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ABSTRACT

The factor group method for calculation of the symmetry properties, and se-
lection rules for vibrational modes of crystals with known structures is reviewed.
A systematic procedure is presented which permits routine calculations for strue-
tures belonging to both symmorphic and non-symmorphic space groups.

INTRODUCTION

The interpretation of vibrational spectra of crystalline solids has
been limited largely to empirical approaches. The reason for this
state of affairs is that there has been no readily applicable way of
predicting the number and selection rules for the vibrational modes
of an arbitrary structure. Considerable work has been done on mole-
cular erystals and on simple crystals of high symmetry. Actually the
factor group method developed long ago is applicable to the general
case, but it has been little used. It is the purpose of this paper to
review the calculation of vibrational behavior for crystals from
their symmetry properties and to outline an easily applicable proce-
dure which requires only a pre-knowledge of the space group and the
population of the equipoints.?

The factor group method, whose introduction is credited to Bhaga-
vantam and Venkatarayudu (1939), allows the analysis of the vibrations
at k = 0, the center of the Brillouin zone for the entire crystal. The
site group method of Halford (1946) consists in deriving the number of
allowed modes of specified molecular entities on the basis of the sym-
metry of the site on which the molecule or coordinated group lies.
It is obviously an approximation that is aceeptable only to molecular
crystals such as carbonates, sulfates, phosphates, and the like, where
the forces between molecules are considerably weaker than those
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between atoms inside the molecule. Hornig (1948) and Winston and
Halford (1949) discussed the relationship of the factor group method
to the site group method. Following a long gap in the literature, a
number of recent papers have appeared that discuss factor and site
group analysis (Kopelman, 1967; Adams and Newton, 1970; Bertie
and Bell, 1971). A specific application to the spinel structure also uses
both methods (White and DeAngelis, 1967).

The main interest in the physics literature concerns the full dispersion
curves. Therefore, the approach is more strictly connected with the
irreducible representations of the full space groups and the factorization
of the dynamical matrix. Recent discussions include Chen (1967),
Streitwolf (1964), Warren (1968), and the extensive review of Maradudin
and Vosko (1968).

Most erystallographic and mineralogic application of infrared and
Raman spectroscopy requires only an interpretation of the first order
spectrum and only selection rules for the zone center, k = 0, are re-
quired. Thus the analytical treatment can be a great deal simpler than
that required for treatment of the dispersion curves for the entire
Brillouin zone. It is still required, however, to take account of the
entire unit cell and not merely molecular groupings within the cell.

Facror GrouP ANALYSIS

A crystal may be considered to be composed of N primitive unit cells,
each of which contains r atoms. The total number of vibrational degrees
of freedom is 3rN. These are distributed in 3r branches (some of which
may be degenerate) throughout the first Brillouin zone. The individual
vibrations along the branches are labeled with a linear momentum
vector, k. Complete information about the vibrational displacements
of all atoms in the crystal is contained in the dynamical matrix, D (k).
(See Maradudin and Vosko, 1968). A central problem in lattice dynamics
is the factorization and diagonalization of the dynamical matrix for
some choice of interatomic forces. D (k) is invariant under the primitive
translations of the lattice, due to cyclic boundary conditions and thus
can be constructed from a single unit cell. D (k) is of dimension 3r X 3r.

The momenta of phonons excited by first order infrared absorption
and Raman scattering are very small. We are therefore concerned with
the special case of k = 0, the vibrational behavior of the crystal at
the center of the Brillouin zone—the so-called I-point. The energy of
three of the 3r phonon branches goes to zero as k — 0. These are called
the acoustic modes and are equivalent to pure translations of free
molecules. There remain 3r — 3 optical branches with finite energy
at k = 0; some are possibly degenerate.
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The Factor Group

There has been some confusion in the chemical literature over the
various groups which describe the symmetry of crystals and sites
within erystals. The factor group must be derived properly to lead
to an exact definition of the invariance properties of a unit cell.

