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ABSTRACT

By studying the distribution of a component between two coexisting phases
(inter—crystalline ion-exchange equilibrium) or between two nonequivalent sites
in a crystalline solution (intra-crystalline ion-exchange equilibrium) at a certain
P and T, we may obtain useful thermodynamic quantities which include the free
energy, heat and entropy of mixing, and the activity-composition relation in
the crystalline solutions involved. The determination of these quantities involves
the use of suitable solution models for the phases or for the mixing on the
individual structural sites. Examples of calculations are given for the coexisting
olivine and chloride solutions and for the orthopyroxene crystalline solution.
The thermodynamic properties calculated are the activity-composition relation
and excess free energy of mixing in Fe*~Mg* olivine between 500 to 650°C, and
the heat and entropy of mixing in orthopyroxene at 600 and 800°C.

INTRODUCTION

To understand the general principles which are the basis of our
numerous petrologic phase diagrams and which can explain the
chemistry and genesis of the natural mineral assemblages, we need
the thermodynamic quantities for the phases involved. Kelley . (1960)
and Robie (1966), among others, have gathered thermodynamic data
on several mineral phases. However, for most of the rock—forming
crystals and crystalline solutions the data are still meager. It is,
therefore, an attractive proposition to be able to obtain some useful
thermodynamic information by the study of phase equilibria in either
synthetic systems or in natural mineral assemblages. One such ap-
proach has been used by Thompson (1967), Thompson and Waldbaum
(1969), and Green (1970). This method uses the data on coexisting
minerals on the solvus bounding a two-phase region. The two phases
form by unmixing of homogeneous crystalline solution at tempera-
tures below the critical temperature of mixing. In order that we
may be able to calculate the thermodynamic functions of mixing
from the solvus data by using Thompson and Waldbaum’s (1969)
equations (5), both these phases must obey the same equation of
state. In other words, the crystal structure must be the same in the
two phases. Unfortunately most rock—forming solutions unmix into
phases which do not have the same crystal structure. This limits
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the use of the solvus data in calculating the thermodynamic ’quari-
tities for such solutions if the data on the free energy of formation
for the end members are not known.

The purpose of this paper is to discuss two other alternative
methods. In the first method, the data on the distribution of a com-
ponent between two coexisting phases at a certain P and T are used.
In the second method, the data on the cation site occupancies in the
crystal are used. We may term these two methods as inter—crystalline
ion-exchange equilibrium method and the intra-crystalline ion—ex-
change equilibrium method respectively.

INTER-CRYSTALLINE IoN-ExCHANGE EQUILIBRIUM METHOD
Thermodynamics

Let the excess free energy of mixing Gmy for a binary solution
represented by the chemical formula (A, B) M be given by a power
series in the mole fraction 4 (= A/A + B) (Guggenheim, 1937) as

GEM = zAzB{AO + Al(fI?A - 3313) -+ A2(xA = xB)z + - } (1)
where Ao, 4,, and A, ete. are constants for a fixed P and T. The ac-
tivity coefficients f are then given by

RTInf, = z5°[Ao + A:(8zs — zp) + As(zs — 28) (52s — ) + -+ -]
@

RTInfs = z,*[Ao — A:1(8zn — 24) + As(xs — 22) (Brp — 24) + - -]
&)

we may also write

RT In }{A = Ao(@s — 24) + A,(6x,25 — 1) + Asx(wp — 24)(1 — Szszp)
€y

An ion-exchange equilibrium at a certain P and T between two
binary solutions o and 8 whose chemical formulae are (A, B) M and
(A, B) N respectively may be expressed by the reaction

AN + BM = BN + AM (a)
The equilibrium constant K, is given by
a8 ar f
T s 8 fa
. - () :
Za xBﬁ fa fBﬂ ®)
where « and B are used to denote phases containing M and N re-
spectively. The term in the first bracket is the distribution coefficient
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Kp. Transforming (5) into the logarithmic form, and rearranging
we have

mm:m&—méﬂ m&) (6)
fA fB
substituting relations such as (4) in (6), we have
In KD =In Ka AO (xA .’l:Ba) - % (6:(:,,“123“ — 1)
Ao B . e _ 7
(wB Za (GxA 15’ — 1) ™

It may be solved by a numeric least squares method yielding In K,
and other constants.

