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AssTrRACT

Extended Hiickel molecular orbital calculations have been completed for isolated
and polymerized tetrahedral ions for ten silicate minerals in which A{(Q) =~ 0.0
using observed 0-8i-O and 8i-O-Si valence angles, assuming all Si~O bond lengths
are 1.634 and including silicon 3s and 3p and oxygen 2s and 2p atomic orbitals as the
basis set. The resultant Mulliken bond overlap populations, n(8i-0), .correlate with
observed Si~O bond lengths, the shorter bonds being associated with the larger
n(Si-0). I the five Si(3d) atomic orbitals are also included in the basis set, the
observed 8i~O(br) and 8i-O(nbr) bond lengths correlate with n(Si-0) as two separate
trends with overlap populations for the Si-O(nbr) bonds exceeding those for Si-O(br)
by about 20 percent, even if the Si-O-Si angle is 180°. Calculation of n(Si-O) as a
function of the Si~0-Si angle for the Si—O bonds in Si,;07% (assuming Si-O = 1.63A
and ¥ O-Si~O = 109.47°) first excluding and then including the 3d—orbitals, predicts
in each case that the 8i-O(br) bond lengths should decrease non-linearly and that
the Si~O(nbr) bond lengths should increase slightly as the Si—-O-Si angle increases.

Scatter diagrams of observed Si—O(br) bond lengths to two—coordinated oxygens
versus the Si~0-8i angle appear to vary non-linearly with the shorter bonds tending
to occur at wider angles. If these bond lengths are replotted against —1/cos(Si-0-8i),
the scatter diagrams show improved linear trends. Multiple linear and stepwise
regression analyses of the bond lengths as a function of —1/cos(Si-0-Si), A{(O)
and (CN) indicate that each makes a significant contribution to the variance of the
Si~O(br) bond length. The conclusion by Baur (1971) that the Si~O(br) bond length
is independent of Si-O-Si angle in silicates for which A{(O) = 0.0 can be rejected at
the 99 percent confidence level.

INTRODUCTION
Pauling (1939) has concluded from the electronegativity difference
between Si and O that the Si-O o—bond has about 50 percent ionic

iNow at the Geology Department, Rutgers—The State University, New
Brunswick, New Jersey 08903.
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character, attributing a charge of about +2 on the silicon atom.
Because this charge exceeds +1, thereby violating his electroneu-
trality principle, he (1952) postulated the formation of d-p =—bonds
between the two atoms to neutralize the charge. Using an empirical
equation relating interatomic distance to the amount of ~—bond char-
acter, he then computed a Si-O distance of 1.63A in close agreement
with reported values. Subsequently, Fyfe (1954) calculated semi-
empirical bond energies for the Si0, tetrahedron as a funetion of the
8i-O separation, and concluded that the relatively short Si-O bond
can be explained without resorting to extensive double bonding. On
the other hand, Cruickshank (1961) has asserted on the basis of
group-theoretic arguments, approximate molecular orbital calcula-
tions, and group overlap integrals that of the five 3d-orbitals, only
the two e orbitals on silicon form strong =—bonds with the appropriate
2pr lone pair orbitals on oxygen. The Si(38d) orbital involvement in
the 8i-O bond has since been substantiated by all-electron ab initio
SCF molecular orbital calculations for the silicate ion and orthosilicie
acid (Collins, Cruickshank, and Breeze, 1972). These calculations
show (1) that there is considerable Si(3d)-orbital participation in
the wavefunctions with the e orbitals forming =—bonds and the ¢,
orbitals forming o—bonds with the appropriate valence orbitals on
oxygen; (2) that the calculated L; s X-ray fluorescence spectra using
3d-orbitals are in remarkably good agreement with the experimental
spectra of silica glass; the agreement is notably poorer when the
3d-orbitals are not included in the calculation (see Fig. 1); and
(3) that the residual charge on Si is not +4 as assumed in an electro-
static model but is close to zero in reasonable agreement with Pauling’s
electroneutrality principle and the results of a Si(K)-spectrochemical
shift study by Urusov (1967).

Within the last decade a large number of silicate and siloxane
structures have been carefully refined using precise diffraction data
obtained by modern techniques. These refinements have revealed a
number of systematic variations in bond lengths and bond angles:
(1) the Si-O(nbr) bonds are usually shorter than the Si-O(br) bonds;
(2) shorter Si-O bonds are usually involved in wider O-Si-O and
Si-O-Si angles; and (3) the tetrahedral angles usually decrease in the
order

X[O(nbr)-Si-O(nbr)] > X[0(nbr)-Si-O(br)] > X[0(br)-Si-O(br)].

Several investigators have argued that these variations can be ration-
alized in terms of a covalent model that includes 3d—orbital involvement
between silicon and oxygen (cf. Cruickshank, 1961; Lazarev, 1964;
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F1c. 1. Comparison of (a) the
experimental L.s X-ray flu-
orescence spectra for silica. glass
with that calculated by Collins
et al, (1972) from results ob-
tained in all-electron ab initio
SFC MO ecalculations on the
silicate ion (b) using an ex-
tended basis set that includes
Si(3d) orbitals and (c) using a
minimum basis set that ex-
cludes Si(3d) orbitals.
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McDonald and Cruickshank, 1967a; Cannillo, Rossi, and Ungaretti,
1968; Bokii and Struchkov, 1968; Noll, 1968; Brown, Gibbs, and Ribbe,
1969; Brown and Gibbs, 1970; Louisnathan and Smith, 1971; Mitchell,
Bloss, and Gibbs, 1971). On the other hand, consistency with a covalent
model that includes 3d—orbital involvement does not, of course, preclude
other bonding models. For example, Mitchell (1969) notes that the
same trends are implicit both in Gillespie’s (1960) valence—shell electron—
pair repulsion model and in a molecular orbital model involving a
valence basis set of atomic orbitals (without the 3d-orbitals of Si).