A space group, @, is a set of operators of the type*

(R| T + t}
where R represents a rotation (proper or improper), T is a lattice
translation, and ¢ is a fractional lattice translation.

Operators of the type {R|0} represent rotations (proper or im-
proper) and form one of the thirty-two crystallographic point groups.
{E | 0} is the identity element. Operators of the type {E | T} repre-
sent pure lattice translations and form an invariant (or normal) sub-
group of the space group, called the translation group.

A subgroup is invariant if its left and right cosets, with respect to
an element of the group, are equal:

(RIT+ G (E|T) = (E|T) (R|T +1)
or of it is formed from whole classes of the group.

For 73 of the 230 space groups t = 0 for all elements (that is, there
are no fractional translations) and they are called symmorphic. The
remaining 157 space groups have some elements with ¢t = 0 (i.e., con-
tain glide planes or screw axes) and are called non-symmorphic.

Given an invariant subgroup T, we can define a factor group G/T
whose elements are the cosets of the invariant subgroup. In the
case of the space groups, the factor group of the invariant subgroup
of translations is formed by the elements

(B0} (E|T}, {R|G{E|T}, - {R, |8} {E|T}

The identity element of the factor group is the translation group
itself. The elements of the space group

(E]10}, {R.|t), (B}, - (B, |1}

are called coset representatives. The coset representatives can be
defined also as the symmetry elements of a unit cell. There are as
many coset representatives as there are elements in the crystallo-
graphic point group. Each element of the factor group, therefore, con-
tains an infinite number of components. The geometric reality of

1 Brillouin zones for all 14 Bravais lattices and the operator notation used
above are described in detail by Koster (1957).
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these can be seen by sketching the symmetry elements onto a model of
the crystal. Each element of rotational symmetry is duplicated many
times by the lattice translations. It is this property that gives all unit
cells the same rotational symmetry regardless of their selection from
an arbitrary position in the crystal.

The most important properties of the factor group are its isomorphism
(one-to-one correspondence) with the crystallographic point group and
the fact that its irreducible representations are also irreducible repre-
sentations of the space group. The irreducible representations of the
translation group {E | T} are all one-dimensional, and are given by
=T , where k is the wave vector and T is a lattice translation, here
considered as a vector,

In symmorphic space groups (¢ = 0) the coset representatives are
all of the type {R | 0} and they form a group which is the point
group. In non-symmorphic space groups the coset representatives do
not form a group and this is due to the presence of glide planes and
serew axes (successive application of a glide or a serew operation
is equivalent to a lattice translation, which does not belong to the
factor group). Some authors have defined a “unit cell group.” Hornig
(1948) identifies it with the factor group. Kopelman (1967), however,
considers it as distinct from the point group and the factor group.
This cannot be considered correct, because for non-symmorphic space
groups the coset representatives do not form a group (therefore a “unit
cell group” cannot be defined), and for symmorphic space groups they
form a group which is identical with the point group.

If the coset representatives act on a function which has translational
symmetry a representation of the factor group is obtained (Jones,
1960). In other words, the coset representatives of a non-symmorphic
space group do not form a group, but the matrices obtained by acting
with them on a function with translational symmetry do form a group,
which is a representation of the factor group. This property permits
us to use simple factor group analysis for all structures regardless
of whether their space groups are symmorphic or nonsymmorphic.

Reducible Representations

The classification of the degrees of freedom of the vibrating crystal
among the irreducible representations of the factor group can be
approached in several ways. The most general would be to construct
a set of g (one for each element of the factor group) 3r X 3r matrices
which transform the structure into itself. This set of matrices forms
a reducible representation of the factor group. The traces of these
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matrices are the reducible characters which can then be analyzed by
standard methods.