If we put 4; and A, equal to zero in equation (1), we have the
‘simple mixture’ symmetric solution model. In such a case, equation
(7) may be used in the following familiar form:

o W s
InK, =K, +RT(1 ZxA)—-R—T(I—%A) ®
where W’s are equivalent to Ay’s in equation (1).
We may also use the regular solution model with quasi—chemical
approximation (Guggenheim, 1952). According to the quasi-chemical
model, fa is given by

e

where

di = Gals s, = gs¥e
Galy + daTn [ GaTa e [15:5051
Bi= {1 + 4¢.ds(exp 2W/zRT — 1}/*
2q may be regarded as an ‘effective coordination number’. z is the
coordination number and ¢’s are contact factors and may roughly
correspond to the atomic radii ratio or the molar volume ratio (see
Guggenheim, 1944, 1952; Green, 1970).

Substituting in (5) values of f4 and fg from relations as (9), we
have

2B — l)}’""ﬂ"”{ ¢Bﬁ(5f _ 1)},5“5/2
14 2 -/ 1
& { és"(B7 + 1) + 6.58° + 1)
¢Ba(ﬁix - 1)}gana/2{ ¢Aﬂ(/3f . 1)},.ﬂ¢Bﬂ/2
1 482G~ 1) 142G = 1)
{ S4B + 1) $u°(81 + 1)

=K. (10
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Given the quantities s gu® qaP, qs?, 22, 28 the interchange energy
W can be calculated by solving equation (6) using a numeric least
squares method and substituting values of f's from equation (9).

Example: Distribution of Fe** and Mg* between olivine and Fe-Mg
chloride solution

As an example of caleulating the activity—composition relation
in binary solutions using the distribution data, we consider the olivine—
chloride solution system.

Schulien, Friedrichsen, and Hellner (1970) studied the distribu-
tion of Fe?* and Mg?* between a chloride solution and olivine at
450° to 650°C. These data may be used for caleulating the activity—
composition in both olivine and in the chloride solution. We assume
that the chloride solution is a homogeneous solution phase and present
the ion-exchange equilibrium as done by Schulien et al. as

FeCl, 4 § Mg,Si0, = MgCl, + % Fe,SiO, (b

solution olivine solution olivine

The equilibrium constant is given by

- stml(xFeol ) - sz”l(fFeOl)!n
4 xFelol(ngol) 1/2 fFaaol(fMgol 1/2
We may now use one of the three methods represented by equations
(7), (8), and (10). In the present case, it was found by actual
computations that consistent thermodynamic parameters for the iso-
therms at 500, 550, and 650°C are given by only the ‘simple mixture’
model. Obviously the data, accurate as they are from an experimental
point of view, are not accurate enough for needing a two or more
constant equation (7) or the quasi-chemical approximation (10).

W/RT values calculated by using the ‘simple mixture’ model
are listed in Table 1. The data at 600°C was not considered because
of several scattered points. It is noted that W/RT for olivine at
450°C is greater than 2.0 and is unrealistic. If we consider a linear
relation between W’s, K,, and 1/T (Figs. 1 and 2), we find that
W/RT at 450°C is 2.0, and W*!/RT and K, are 0.91 and 0.76
respectively.

Figure 3 shows the distribution isotherms calculated by using
the data in Table 1 at 500, 550, and 650°C. The isotherm at 450°C
is plotted using the linearly extrapolated values of K, We, and WeoL
The model does not fit to this distribution isotherm at the Mg-rich
end. Figure 4 shows the activity-composition relation in olivine
(FexSi04~Mg,Si0,) at 500 and 550°C. At 650°C olivine is close to
ideal solution.
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TaBLE 1. INTER-CHANGE ENERGY W AND THE STANDARD FREE ENERGY CHANGE
AG® 1N OLIVINE-CHLORIDE SOLUTION SYSTEM

Weol E ~RThh K
T°C RT RT = AGg?, cal/mole
450 1.86 2.32 1433
500 0.87 1.28 723
550 0.59 0.73 421
650 0.52 -0.014 181

INTRA-CrYSTALLINE JoN-ExcHANGE EqQUILIBRIUM METHOD

If in a binary crystalline solution, we have two or more non-
equivalent structural sites, the two components are distributed be-
tween the sites. This distribution may be a function of temperature
and chemical composition. The equations (a) and (5) to (10) are
equally applicable to such an ion-exchange equilibrium. We may
then consider that o and g8 refer to the nonequivalent sites within
a crystalline solution. The method of calculating the thermodynamic
functions of mixing is explained by using the site occupancy data
in orthopyroxenes.