Despite the systematic variations observed between Si-O bond

length and the Si-O-Si and 0-Si-O angles in silicates and siloxanes,
no attempt has yet been made to rationalize these trends in terms of
modern valence theory. An attempt at such a classification should not
only serve to improve our understanding and interpretation of such
observables as the elastic constants (Wiedner and Simmons, 1972), the
bond polarizabilities (Revesz, 1971), the diamagnetic susceptibilities
{Verhoogen, 1958), the Raman and infrared spectra (Griffith, 1969)
and the X-ray emission and fluorescence spectra (Dodd and Glen,
1969; Urch, 1969; Collins et al., 1972) of silicates in general but should
also clarify our understanding of the long-range and short-range
forces involved in Al/Si ordering (Stewart and Ribbe, 1969; Brown
and Gibbs, 1970}. \

Recently, Baur (1970, 1971) attempted to rationalize the Si-O bond
length variations for a large number of silicates in terms of an electro-
static model by showing that the Si-O bond lengths predicted by his
so—called extended electrostatic valence rule correlate well with those
observed for structures where A{(0O) = 0. However, he notes that
the rule fails to predict bond length variations in silicates like quartz
and forsterite where A¢(O) = 0.0. In spite of this shortcoming, Baur has
rejected Cruickshank’s double bonding model in favor of an electrostatic

t For Si~O bond length variations in the tetrahedral portion of a silicate, the
extended electrostatic valence rule states that the deviation of an individual Si-O
bond from the mean length, (Si-O), in a silicate ion is proportional to A{(0). The
actual bond length is predicted by the empirical equation

8i-Oprea. = {Si-0) + 0.091 AZ(O)

where A{(0) = ¥O) — {(0), $(0) is the sum of the Pauling (1929; 1960) bond
strengths received by sxygen and{(O) is the mean {(O) for the silicate ion under
consideration. Baur (1970, 1971) uses po instead of £(O) to denote the sum of the bond
strengths received by oxygen. However, we prefer to retain Pauling’s symbolism for
two reasons: (1) {(O) is an accepted symbol used by many investigators and (2) p
denotes bond-order or bond—-number in modern valence theory (¢f. Coulson, 1939;
Pople et al., 1965; and Mulliken, 1955).
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model (1) because he could not prove a dependence between Si-O bond
length variation and Si-O-Si angle for five silica polymorphs' and four
disilicates where A{(0) = 0.0 and (2) because the Si-O bond length
variations in 26 structures containing disilicate ions (where A{f(0) # 0
for the most part) show a better correlation when plotted against Af(O)
than when plotted against < [Si~0-Si]. Even though the latter result
suggests that more of the variation in bond length may be explained
in terms of A ‘(O) than in terms of the angle, it cannot be concluded
a priori that the bond length variation is independent of the angle
without appropriate statistical tests.

According to Baur (1971), the main difference between his electro-
static model and Cruickshank’s double bonding model is that the
latter stresses the importance of the intrinsic electronic structure of
the tetrahedral ions whereas his electrostatic model stresses the ex-
trinsic effects from the the non-tetrahedral cations. Although Baur
is aware of the empirical nature of his model and the faet that it
certainly cannot replace a model based on electronic structure, he has
stated that future models for the Si—-O bond (1) should incorporate
the electronic structure of the constituent atoms as well as the effects
of the non-tetrahedral cations and (2) should begin where his electro-
static model breaks down (for minerals like forsterite, quartz, etc.).
The Si-O bond length variations in forsterite were recently examined
in terms of extended Hiickel molecular orbital (EHMO) theory by
Louisnathan and Gibbs (1971) who found that the observed bond
length variations show a close correspondence with bond overlap
populations, n(Si-0), calculated (1) for the silicate ion alone and
(2) for the silicate ion with its nearest neighbor non-tetrahedral
cations and their ligands.

*The relationship between Si-O distance and Si-O-Si ahgle for the silica
polymorphs was recently re-examined by D. Taylor (1972); see Mineral.” Mag.
38, 629-631. After correcting the Si-O distances in the polymorphs for thermal
motion of the oxygen atoms, Taylor calculated a regression line for the cor-
rected Si-O bond lengths and their associated Si-O-Si angles. He found the re-
sulting line to be less steep than those calculated earlier by Brown et al. (1969)
for the framework silicates but statistically identical to the one calculated in. our
study (see Table 3). Moreover, Taylor notes the probability the slope of the line
might be zero is a little less than 0.05, a result at variance with the findings by
Baur (1971) who believes that a dependence between Si-O distance and Si-O-Si
angles does not exist for minerals like the silica polymorphs where A{(0) = 00.
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n(Si-0) caleulated with Si(spd) valence basis
set for the silicate ion in forsterite

(1) For the silicate ion (2) With non-tetrahedral

alone cations and their ligands
Bond Length n(Si~0) n(Si-0)
Si~0(1) = 1.6134 0.935 1.003
Si-0(2) = 1.654 0.878 0.931
Si-0(3) = 1.635 0.892 0.968