Such a procedure is unnecessary if one needs only the classification
of the normal modes. The symmetry operators acting on individual
atoms in the structure are all matrices of the form

cos # sin @ 0
—sin 8 cosf O )
0 0 +1

where @ is the angle of rotation about the particular symmetry axis.
The full 3r X 3r matrices are constructed of these 3 X 3 blocks, one for
each atom. Only those blocks which lie on the diagonal of the 3r X 3r
matrices will contribute to the reducible character and these will be
the blocks assigned to atoms which remain fixed during the symmetry
operation. We can construct a generalized character for each class
of symmetry operations as

X, = wp(:l:]- + 2 cos 0) (2)

where o, is the number of atoms which remain fixed during the opera-
tions of class p. This is indeed the formula used by Bhagavantam and
Venkatarayudu (1939) in their original paper, and which has since
been widely used by others. The problem of analyzing the symmetry
properties is simplified to the problem of determining the invariance
conditions of the unit cell.

The operations of screw axes and glide planes, which are proper
elements of the factor group, cannot, in general, contribute to the re-
ducible character, because the fractional translation will not leave any
atoms invariant.

The equation takes the positive sign for proper rotations and the
negative sign for improper rotations. The identities

E=C,
c =38,
'i=Sg

permit all symmetry operations to be treated as rotations.
When a complete set of reducible characters has been calculated,
the distribution of normal modes is made by the group theory theorem

; _
m= D XeloXo' 3)
P
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n; 1s the number of times the 7 th irreducible representation is con-
tained in the reducible representation, g is the order of the factor
group; x, is the reducible character calculated above for each class,
p; 0o is the order of the classes, and y,* is the character of class p
in the 4 th irreducible representation. The summation is over all classes
of the factor group. The isomorphism between the factor group and the
crystallographic point group permits the use of standard character
tables for the irreducible representations such as published in Wilson,
Decius, and Cross (1955), Koster (1957), or in many other books
on spectroscopy.

The selection rules for each irreducible representation of the factor
group are determined by noting the transformation properties for the
dipole moment operator (for IR activity) and the polarizability ten-
sor (for Raman activity). The distribution of these functions is given
in many of the standard tables and the method for their derivation, or
for the derivation of other operators is given by Mitra and Gielisse
(1964). The polarization dependence of the vibrational spectra of non-
cubic crystals is likewise given by the selection rules.

Cuoice oF Unit CELL

There are several choices for the unit cell on which to perform the
factor group calculation: the crystallographic cell, the primitive cell,
and the Wigner-Seitz cell. Those space groups with primitive unit cells
pose no problems, since the normal crystallographic cell can be used
directly. If the crystallographic cell is nonprimitive, the factor group
calculation will introduce redundant modes.

The usual construction of the primitive cell for a nonprimitive lat-
tice is not very useful, since it does not reflect directly the full sym-
metry of the structure.

The Wigner-Seitz cell has maximum possible symmetry, and it is
primitive. It reflects the full factor group symmetry for symmorphic
space groups. The Wigner-Seitz cell is constructed for each Bravais
lattice by first locating all of the lattice points. Using an arbitrary lattice
point as an origin, vectors are drawn to each of the neighboring lattice
points. This done, perpendicular bisectors to these vectors are con-
structed. These planes will intersect to form a closed volume which is
the Wigner-Seitz cell. This cell is the one commonly used for analytical
calculations of band properties. It has the advantage that the origin is
in the center of the cell and that there is a close relationship between
the Wigner-Seitz cell drawn in real space and the Brillouin zone drawn
in reciprocal (k) space. Koster (1957) illustrates these cells for all
Bravais lattices.



VIBRATIONAL SPECTRA 261

While the use of the Wigner-Seitz cell seems advantageous when
deriving symmetry coordinates, the crystallographic cell is by far the
most convenient to use in mode classification, since most available
crystal structure data are referred to this cell and the tables to be used
later are based on this cell. The redundancy of the nonprimitive cells
is easily removed. There are, however, numerous instances in the
literature of failure to account for the redundancy with the result of
predieting more modes than were observed.