Orthopyroxene is one of the few important rock forming minerals
which can be considered as quasi-binary without significant loss
of accuracy. Usually more than 95 percent of the mineral is a
crystalline solution of the endmembers enstatite (MgSiO;) and fer-
rosilite (FeSiO;). Fe?* and Mg?* are distributed between two non-
equivalent sites M1 and M2. With the use of X-ray or Mdssbauer
spectroscopic technique, it is possible to determine the proportion
of Fe? in the two nonequivalent sites (Evans, Ghose, and Hafner,
1967). These data can be used with the help of suitable solution
models to determine the thermodynamic properties of the solution.

Inter—site ion—exchange

M1 and M2 sites may be regarded as two interpenetrating sub-
systems, each with its own thermodynamic properties of mixing. In
analogy with heterogeneous ion—exchange equilibria, we may write
the ion—exchange reaction as

Fe®* (M2) + Mg** (M1) = Fe**(M1) + Mg** (M2) (e

The equilibrium constant for the above reaction at a certain P and
T is
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K, is mainly a function of T, P has little influence.

W in cal/mole
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Fie. 2. In K, for the distribution of Mg* and Fe* between chloride solution and
olivine, plotted against 1/7.

free energy for ion-exchange at a certain 7' is

AG® = —RTIh K, (11)

This energy is a part of the total Gibbs free energy of the crystal
and is, therefore, an important thermodynamic quantity. To de-
termine AG,° or K,, we need first, the determination of the atomic
fractions zpM* and zpH® and second, the determination of the
partial activity coefficients f's which are functions of T' and com-
position. While the atomic fractions or the site occupancies can be
determined quantitatively by using X-ray or Mossbauer technique,
the partial activity coefficients cannot be determined without the use
of a certain solution model.

Order—disorder on individual sites and the choice of a solution model

Figure 5 (Figs. 1 and 2, Ghose, 1965) shows a scheme of ordering
in orthopyroxene crystals as a whole. In hypersthene (Fszo Enge) we
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have the possibility of complete occupation of M1 sites by Mg?* and
of M2 sites by Fe*. For all other compositions, one of the two ions
must inevitably occupy the sites other than they normally prefer.
In fact, as suggested before, we expect that the two ions will always
show some kind of equilibrium distribution over the two sites as a
function of temperature and composition. Although hypersthene has
the right composition to be completely ordered, thermodynamics of
the ion-exchange below a certain transition temperature precludes
the ordered structure shown in TFigure 5, at all temperatures above
absolute zero.
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Fie. 3. Distribution of Mg* and Fe* between olivine and chloride solution.
The data points are from Schulien et al. (1970). Crosses 650°C, solid circles

550°C, triangles 500°C, and open circles 450°C. The curves are least squares
curves using ‘simple mixture’ model for both the solutions.
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F16. 4. Activity-composition relation in olivine (MgFe) Sio.s0: at 500 and 550°C.
At 650°C, olivine is found to be nearly ideal.

For considering the ion-exchange (¢) we are required to consider
M1 and M2 individually as sub-systems. Complete order in the
crystal as a whole as shown in Figure 5 also means complete order
on the sites themselves. For all other compositions, we may consider
whether two neighboring M1 sites or M2 sites are both occupied by
the same cations or by two different cations. We may assume that the
occupancy of M1 and M2 sites by Mg?* and Fe?* is disordered and
that the solutions at the two sites approximate the ‘simple mixture’
model. The thermodynamic functions of mixing using this model
have been calculated and discussed before by Saxena and Ghose
(1971). The effect of ordering on the sites is considered here by using
the quasi-chemical approximation.
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Fre. 5. Mg*-Fe** ordering scheme in an orthopyroxene (Ghose, 1965).

Equilibrium constant, W4t qnd WH2

If we substitute M1, M2, Mg?* and Fe** for a ,3, 4 and:B in
equations (9) and (10), we have the relation among K, 8** and
B2, B’s are given by the equations: e

B = {1 + 4o, o Mexp 2WN/RTZ — DY (12)
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B"" = (1 + 4w, pr. " (exp 2W°/RTZ* — 1)}'*  (13)
Z and q for M1 and M2 sites

As the silicate framework does not significantly change its char-
acter as a function of temperature or Fe?'/Mg?* ratio, the sites M1
and M2 have definite configurations and the polyhedral geometry
changes only somewhat with changing Fe*/Mg?* ratio. We may, there-
fore, assume that the number of sites which are neighbors of any
one M1 site are two or four other M1 sites and qu,"* is equal to
gre™* and both are unity. A reference to Figure 5 shows that two
of the four M1 sites are somewhat nearer to a central M1. It may
be noted that the two inner strips with M1 sites and two outer strips
with M2 sites lie more or less in a plane. Since the two M2 strips
are separated by the intervening M1 sites, it is only realistic to
consider that number of neighboring M2 sites to any one M2 site is
only two. We may also assume that gr® = ¢u® = 1 and
substitute in (10) Z¥! = Z¥2 = 2 and all ¢’s as unity.