The n(Si~0O) caleulated for the silicate ion alone (see col. 1 above)
were made using the observed O-Si-O angles but with all $i-O dis-
tances set equal to 1.63A. Despite the assumption in the calculation
that all 8i-O bond lengths are constant, it is clear that the resulting
n(8i-0) can be used to order the observed Si-O bond lengths in
forsterite. Encouraged by this result, the present study was under-
taken to learn whether or not EHMO theory can serve as a model for
classifying and ordering Si-O bond length variations when the non—
tetrahedral cations are ignored and Az(0)=0.0. Moreover, in the
event that these calculations prove successful, they should improve
our understanding of the nature of the Si-O bond in terms of modern
valence theory and provide plausible reasons for the variation of
individual Si-O bond lengths in silicates and siloxanes in general. In
addition, new scatter diagrams of Si-O (br) bond length plotted against
Si-O-Si angle will be presented for data from 31 carefully refined
silicate and several siloxane structures in which AL(O) is zero or
small. The relative contributions of Si-0-8i, —1 /cos (Si-0-Si), A¢(0),
and (CN) (the mean coordination number of oxygen bonded to
silicon) to the Si-O(br) bond length in these structures will be as-
sessed using multiple linear and stepwise regression methods® (see
appendix). The outcome of the analysis will show that we can reject
the hypothesis that a relationship between Si~O (br) and Si-0-Si angle
might not exist for silicates where AZ(0) = 0.0.

Tue CALCULATION AND SIGNIFICANCE OF BoND OVERLAP POPULATIONS
OBTAINED IN THE EXTENDED HiCREL MOLECULAR ORBITAL THEORY

Since Pauling (1929) formulated his famous set of rules for predict-
ing stable atom configurations in ionie crystals, many silicate struc-
tures have been investigated by X-ray methods and have been found

* Linear, multiple linear, and stepwise linear regression computations presented
in our paper were completed using the UCLA BIOMEDICAL PROGRAM
PACKAGE, 1967.
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to' conform remarkably well. Nevertheless, the steric details of the
tetrahedral ions in many of these same silicates also appear to con-
form with a model that includes covalent bonding (cf. Brown et al.,
1969; Brown and Gibbs, 1970). In an attempt to learn whether these
details are indeed consistent with covalent theory, extended Hiickel
molecular orbital calculations were made for the tetrahedral ions in
ten silicate minerals specifically chosen such that AZ(O) is either zero
or small. In this way the importance of the intrinsic electronic struc-
ture of the tetrahedral ions can be emphasized to the reader (Hamil,
Gibbs, Bartell and Yow, 1971). Silicates showing a larger variation in
A¢(0) will be considered elsewhere by Louisnathan and Gibbs in a
study of the disilicates (1972d). EHMO calculations, although very
inexpensive and crude by ab initio standards (Richards and Horsley,
1970), have been moderately successful in generating Walsh-Mulliken
diagrams (molecular orbital energies plotted against bond angle)
(¢f. Hoffmann, 1963; Gavin, 1969; Allen, 1970; 1972) and in de-
lineating trends in variations of bond length with bond overlap popu-
lations or bond order for a number of relatively large molecules in
their ground states (cf. Dallinga and Ross, 1968; Gavin, 1969; Boyd
and Lipscomb, 1969). Recently, Bartell, Su, and Yow (1970) calcu-
lated EHMO bond overlap populations for the tetrahedral bonds in
selected sulfates and phosphates and found that they show strong
correlations with (1) the simple valence bond orders assigned by
Cruickshank (1961) and (2) the observed tetrahedral bond lengths.
To learn whether Si-O bond overlap populations for the silicates show
similar trends, calculations were undertaken using an EHMO pro-
gram originally written by Hoffmann (1963). In the calculations, one—
electron molecular orbitals, MOs, are constructed as a linear combi-
nation of atomic orbitals, LCAO,

¥, = Zl Ci®;
where c;; are the linear coefficients and ¢; the Slater type single ex-
ponent atomic valence orbitals. The energy associated with an MO,
e, is obtained by diagonalizing the secular determinant, |Hy; — eSy| =
0, where S;; are the two center overlap integrals (explicitly evaluated
from the positional coordinates of the constituent atoms), and H;; are
the elements of the Hiickel Hamiltonian matrix. In the rigorous
Roothaan-Hartree-Fock method, the H;; are complicated functions of
the linear cocfficients and of two—, three—, and four—centered integrals,
and this fact requires an iterative solution of the secular equation
(Richards and Horsley, 1970). On the other hand, in EHMO theory
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the Hj terms are not explicitly evaluated but are chosen to simulate
spectroscopically obtained quantities, namely the negative of the
valence orbital ionization potentials (VOIP) whereas the H;; terms
are approximated by the Wolfsberg-Helmholz (1952) parametrization

Hy = 8yl + Hyy)-
When one-electron MOs are constructed and their energies obtained,
the Pauli exclusion principle is applied as an afterthought and the
MOs are filled with electrons pair-wise starting from the lowest
eigenstate. By inserting eigenvalues, ¢, into the set of secular equa-
tions,

