_T i
(u: + AH",) (r2)

(Rri ]d[Nt -  ^H1)

with isotherms being hand contoured. The general procedures may be
extended to quaternary systems with activity matching in parallel-
piped volumes. Isothenns for a simple eutectic liquidus would better
be determined by activity matching between liquid and fused pure
crystal than by (12) with hand contouring.

GoNnner, TnnNARy Rrsur,rs AND SuccESTroNS

Repeatedly it was found that the predominant sign of the three
binary Gir's was the same as the predominant sign of calculated minus
experimental liquidus temperatures. This is consistent with a three-
component matrix reducing the strength of two-component interactions,
the result being that the calculated absolute values of an zr-component
G' are too large. Since the sign of excess entropy need not be the same
as the sign of G", this consistency of sign also suggests that excess
entropy considerations (outside of the general G" model used here)
are of secondary importance to the three component matrix effect.
Corrections to id,eality assume the form ot G(real) G(ideal) *
fftemess) and pt;(real) : pnQdeal) | p,"r(ercess), so that an empirical
correction to a predicted n-component non-ideality sL.ottld take the
form of

G(real) : G(ideal) * G(ercess) | Gk(correction) and

p{real) : p,(ideal) * pikxcess) { p,on@orrection). (13)

There are several constraints which pf and G! must satisfy, such as

(a) both Go and pL must approach zero towards any binary,
(b) G* should have at least a-independent parameters so that, in the

case of a\ (n + 1) phase point, the nJiquidus surfaces may be
adjusted independently to the experimental eutectic temperature
and composition,

(c) the sign of the parameters should reflect the sign of the correction
due to the n-component matrix effect mentioned above.
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One empirical model for Go which satisfies these restrictions is

l n  r  I  "

"- 
: Lg g (t - ir- - r")J Et,^,

with the resulting expression for prn, linear in K;,

+ +  (No*Nr )rs: L k6=-fr=-fr)

(14)

fi : tl<^- rs,) h*,*,+ r(,N,] (1s)

where

n: II fI fr - Nn - N,),
k - l  i > k

both independent of choice of componenb i, and

rs; : (.ly'; + 1) i?^ (r - N , - l [ , ) '

dependent on choice of component i. The points used in calculating
K; are arbitrarily chosen as invariant points or points on univariant
curves: the data required are temperature, composition of liquid and
the composition of the coexisting solid solution phase, and these are
used in conjunction with equations (15), (13), and (9). Since com-
positions of small crystals are difficult to determine, melting experi-
ments are more suitable than crystallization experiments. The pre-
liminary calculated results can be used to guide the placing of the few
required experimental runs. If the compositions of the solid solution
phases are not known then more Iiquidus points on the cotectic are
required and it becomes difficult to solve for Kn.

Cowcr,usroNs

The calculated systems quartz-fayalite-leucite, diopside-albite-
anorthite, and quartz-albite-orthoclase are shown in Figures L,2, and
4- The sources of liquidus-solidus data for these systems are presented
in Table 1. Molecular weights and heats of fusion are from Waldbaum
and Robie (1968), except the heat of fusion of leucite which was esti-
mated to be 6770 cals/mole from the systems leueite-quartz and
leucite-forsterite.

In the system quartz-fayalite-leucite, Figure 1, the calculated im-
miscibility fields are considerably larger than the experimental ones,
a reflection of the three-component matrix effect mentioned previously.
The minimum temperature of the internal immiscibility field is about
1090 :b 10oC in both cases. The calculated internal immiscibility
field completely cuts across the field of crystallization of fayalite and
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TTBIE 1

SOURCES OP TEEN4ODIIIII{IC DA!j,
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SISIEI{

qurtafelalit+leucite

aUopsldFalblt&alortLite

qErtz€lbitsorthoclaBe

qBrthfayalite

qEtz-forsterite

fo16terltFlflcite

fayellte-leuclte

leucltbquartz

qurtz€lblte

quttz{rthoclase

orthoclEsHrolthlte

dlopsiale{Ibite

diopsidsaorthlto

albit&orthoclase

albit&ilortbite

souBcE

noodqer  ( t951)

amer (t9ze)

J. Sc&airer in lffl-a.st a!. (i9G4)
!1a. ?85, &auetopf, US'Z) tts. t+.t.

Icvln et al. (i954) fi6, 6ez, 696

_I€r i !  e t  a l .  (1954)  f ie .  5 .o  687,  @7,
TIlrer ud Velhoogo! (1950) page 126. 

'

r€vtr et er. (i954) fis. Oo!1 8tl

,kI t*t fort€rite-Ieucite

Iavia et 81. (1964) t+s. 412.7g5, @1t
Imor ed vertoog€n (i950) pe8€ 1dt.

rutb (t966-5?)

rurh (r956-5?)

reYin €t 81. (1954) fre.195,1gg.

rora (t9ee)

rovea (t9ze)

Yaldbau ud. fhonpso! (t9d9) pa* Iv

D€er st sI. (t965)

encroaches 250'c into the field of leucite. Actually, the line odhoclase-
fayalite crosses the immiscibility field between 1290 and r32Ooc and
is cut by the immiscibility tie-lines in this area. This means that a
critically undersaturated liquid below the line orthoclase-fayalite could
exsolve a liquid above the line which would eventually fractionate to
free quartz, orthoclase and fayalite. If a few more components were
added it is entirely possible that this trend of immiscibility could occur
in systems close to natural rock systems. Philpotts (lgz0) has recently
found field evidence that liquids of quartz syenite composition show
immiscibility phenomena with liquids of feldspathoidar basart com-
position in the Monteregian province of euebec.