Results of calculations

The intracrystalline distribution data presented in Saxena and
Ghose (1971) was used to determine the quasi-chemical parameters
W¥L and W2 and the equilibrium constant K, by using least squares
analysis as suggested in the previous section. The distribution data
at 500°C was not used and the number of data points at 700°C was
not found sufficient for a satisfactory convergence. The values of
wHL W2 and K, at 600 and 800°C are listed in Table 2. Chi square
values for the simple mixture model and for the quasi-chemical
approximation are not significantly different.

TaBLE 2. QUASI-CHEMICAL PARAMETERS WMt AND W2 AND K, AS CALCULATED BY

(10).
Chi®
' e s Simple
T°C K. RT RT QC mix,
600 0.293 1.7 1.26 .027 017
800 0.273 0.733 0.469 .007 .004

Z{K(calculated) — K (by least squares)}?

s Chi2 =
Chi K (by least squares)
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Activity—composition relation at 600°C:

We may caleulate the ‘partial’ activity coefficients at the M1
site by using the relations

a0 _ ¢M_em(ﬂ_—1)}““”’/2
fae = {1 T 48 + 1) (14)

and similarly for fr” and finally determine the act1v1ty—com-
position relation in the crystal as a ‘whole by the equation:

ap"™ = (xFeMIfFen/ll)1/2(xFeM2fFeM2)l/2 (15)

The results of such calculations are presented in Figure 6. The

figure shows that there is very little difference between the activities

calculated by assuming the sites as ‘simple mixtures’ or as solutions
with quasi-chemical approximation.

Free energy, heat, and entropy of mizing in orthopyrozene

The free energy of mixing was calculated for the crystal as a
whole by Saxena and Ghose (1971), using the following relation:

GEMODx/xFeODXngODX
= Ao + Al(xFeopx = ngopx) + Az(xFeopx _'[ngODx)z f-maas (16)
which is of the form Y = ay + a2y + aozi® + -+ and may be

solved by a least squares program. The values of excess free energy
as calculated by Saxena and Ghose (1971) are used to caleulate the
three constants A4,, A;, and 4, shown in Table 3 by using a least
squares program on equation (16). Figure 7 shows three curves at
600, 700, and 800°C fitted to the data on reduced excess free energy
(GEM/xFe Zyg) versus (¥pe — Zu). This method of determining Ay,
Aj, and A, is more reliable than the Redlich and Kister method fol-
lowed by Saxena and Ghose (1971).
The three constants as a function of 1/7 are given by

3 3\ 2 3\3
4, 10802 = 33862(10) =+ 35135( 0> — 11202( O) 17)

T T
3 3\ 2
A, = 1789 — 3612(10 ) + 2008(1T0) (18)
3 3\ 2 3\ 3
A, = —13863 + 41051(1,_?,) = 40299( 0) 4 13426<1T0) (19)

"The heat of niiiing and the entropy of mixing can now be readily
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calculated using the following equa,tions:

YR Y .
or T T zre” Me

6A2

Opx __ Opx Opx Opx
—Sam = Tre TMg [ )

+ = (xFe — g ) e ] (20)

pPx pX PX aA
o =07 (28)

+ {Al r T(aa‘;f)}(xmop, - ngopx)

+ {Az - T(%)}(x

1.0 ;
& 05}
//
s / -——QC APPROXIMATION
/ x—— SIMPLE MIXTURE
0 1 | ; | | 1 | | I
0 : 0.5 1.0
oPX
XFe

Tia. 6. Activity-composition relation for FeSiOs in orthopyroxene crystalline
solution using ‘simple mixture’ and quasi-chemical models for the sites.
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TaBLe 3. THE THREE CONSTANTS A, A1, AND Az OBTAINED BY A LEAST SQUARES
Frr 10 EQuaTion (16). THE VALUES IN PARENTHESES WERE CALCULATED
BY UsiNg EquaTions (17) To (19)