Z (H:; — eSi)e; = 0,

f=1
the linear coefficients cy; are evaluated but they are not in any way
refined to self-consistency. It is important to note that trends in these
linear coefficients depend in large part on the geometry of the tetra-
hedral ions modeled in our ealculations. Finally, a Mulliken (1955)
population analysis is completed to obtain the desired Si-O bond over-
lap populations,

n(S0) = 2 X NE X X cucerSen

teSi §20 .
using the overlap integrals, the linear coefficients and the number of
electrons, N (k), (0, 1, or 2) in MO ¥;. The bond overlap populations
provide numerical estimates of the strength of covalent bonding and
anti-bonding between two atoms. Two atoms are considered to be
bonded when the overlap population is positive, nonbonded when it is
zero, and antibonded when it is negative; short bonds are usually
involved with large overlap populations and longer bonds with smaller
ones. If observed Si-O bond lengths are used in the calculation of
n(Si-0), the shorter bonds, which usually have larger overlap integrals,
Sy, will tend to have larger bond overlap populations than longer
bonds. As it is important to be able to diseriminate between this in-
duced correlation and that induced by the geometrical aspects of the
tetrahedral ions, we have undertaken two separate calculations (1)
using the observed O-Si-O and Si-O-Si angles and clamping all 8i-O
distances at 1.63A and (2) using the observed distances and angles.
By clamping all the Si-O at 1.63A, the correlation between 7n(8i-O)
and the observed Si-O bond length induced by the overlap integrals
is effectively removed and what remains should be related to the
intrinsic electronic structure of the ions induced in large part by such
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geometrical factors as the 0-Si-O and Si-O-Si angles. Because of the
very crude nature of the EHMO method intrinsic in' the very daring
approximations outlined above and because of the utter neglect of the
screening potential produced by the Coulomb and exchange interac-
tions, little significance can be attached to the actual numbers obtained
for n(Si-0). However, it is the trends between the calculated n(Si-O)
and the experimentally determined Si-O bond lengths that are con-
sidered significant, not the absolute numbers for any one tetrahedral
ion. Thus, EHMO results can be useful in ordering and classifying
observed bond lengths with bond overlap populations but it cannot be
used to prove the observed bond length variations nor can it be used
to prove the participation of the 3d-orbitals of Si in the wave functions
calculated for the ions studied.

The VOIP and orbital exponents used as input to the program are
given in Table 1. For the s— and p— orbitals the free—atom optimized
orbital exponents of Clementi and Raimondi (1963) were chosen
together with VOIP similar to the zero—charge values of Basch, Viste,
and Gray (1965). For the 3d orbitals of silicon, an orbital exponent
significantly higher than the Slater-rule value was adopted for reasons
discussed by Bartell et al. (1970), and Hsqzs was adjusted to —5.5 eV
to yield orbital and overlap populations comparable, in the case of
SiH,, to ab initio populations found by Boer and Lipscomb (1969).
These parameters gave 3d populations in SiO4*~ which turned out to
be of the same magnitude as the ab initio populations reported sub-
sequently by Collins et al. (1972).

A fundamental weakness of the extended Hiickel scheme (which is
not based on & bona fide Hamiltonian) is that its energies and wave
functions are sensitive to the somewhat arbitrary parameterization
adopted and, accordingly, have only a qualitative significance. On the
other hand, the EHMO trends in charge distributions and bond popu-

TasrLE 1. VALENCE ORBITAL IONIZATION
PorenTiaLs (VOIP) aAND ORBITAL
EXPONENTS (£).

Atom Atomic Orbital VOIP (V) £

Oxygen 2s —32.33 2.246
2p -15.79 2.227

Silicon 3s —14.19 1.634

3p -8.15 1.428
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lations in a series of related molecules have been found to be in-
sensitive to the exact parameterization; they are also roughly inde-
pendent of whether the VOIP are frozen at plausible values or are
adjusted to self-consistency with atomic charges (Basch et al., 1965).
Therefore, since the present investigation is a preliminary exploration
of trends in a series of structures, it seemed adequate to choose the
simplest variant of the extended Hiickel method with fixed VOIP and
exponents. Finally, it is important to note that one of the biggest
deficiencies of the extended Hiickel method is its failure to take ade-
quate account of the Coulomb interactions. The method works the
best for molecules where the electronegativity difference, Ay, between
bonded atoms is small. However, it starts to break down when Ay is
greater than approximately 1.3, the breakdown being complete when
Ax 2 2.5 (Allen, 1970). Thus, when heteropolar substances with inter-
mediate bond type (like the Si-O bond in a silicate where Ay = 1.7)
are studied, EHMO theory may be used to qualitatively diagnose the
covalent aspects of the bonding. Accordingly, it is of particular interest
to apply the EHMO method to silicate structures which have been
found to conform remarkably well in the past with Pauling’s rules®
for ionic crystals yet which also conform in many instances with a
model that includes covalent bonding,

THE RELaTIONsHIP BETWEEN Si-O (br) BoNp OvERLAP POPULATION
AND THE O-8i-O anp Si-O-Si ANGLES

In a study of several orthosilicates, Louisnathan and Gibbs (1972a)
have found that the tetrahedral valence angles in hypothetically dis-
torted SiO, tetrahedra have a pronounced effect on 7 (8i-0), the wider
O-Si-O angles being associated with bonds of larger overlap popula-
tions. They also showed for a number of silicates (1972b) that a
correlation can be made between the mean of three O-Si-O angles,
(O-8i-O)s, and the length of the Si-O bond common to these three
angles, shorter bonds tending to be associated with larger values of
(O-8i-0);. McDonald and Cruickshank (1967a) and more recently
Brown and Gibbs (1970) have also shown that shorter Si-O distances
are typically involved in wider O-Si-O angles. Although Baur (1970)
has also indicated that shorter Si-O distances tend to be involved in
wider O-8i-O angles, his geometrical model of a Si atom rattling

* According to Bent (1968) Pauling’s rules may, have a more universal applica-
tion as structural principles than heretofore realized because when suitably ra-
tionalized they may apply to covalent as well as ionic compounds, perhaps even
to metallic compounds.
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within a rigid tetrahedron of oxygen spheres is not realized in general
in the silicates (Louisnathan and Gibbs, 1972b).