A primitive cell is defined by Koster (1957) as the smallest volume
from which the entire erystal can be reproduced by translation through
the primitive translations. It follows that the primitive cell contains a
single lattice point which is invariant under all rotational operations of
the space group. The usual crystallographic cell is made up of a small
integral number of primitive cells obtained by translating the primitive
cell lattice point in a prescribed manner, and then redefining the trans-
lation vectors to correspond to the expanded cell. Since the redefinition
of the cell affects only the elements of the translation group, by defini-
tion the identity element of the factor group, the distribution of degrees
of freedom among the factor group irreducible representations does
not change. The redundancy is introduced, because each set of equi-
points in the primitive cell is duplicated for each additional lattice
point in the enlarged cell.

When an analysis is made of the invariance conditions of atoms in
the full crystallographic cell, each invariant atom will, in fact, have
been counted too many times. Since the redefinition of unit cell does
not affect the rotational symmetry, the redundancy is contained
equally in the characters of all symmetry classes and can be simply
divided out.

Xprim. cell = X_hll;—e“ (4)
where £ is the number of lattice points (primitive cells) in the full
crystallographic cell.

£

4 for face-centered cells

= 3 for hexagonal forms of rhombohedral cells

= 2 for body-centered and base-centered cells
This analysis also applies to any larger cell which it might be con-
venient to construct for some special purpose.

DETERMINATIONS OF THE INVARIANCE CONDITIONS FOR CRYSTALS

Tt seems clear that the main stumbling block in the path of wide-
spread application of factor group analysis to complex crystals is the
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determination of the invariance conditions. Once these are known the
remainder of the analysis is mechanical. It is easy to determine which
atoms of a molecule are invariant under the various symmetry opera-
tions by simple inspection, Analysis of a complex structure, particu-
larly one belonging to a non-symmorphic space group is much less
obvious. One can, of course, construct a model of the crystal, locate
all elements of factor group symmetry, and inspect for invariance and
use equation 4 to eliminate redundancy. This approach works well
for simple crystals but is tedious for complex ones. Likewise, the
chances for error increase with complexity.

The information inputs that one normally has available are the
International Tables of Crystallography (Henry and Lonsdale, 1965)
and the crystal structure of the material. The International Tables list
all equipoints for each space group with the point symmetry and pub-
lished structure analyses give the distribution of atoms among the
equipoints. We have developed a method to calculate the number of
atoms invariant under each factor group symmetry class directly from
this erystallographic information.

The formula to be justified is

aQerySh ol D= wsgﬁ )
or
- _9h
w,(prim. cell) = iy, (6)

where g is the order of the factor group, & is the order of H, the point
symmetry of the equipoint (or site group), g, the number of elements
in the class p in G, h, the number of elements in the same class p in H.
wp is the number of atoms left unshifted by the operations of class pin
the factor group and wg is the number of atoms on the equipoint.

As first step, let us justify

m being the number of crystallographically equivalent sites having
symmetry H. Buerger (1960) calls m the “rank of the equipoint.” He
shows that the rank of the general position is equal to ¢ (p. 249). He
also shows that when a point lies on a symmetry element of order n
(n = 3 for C3, n = 2 for ¢, etc.) its rank is reduced by a factor 1/n
and when it lies on two symmetry elements of order n; and 7 its rank
is reduced by a factor (1 /mang). If we take n = h (we can think of
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the order % of H as being made up of the product of the orders ny, ng,
ng -+ - of the generating elements of H) m = g/h follows immediately.

Consider m points (the m positions of symmetry H). There are g,
symmetry elements of class p. These symmetry clements pass (h, at a
time) through the m points. One needs m X h, elements to cover all
the points, but only g, are available. Therefore, each of the g, elements
must pass through (m X h,/g,) points (that is, leaves m X h,/g,
atoms unshifted). The m points are equivalent, as are the g, symmetry
elements. Obviously, when h, = g, each symmetry element must pass
through all the points.