T°C Ao A A,

500 1542 (1544) 494 (478) 871 (867)
600 1277 (1278) 233 (287) 454 (461)
700 976 (951) 251 (199) 321 (335)
800 652 (693) 165 (168) 298 (260)
900 548 (529) 159 (170) 143 (163)

Free energy of mixing and the M1 and M2 polyhedra
The free energy of mixing is given by

GMODX — HEM0px _ TSEMODx
+ R’—r'(-’lvlveovx In xmonx -+ ngopx In ngOpx) (22)

It may be useful to write an expression for the free energy of
mixing of the crystal as a whole in terms of partial thermodynamic
functions of mixing referring to the sites. We have for (Mg, Fe)
81,06

M1 M
G opx _ [ZFe — TFe
= = 2

AGJ’)

+ Hew™ + Hen™) — T(S™ 4+ 8 4+ Sea™ + Sen™)  (23)

Equation (23) is similar to the equation derived by Grover and
Orville (1969).

Note that I{EMODx & (HEMM1 -+ HEMMZ) and similarly TSEMODX =
T (S + Sem™?). The expression (23) divides the total free energy
of mixing into three terms. The term in the first bracket is the po-
tential due to the difference in the site occupancy energy. It includes
both the contributions of the standard enthalpy and entropy of the
exchange. The terms in the second and third brackets include the
heat of mixing and the entropy of mixing respectively at the individual
sites.

This division of the free energy of mixing is artificial. It may
be useful in understanding the change in free energy as a function
of temperature and order—disorder. Figures 8 and 9 show a com-
parison of the various functions of mixing at 600 and 800°C. The
values of Hpy and TSpy for the crystal as a whole are obtained by
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F1a. 7. Reduced excess free energy of mixing plotted against (zre — 2me) in
orthopyroxene. The curves are least squares fit using the equation (16).

using equations (20) and (21). It may be noted that the first energy

term
M.

M1 2
Treo — Tre 0
(B2 )

along with the entropy terms increase the negative G5°P* and make the
solution stable. The negative value of the first energy term decreases
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4000

3000

2000

Cal/mole

1000

~1000

{7
Fic. 8. Thermodynamic functions of mixing in orthopyroxene at 600°C, both at
the sites and in the crystal as a whole plotted against zr."™. The functions of
mixing at the sites correspond to the atomic fractions at M1 and M2 which in
turn correspond to an equilibrium distribution at 600°C in the crystal with
zre®™ as measured on the abscissa. The symbols 8", H¥, and S!'% are excess
entropy, excess enthalphy, and ideal entropy of mixing. AG’ is 1/2 (zpe™ — Zpe*®)
AGOO-
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Fra. 9. Thermodynamic functions of mixing 800°C plotted similarly as in Figure 8.

somewhat with increasing temperature indicating that the disordering
works against stability of the solution. This effect is, however, limited
and is overridden by the positive excess heat of mixing at the sites.

At 800°C the contributions of the ‘partial’ energies of mixing at
the sites to the energies of mixing in the crystal as a whole are some-
what asymmetric. The mixing energies Hgy®?* and T'Sgy©* have more
or less symmetric values. With decreasing temperature, the energies
of mixing at the sites increase, those for the M1 site increasing rela-
tively more than those for the M2 site. The Hgu®** and Sgy°r=,
therefore, become more and more asymmetric.



THERMODYNAMIC DATA FROM ION-EXCHANGE 1799

According to a preliminary observation by Virgo and Hafner
(1969), the M1 polyhedra is somewhat distorted at the enstatite
end but becomes more and more regular with increasing Fe?*/Mg?*
ratio. The M2 polyhedra is quite distorted at the enstatite end and
the distortion increases with increasing Fe?*/Mg ratio. These changes
in the polyhedra are directly correlated with the entropy and en-
thalpy of mixing on the sites. As the regularity increases in M1, the
energies of mixing increase. As the distortion increases in M2, the
energies of mixing decrease. Thus we require more energy into the
system to increase the regularity of M1. Energy requirements be-
come less as distortion increases in M2.

These results indicate that it may be possible to predict the
changes in the M1 and M2 polyhedral spaces as a function of tem-
perature and composition by determining the thermodynamic fune-
tions of mixing at the sites. Since the geometry of the polyhedra is
determined by the various bond lengths, such correlations between
the functions of mixing and the geometry of the polyhedra may
eventually lead to bridging the gap between crystal-chemistry and
thermodynamics of silicate crystalline solutions.
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