The Si-O-Si angles in silicates (Liebau, 1961) and in siloxanes
(Noll, 1956) are usually between 130° and 140°, although angles as
wide as 180° are not uncommon. Except for an angle of 93° in SixO;
(Anderson and Ogden, 1969), angles less than 120° are rare. A bonding
model that includes Si(3d) orbital participation predicts that the
length of the Si-O(br) bond should increase as the Si-O-Si angle be-
comes narrower (Cruickshank, 1961). Moreover, as the Si-O-Si angle
narrows, increasing electrostatic repulsions between the Si-atoms and
decreasing s-character in the O (br)—orbitals (i.e., a decreasing o—bond
strength) are additional factors that are predicted to lengthen Si-
O(br) (Cruickshank, 1961; Brown et al., 1969).

In a re-investigation of the crystal structure of zunyite, Louisnathan
and Gibbs (1972¢) have found that the size of the tetrahedral angles has
a pronounced effect on n[Si—O(br)] in 8i,0,*~ ions with linear Si-O-Si
linkages. Thus, if X[O(br)-Si-O(nbr)] > <[O(nbr)-Si-O(nbr)], then
n[Si-O(br)] > n[Si-O(nbr)]. However, if <X[O(br)-Si-O(nbr)] =~
X[O(nbr)-Si-O(nbr)], then n[Si-O(br)] ~ n[Si~O(nbr)] whereas if
X[O(br)-Si-O(nbr)] < <X[O(nbr)-Si-O(nbr)] then =[Si~O(br)] <
n[Si—O(nbr)] (see Fig. 2). These results calculated with all Si-O bond
lengths clamped at 1.63A imply that the magnitude of the tetrahedral
angles plays an important role in establishing n[Si-O(br)] in the
Si-O(br)-Si linkage. In order to assess the nature of the relationship
between the Si-O(br) bond length and Si-O-Si angle, we calculated
n[Si-O(br)] as a function of Si-O-Si angle for the three Si2q1°' ions
shown in Figure 2. The results calculated with 8i-O = 1.63A and a
Si(sp) valence basis set are presented in Figure 3a. Regardless of the
size of the tetrahedral angles, n[Si-O(br)] increases non-linearly with
increasing Si-O-Si angle, the largest overlap population being associated
with the 180° angle. Analyses of the linear coefficient, c:;, and the
overlap, S,;, matrices indicate that the change in n[Si-O(br)] is related
to concomitant changes in both the - and m—bonding potentials. In
other words, widening of the Si-O-Si angle increases both the o~ and
m—bond strengths as proposed by Cruickshank (1961), Brown ef al.
(1969), and Brown and Gibbs (1970). Using results provided by the
theory of atomic orbital hybridization, Louisnathan and Gibbs (1972c)
have proposed that the Si—O(br) bond length should vary as a function
of —1/cos (Si-0-8i). When the n[Si-O(br)] are replotted as a function
of —1/cos (Si-O-8i), a well-defined linear relation (Fig. 4) is realized.

The trends predicted by EHMO theory are similar whether or not
the Si(3d) orbitals are included in the calculation (Figs. 3a and 3b),
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(a) (b) (c)

Fic. 2. A comparison of Si-O bond overlap populations (the decimal fractions
listed adjacent to the Si-O(br) and Si-O(nbr) bonds) calculated for three Siz0-5~ ions
(Dsh point symmetry with C; along the Si~O-Si linkage) where (@) ¥X[O(br)-Si-O
(nbr)] > L[O(nbr)-S8i-O(nbr)], (b) <X[O(br)-Si-O(nbr)] = <X[O(nbr)-Si-O(nbr)]
and (¢) X[O(br)-S8i-O(nbr)] < <X[O(nbr)-Si-O(nbr)]. The calculation was made
using a Si(sp) valence basis and with all 8i-O = 1.63A. Note that n[Si-O(br)] >
n[Si-O(nbr)] for the conformation in (a), n[Si~O(br)] ~ »[Si~O(nbr)] for (b) and that
n[Si-O(br)] < n[Si~O(nbr)] in (¢). (See Louisnathan and Gibbs, 1972¢).

suggesting that the observed steric details of a tetrahedral ion in a
silicate may not be used to establish the involvement of the 3d-orbitals
in the formation of the 8i—O bond. This is in agreement with Mitchell’s
(1969) assertion that “one cannot . . . expect experiments to establish
whether d-orbitals are ‘really’ used anymore than experiments can
show s and p orbitals definitely occur in bonding of the first row
elements” (see also Bartell et al., 1970).