Finally, the number of atoms populating an equipoint must be equal
to the rank of the equipoint in order for symmetry to be preserved.
Thus the number of atoms which remain invariant under the factor

group is related to the total number of atoms on a particular site either
by

h,

w, = wWg g—
14
where the formula refers to any crystallographic cell or by
_gh
kg,
which automatically refers to the primitive cell. The invariance condi-

tions can be tabulated for each sublattice, summed for each symmetry
class, and the reducible character calculated in the usual manner.

Wy

SoME REPRESENTATIVE EXAMPLES

As an illustration of this procedure for factor group analysis we
examine a few structures in detail.

1) Perovskite

The basic perovskite structure (e.g., SrTiO;) is primitive cubic.
There are several structures based on distortions of the perovskite
strueture. Two of these are the orthorhombic GdFeOj structure and
the trigonal LaAlQ; structure. Factor group analysis would allow a
comparison of the expected IR and Raman spectra of the three struc-
tures.

The normal mode behavior of perovskite is very well understood and
it makes a good illustrative example. The crucial steps are presented
in Table 1. Perovskite belongs to symmorphic space group Oy', Pm3m
with one formula unit per unit cell. Using SrTiO; as a typical example,
the Sr2* is on the 1(a) site, the Ti** on the 1(b) site and the 3 oxygen
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TABLE 1. INVARIANCE CONDITIONS FOR PEROVSKITE

o, E Bc3 «Sc2 6ch 3¢, Gs,‘L 836 30, sod

1(a), o,
se™ | 1 1 1 1 1 1 1 1 1 1

1(v), o,
" | 1 1 1 1 1 1 1 1 1

" 4 )
3(a), Dyy, E - ac, ac, 2¢) ¢, i 28), - 0, 29 204
3072 3 0 1 102 1 3 1 o 12 1
z 3 5 5 3 2 5 3
aup b | 3
15 0 -3 3 -5 -15 -3 o 7 3
L= uTlu * T2u

ions on the 3(d) site. The point symmetries of these occupied sites are
tabulated in the left column of table 1. The next step is to match the
classes of the subgroup with the corresponding classes of the factor
group. This step is trivial for the 1(a) and 1(b) sites, since the sub-
group is the same as the factor group. The 3(d) sites are more com-
plicated. The diagonal axes, 2C,”, of the Dy, subgroup correspond to
the edge diagonals of the cube. IIowever, both the class of 2Cy" and
the class Cz in Dy, correspond to the same 3C, class of the factor
group. This situation occurs rather frequently. The number of atoms
in each sublattice that remain invariant can now be written down, by
using equation 5 or 6. An atom will be invariant under a factor group
operation only if that symmetry operation appears in the point sym-
metry of the sublattice. From the total population of the equipoint
(sublattice) , the proportion that remain invariant is determined by the
ratio of the order of the subgroup class to the order of the correspond-
ing factor group class. These are the numbers tabulated with each sub-
lattice in Table 1. One then merely sums the invariant atoms over all
equipoints and obtains the total invariant atoms, w,. From , the re-
ducible character and its decomposition into the irreducible representa-
tions of the factor group follow according to equations 2 and 3 and, of
course, are the well known result.

The GdFeO; structure belongs to space group D%, Pbnm with 4
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formula units in the primitive cell (Geller and Wood, 1956). Table 2
gives the distribution of atoms on the equipoints and their point
symmetries. All rotation elements in this space group are screw axes
and do not contribute to the character. Here we have to decide which
factor group class of mirror planes to select as the unique subgroup
class. This choice is made by the selection of crystallographic axes in
an orthorhombic system. The space group symbol Pbnm places the
true mirror perpendicular to the c-axis 50 ¢, is selected. Other
orientations are frequently used and indeed Geller and Wood’s choice
is not that of the International Tables (Pnma). The remainder of the
analysis follows as before.

The structure of LaAlO; (Geller and Bala, 1956) is trigonal, space
group Ds,°, R3m with two formula units in the trigonal cell. The analysis
is summarized in Table 3.