The shape of the calculated internal immiscibility field is quite
irregular although smooth. Now it is reasonable that an immiscibility
field should be elongated or stretched towards binary compositions
that support the liquid structures causing immiscibility, and if there
are three such structures then an irregular immiscibility fierd wourd



818 L. M. BARNON

Frc. 1. Low temperature Iiquid immiscibility field calculated in quartz-fayalite-

leucite

result, with the additional possibility of a three liquid field occulring

if the non-ideality is large enough. There are at least three common

well defined crystalline silicate structures, and the evidence suggests

that upon melting these structures locally persist up to high tempera-

tures (Porai-Koshits, 1953-1963). Ternary immiscibility fields are

inevitably shown with smooth regular isotherms and liquidus intersec-

tions but perhaps this is assumed rather than proven experimentally
(see McTaggart in Levin ef aI.,1964, Figure 783).

Alkemade's rule (Levin et at., L964) of 'maximum temperatures along

a binary join is violated by the liquidus surfaces of fayalite and leucite

as they approach the binary fayalite-leucite. consider the sources

of the data for this binary: Ari".is estimated from the liquidus surfaces

in quartz-leucite and forsterite-leucite, and ttr'tou, ttr'Fo for fayalite-leucite

are assumed to be the same &s for p"p", 1ti"* fuom forsterite-Ieucite.

Both of these sources are open to question, but as there is no published

data on ari", ot the binary liquidus in fayalite-leucite, the assumptions

f?itht lmclim
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t39t Aoio3id!

Ftc. 2. Liquidus surfaces and plagioclase icophases carculated in diopside-albite-
anorthite

are necessary, and the calculated results must be of a preliminary
nature.

The calculated system diopside-albite-anorthite, Figure 2, compares
very well with Bowen's (1g28) experimental results, Figure B. In
general the ternary liquidus calculated is high by 2-1b"C with an
average of 8"c. Bowen's paths for the equilibrium crystallization of
liquids D and E permit the checking of temperatures and crystal
compositions calculated from a similar path mapped out using Figure
2. Table 2 shows the correspondence, with data source B resulting
from carefully plotting Bowen's quoted compositions on his diagram
and interpolating temperatures using the isotherms. In four cdses this
changed temperatures by as much as L-|"C. The compositions of
crystals at H and O are fixed by the bulk composition only, so here
the temperatures are the things to eompare. The exercise in working
out a crystallizing path using the isocons of the coexisting pragioclase
immediately indicates the usefulness of the isocons. Further details

819
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Iiquid composition.

o E'Filnd.t ptil. 
1
I 

Bor." ltez.)
__----- \ .  l .ot tua )

,dM^..|c!ldd

t[r tdbo

Frc. 3. Comparison of calculated and experimental liquids surfaces and cooling
paths in diopside-albite-anorthite
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The calculations done on the granite system, Figure 4, yield slightly
higher temperatures than the experimental results. Table B shows the
results at the ternary minimum. The quoted accuracy of the binary
eutectic in quartz-orthoclase is g90 = 20oC so that the ternary
minimum might only be depressed one or two degrees below the
eutectic in quartz-orthoclase. If the experimental ternary minimum
is accurate, the calculations would suggest that the eutectic in quartz-
orthoclase is near 982oc. one important fact shown by the calculated
icophases in Figure 4 is that the compositions of the coexisting alkali
feldspars change quite rapidly in the region of the minimum, especially
on the cotectic line towards albite. A change along the cotectic of 10
percent Ab in the liquid changes the composition of the coexisting
feldspar by as much as 25 percent Or. A strange thing also happens
if liquids close to Or are fractionally crystallized, for it appears to be
possible for the coexisting crystal to first get poorer in Or, but then as
the liquid swings and approaches the minimum from Ab, the crystal
will then increase in Or: the same composition of alkali feldspar can
crystallize at two different temperatures along the same crystallization
path. It would be interesting to see if this could be demonstrated in
the field.

TAII,E 2

EQI]ILIBRII'M CRYSTATIIZAIION Itr

821

IIOTE PERCETT VAT,IATIOtr IN PTJAGIOCIASE

EOUTCe

da ta

ltquid nole IE
DLo/Lb/L\

flnt firEt
cry8tel illopslde

T I [ X

last
liqulil

T I

a D

D

D

1 8

41

4 l

D 1'75

D 1585

D 1180

tr 1216 66

n 1215 62

t:I 1220 66

E | 2 O O  5 0

E t20o 50

E ' t2OO 50

80

80

80

I 1 t

t 6

7l

E r48O 95

E 14Ao 94

E 1480 95

N 1245

N 1255

$ t249

o  12n

o 1251

o 1241

a5

84

souRCEs 1! Boren (t9Ze), 2: calculsted, t3 Bor@ (i92s)

a2

a2
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