Si-O Bonp LeEneTH VARIATION IN LOW-QUARTZ,
Low—CRISTOBALITE, AND COESITE

The silica polymorphs are possibly the most appropriate structures
for examining the dependence of Si~O(br) bond length on both the
0-Si~O and S8i-O-Si angles, because (1) there are no bonds other
than 8i-O(br), (2) all oxygens are two-coordinated and bridge two
tetrahedra, and (3) A¢(O) = 0. For our analysis, we have chosen data
from three precisely refined structures, all with e.s.d.’s less or equal
to 0.006A: low-quartz (Zachariasen and Plettinger, 1965), low—cristo-
balite (Dollase, 1965), and coesite (Araki and Zoltai, 1969) (Group A
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Fia. 3. Si-O(br) bond overlap populations calculated as a function of the
8i-O-8i angle for the three pyrosilicate ions depicted in Figure 2. (a) Si(sp)
basis with all Si-O = 163X and (b) Si(spd) basis with all Si-O = 163A.
Si-O(nbr) bond overlap populations for each ion increase only slightly with
Si-O-Si and accordingly are not shown.

in Table 2). The data for keatite and low—tridymite were not included
in the analysis for reasons given in the next section. The three struc-
tures chosen provide twelve individual Si-O (br) bond lengths varying
from 1.598 to 1.631A. Figure 5¢ is a scatter diagram of Si-O (br) bond
length versus (O-Si-0); angle; Figure 50 shows Si-O(br) versus
[—1/cos (Si-O-8i)]. Using the estimated standard error of the slopes
for the lines fitted to the distributions in Figures 5¢ and 5b (see Table
3), the null hypothesis can be tested that the true slope in each case
is zero; that is, that the Si-O(br) bond length is independent of
(O-8i-0)3 or —1/cos(Si-0O-Si). Student’s |¢| calculates to be 3.3
and 2.3 for the data in Figures 5¢ and 5b respectively (Table 3). Since
these values exceed the 90 percent confidence level (¢f. Draper and
Smith, 1966) of ¢(10, 0.90) = 1.4, we can reject the hypothesis that a
relationship between 8i-O(br) and —1/cos(Si-0-8i) or (O-Si-O)s
might not exist.

We have used the function [—1/cos (Si—-O-8i) | rather than the angle
itself because n[Si-O(br)] vary non-linearly with the angle but
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—1/c0s(8i-0-8i) where the bond overlap population was calculated for the
conformation in Figure 2b and a Si(sp) basis set.
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linearly with [—1/cos(Si-O-Si)] (Fig. 4). However, even if the
relationship between Si-O (br) bond length and Si-O-Si angle is as-
sumed to be linear, the hypothesis of no interdependence can again be
rejected at the 90 percent confidence level (see Table 3). When the
Si-O(br) lengths are estimated using the intercept and coefficients ob-
tained from a multiple linear regression analysis, using both (0O-Si-O);
and [—1/cos(Si-O-Si)] as independent variables, a reasonable cor-
respondence between the experimental and estimated distances is
observed (Fig. 5¢ and Table 2). Finally, two comments on Figures
5a and 5b are worth making: (1) the quantity [—1/cos(Si-O-Si)]
may be a better defined variable than (O-Si-O); because the former
includes a more accurate account of the hybridization characteristics
on O(br) than the latter does of the hybridization characteristics of
Si, and (2) the calculated slope [—0.05(2)] for Figure 5b is statis-
tically identical with that [—0.084(1)] obtained for n[Si-O (br)]
versus [—1/cos(Si-O-Si)] (Fig. 4b), an interesting coincidence de-

Table 2

$1-0(br) bond lengths, 51-0(br)-S1 angles, oxygen mean coordination umumber, <CN>,
and A7(0) for silica polymorphs, sllicates and siloxanes

Group A: $i-O(br) bond distance vs. 51-0(br)-Si angle data for silica
polymotphs where AL(0)=0.0 and <CN>=2.0

-1

$1-0(br) <§1-0(br)> 51-0-51 cos(S1-0-51) <CN> ag(0) Reference
Low Cristobalite $1~0(1) 1.601 1965
$1-0(2) 1.608 1.6045 146.8 1.1951 2.0 0.0 Dollase (1965}
Loeslite 51(1)-0(1) 1.600 1.600 180.0 1.0000 2.0 0.0
51(2)-0(2) 1.608 1.608 143.8 1,2392 2.0 0.0  Arakl and Zoltai (1969)
51€1)-0(3) 1.607
S1(2)-0(3) ¥ eiy 1.613 145.0 1.2208 2.0 0.0
S$1(1)-0(4) 1.598
$1(2)-0(4) 1.625 1.6115 150.4 1.1501 2.0 0.0
$1(1)-0(5) 1.631
51(2)-0(5) i¥ex7 1.6240 136.1 1.3878 2.0 0.0
Quarts 51-0(1) 1.603
Sio(ly’ e 1.6095 143.5 1.244C 2.0 0.0 Zlcmrn;:;x)h Plettinger

Group B: 51-0(br) bond distance va. S1-0(br)-51 angle data for silicates
and siloxanes where 47(0)=0.0 for all oxygens