It should be noted here that although both D, and Dsg are sub-
groups of Oy, the normal mode distribution in tables 2 and 3 cannot
be obtained by a simple descent of symmetry argument. The distor-

TABLE 2. INVARIANCE CONDITIONS FOR GdFe03 STRUCTURE

Don :: c,ylz) €y CZ(X) 1 Ty 9(xz) Iyz)
by (c),cs E - - = - C_ - -
b aast i a 0 0 4 0 )
L (b),ci E - - - i [s} 0 0
L pe3t 4 j 0 0 L 0 0 0
b(e),o, E = 3 = = G = 5
¥ 072 (1) L a 0 a 0 " 5 0
8 (d),cl E - - - - - - -
802 (11) 8 a o] 0 o} 0 0 0
u, 20 0 0 0 i 8 0 0
T 60 0 0 0 -12 8 0 Q

=TAg+TB +5By +53y

+ 8 Au+ 8 Byt 108, + 10 B3u
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TABLE 3, INVARIANCE CONDITIONS FOR LeAlO, STRUCTURE

3
D, B ac, 3C, i 2s¢ 30,
1 (a) 38 1 1 1 1 1
D3q
1 (p) 1 1 il 1 1 1
2 a3t
2 (e), Cayl E 2C, - - - 30,
2 et | 2 2 0 0 0 2
6 (n), c | E = . = = o
6o | 6 0 0 0 0 2
w 10 N 2 2 2 6
o]
i 30 0 -2 -6 0 6

1"=3A1g+.t\.2g+laEg+Alu+SA2u+‘6Eu

tion of the structure and the enlarged unit cells make a full factor
group analysis mandatory if the spectra of the three structures are
to be properly compared.

1) Pollucite

Pollucite, Cs;_sNa,A418::06:xH,0 (z = 0.3), is a complex network
silicate. It is cubie, space group O°, Ia3d with 16 formula units per
unit cell (Newnham, 1967). An analysis given in Table 4 illustrates
the simplicity of the method. Water and Na* are believed by Newnham
to substitute on the cesium site and so are not included separately. The
only difficulty is in placing the two-fold axes. The C; axis associated
with the cesium sublattice must be perpendicular to the Cj axis in Ds
symmetry, therefore is perpendicular to the cube body diagonal and
must be an edge diagnoal, the 6Cs class of O;. The other two-fold axis
is associated with the 8104 and AlO, tetrahedra and its position must
be determined by an examination of the structure.

Since the crystallographic cell is body-centered, the multiplicity of
the equipoints listed in the International Tables for X-ray Crystal-
lography refers to this cell and therefore is twice as large as that for
the primitive cell which contains only 8 formula units. By using equa-
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TABLE L. INVARIANCE CONDITIONS FOR POLLUCITE

o, E 8c 6C, Gch 3C 1 6sh 886 30, 60

3 2 2 h a

16 (), 0, | = 2c, 3c, - - - - - - -
cs® 8 2 i 0 0 0 0 0 0 0

48 (g), 02 E — = - c2 - = = = =
APt 24 0 0 o 8 o o 0 0

96 (n), ¢ | E - & = & - = = = -

02 L8 2 0 o} il g 0 g ] s}

<]

bt
na
=
o
]

[}
&

o} o} 0 o]

T=4Aa +5A

+9E +16T, +15T
lg 2g 4 g 1g 2g

+ha  +54

. + Oy & 16 Ty, * 15 Ty

2u

tion 6 the correct number of atoms for the primitive cell is obtained
automatically. The symmetry restrictions are very powerful and only
16 IR miodes are permitted for this very complex structure.

SUMMARY
It is possible to make very routine calculations of the symmetry of
normal modes and their selection rules for crystals of arbitrarily com-
plex structure. The required data are the distributions of atoms on the
equipoints of the space group. The steps in the analysis then are:

i. Determine the invariance conditions for each sublattice, using
equation 5 or 6.
il. Sum these over all sublattices and calculate the reducible repre
sentation.
iii. Distribute the degrees of freedom among the irreducible repre-
sentations of the factor group, using equation 3.
iv. Write the selection rules in the usual manner.
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