Hemimorphite $1-0(4) 1.627 1.627 150.3 1.1512 2.8 0.0 McDonald & Cruickehank(1967b)
e R 1.639 132.9 1.4690 2.7 0.0  Fischer (1969)
Thortveitite $1-0(1) 16052  1.6052 180.0 1.0 2.9 0.0  Prewict (personal comm.)
Beryl 51-01(2) 1.5% Gibbs, Breck and
ST Leioe 15965 168.8 1.019% XTI T I o Bt s

ecald o s 1.5945 169.3 1.0177 2.7 0.0
Hy51-0-S1H, 1.63 163 146.1 1.235 2.0 0.0  Almennigen ec.al., (1963)
(©1,)(510) 1.635 1.635 131.6 1.5062 2.0 0.0  Oberhanmer (1972)
(145109, 1.622 1.622 164.8 1.2238 2.0 0.0
(CHy) (51005 1620 1.620 146.2 1.203 2.0 0.0
(€Hy) (5100 1.622 1.622 149.6 1.159 2.0 0.0

szslzﬂ7 $1-0(1) 1.626 1.626 180.0 1.0 2.9 0.0 Smolin & Shepelev (1970)

Er251207 $1-0(1) 1.632 1.632 180.0 1.0 2.9 0.0
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Anthophyllite

Clinorolisite

Piedmontite

Epfdote

MO CALCULATIONS FOR SILICATE IONS 1593

Group C:

51-0(1)

5L, ()0, (m)
51,(0)-07 (m)
51} (m)-0¢ (m)
S1) (w)-07 (m)

S1(3)-0(6)
81(4)-0(6)

§1(3)-0(6)
51(4)-0(s)

51-0(1)

51(1)-0(4)
51{2)-0(4)

51, (m)-0(m)
$17(0)-00 (m)
513 (m)-00 (m)
517 (w)-0y ()

§1(1)-0(2)
51(2)-0(2)

S1(1)~0(4)
51(2)-0(4)
51(1)-0(1)
51(2)-0(6)
51(3)-0(8)

S1(1)-0(7)

si(1)-0(7)
$1(1)-0(5)
81(2)-0(5)

81(1)-0(7)
$1(1)-0(5)
$1(2)-0(5)

si(l)-o()
s1(1)-0(7)

s1{1)~0(?)
$1(1)-0(5)
51(2)~0(5)

S1(1)-0A(7)
S1(1)-0A(5)
S1(2)-0A(5)
$1(1)-0B(7)
51(1)-0B(5)
$1(2)-0B(3)

S1(1)-0(7)
$1(1)~0(5)
$1(2)-0(3)

51(1)-0A(7)
$1(1)-0A(6)
§1(2)-0A(6)
S1(3)-0B(7)

81(1)-0(9)
$1(2)-0(9)

$3(1)-0(9)
51(2)-0(9)

$1(1)-0(9)
51(2)-0(9)

Table 2 (cont.)

$1-0(br) bond distance vs. S1-O(br)-Si angle data for silicates

1,599

.603
.617
1.622
1.615

1.603
1.620

1.601
1.610

1.614

1.634
1.654

1.629
1.633
1.617
1.608

1.626
1.642

1.605
1.630

1.599

1.6125

1.634

1.6175
1.606
1.629
1.633
1.621
1.613
1.6265

1.613
1.619

1.616
1.611
1.616
1.628

1.628
1.622
1.603
1.6345

1.624
1.621

1.615
1.616
1.617
1.6275

1.636

1.634

180.
161.
135.

176.

179.
136.
131.

130.

155.
140.

151.5
143.8

-0
139.0

143

141.

142,
139.

144
142,

139.
147.

141,
140.

139,
139..
141.
138.

137.
140.

141.
-8
.8

140
137

164.

151.

153.

0

2
7

1
2
7

8
4

3
2
0
]

1
8
]
4

1
6

L3

3

where O(br) is two coordinated

1.0000

1.0564

1.3972
1.001%

1.0000
1.3718

1.4974

1.5304

1.0955
1.3035

1.1379
1.2392
1.2521
1.3250
1.2850
1.2622
1.3112

1.2238
1.2622

1.3190
1.1897
1.2868
1.3054

1.3230
1.3092
1.2868
1.3373

1.365L
1.2941

1.27%
1.2904
1.3499
1.0387

1.1434

1.1164

3.7

2.9

2.9

2.7

2.7

3.4

2.9
2.9

2.8

3.2
3.0

-.10

-.03

-.02
-.04

.07
.01

-.13
-.03
-.03

~.03

Shannon and Katz (1970)

Ribbe et.al., (1969)

Gibbs (1966)

Heagher (1967)

Coda et.al., (1967)

Brown and Bailey (1964)

Laughon (1971)

Robinson and Fang (1970)

Mitchell st.al., (1971)

FPinger (1969)

Papike at.al., (1969)

Gibbe (1969)

FPinger (1970)

Dellase (1968)

Dollase (1969)

Dollase (1971)

spite the fact that all n(Si-O) were calculated assuming all Si-O
equal 1.634 and all O-8Si—O angles = 109.47° in Figure 4.

THE CorRELATION BETWEEN Si-O (br) Bonp LENGTH AND Si-O-Si
AncLE IN StrRUCTURES WHERE AZ(O) 18 ZERO

In structures of low-quartz, low-cristobalite, coesite, hemimorphite,
thortveitite, beryl, emerald, benitoite, YbySisO7, ErsSi,0;, and five
siloxanes, all the oxygen atoms receive the same bond strength, i.e.
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Fro. 5. Scatter diagrams of Si-O(br) bond length data from Table 2, group
A, plotted as a function of (a) Si-0-Si, (b)—1/cos(8i-0-8i), (¢) {0-8i-0)s =
the average of the three O-Si-O angles involving a common Si-O bond and
(d) Si-O(est.)A using the results of a multiple linear regression analysis with
—1/cos(8i~0-81) and (0-Si-O)s as independent variables.

Z(0) = 2.0 and A¢(O) = 0.0. The Si-O (br) bond lengths and Si-0-8i
angles in these structures are listed in Table 2 (Groups A and B). The
scatter diagram of Si-O(br) versus Si-O-Si angle and [—1/cos(Si-
0-Si)] are given in Figures 6a and 6b, respectively. For the 27
individual Si—O (br) bond lengths in this data set, the hypothesis that
the true slopes of (1) Si-O(br) versus Si-O-Si angle and of (2)
Si-0(br) versus [—1/cos(Si-O-Si)] are zero was tested. The calcu-
lated intercepts, slopes, partial correlation coefficients, and [¢|— values
are given in Table 3. The calculated |¢|— values are 2.5 and 3.6 for
Figures 6a and 6b, respectively. Because these |t|s exceed the critical
value of £(25, 0.90) = 1.3, we can reject the null hypothesis that
Si-O(br) bond length and Si-O-Si angle might not be correlated
(actually 2.5 also exceeds t(25, 0.99) ). This result is contrary to Baur’s
(1971) conclusion that a correlation cannot be made between Si-O (br)
and Si-O-Si angle for silicates where A¢(O) = 0. He reached his con-
clusion using data from keatite, high—tridymite, low-quartz, low-
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cristobalite, coesite, Yb,Siz0s, Ers8i;0;, hemimorphite, and thort-
veitite. We have omitted the data for keatite in our analysis because
as Baur (1970) has indicated they are “demonstrably poor.” The
data for high-tridymite were also omitted because of the large e.s.d.’s
in its atomic coordinates and because the Si-O-Si angles obtained by
triangulation from mean separations (Baur, 1971) are not in general
considered proper measures of mean angles.

The correlations presented in our Figures 6a and 6b are somewhat
improved (see Table 3) when the data from Yb,Si,07, ErsSiz04, and

Table 3

Intercepts, a_, slopes, b., and correlation coefficients, r, for linear
regression equations fittéd to data in Table 2 and Figs., 5-7, |t[s calc.
for “o:sl = 0; all |t]'s exceed a two-sided 90% level test

Group A of Table 2

a, bl T lt| sample size
$1-0(br) bond length vs.
$i-0-Si angle for silica 1.677 -0.0004(2)! ~-0.48 1.8 12
polymorph data (Fig. 5a)

81-0(br) bond length vs.
-1/cos(Si~0-51) for silica 1.539 0.06(2) 0.57 2.3 12
polymorph data (Fig, 5b)

Si~0 bond lengths vs.
<0-5i-0>, for silica 4,094 ~0.023(6) -0.72 3.3 12
polymorpg data (Fig, 5c¢)

S1-0 bond length vs.

Si-0(est) for silica -0,168 1.1(3) 0.76 3.7 12
polymorph data (Fig. 5d)

Groups A and B2 of Table 2

Si-0(bx) bond 1ength‘ vs. {1.745 -0.0009(2) -0,72 4.8 2141
$i-0-8i angle; Fig. 6a 1.683 ~0,0004(2) =0,45 2.5 27
S1-0(br) bond length vs. 1.516 0.08(1) 0.75: 5.3 24)
-1/cos(S51-0-51); Fig. 6b 1.545 0.06(2) 0.58 3.6 27
Groups A, B, and €2 of Table 2
5i-0(br) bond length vs. 1.7008 -0.0005(1) -0.51 5.1 78}
§i-0-Si angle; Fig, 7a 1.6841 -0.0004(1) -0.44 4.3 81
§i-0(br) bond length vs. {1.554 0,053(9) 0.53 5.5 78}
-1/cos(Si-0-51); Fig. 7b 1.561 0.047(9) 0.49 5.0 81

le,s.d,'s are given in parentheses and refer to the last digit.

2The data from thortveitite, Er28120 » and Yb,S1,07 were not used to obtain the
statistics given in the first fow of the datd sets enclosed by braces (see text).
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thortveitite are excluded (open symbols in Figs. 6a and 6b). In these
structures (O (br)-Si-O(nbr)); angles are significantly ‘narrower
than (O(nbr)-8i-O(nbr))s angles, while in. the remaining structures
(O(br)-8i-O(nbr))s are either close to or significantly wider than
{O(nbr)-8i-0 (nbr))s. The n[S8i-O(br)] curves in Figure 3 suggest
there is no single well-defined n [Si-O (br) ] versus Si-0-Si relationship,
instead a series of curves one for each gingle value of (O (br)-Si-
O(nbr))s. Thus the data for YhaSiz0y, BrsSin0;, and thortveitite
belong to a different (though similar) trend compared to the data for
the rest of the structures in Table 2 (Group II). A more detailed
discussion on the bond length variation in YhsBSiz0q, ErsSis0y, thort-
veitite, and other disilicates will be given elsewhere (Louisnathan and
Gibbs, 1972d).

RevaTive CONTRIBUTIONS OF —1/cos(Si-0-8i), A¢(O) anp (CN)
TO THE VARIABILITY OF THE Si-O (br) Bonp LENaTH

-As AZ(O) and the mean coordination number, (CN), of oxygen
bonded to silicon have also been suggested as determining factors of
the Si-O (br) bond length (Baur, 1971), an examination of each in the
presence of the others and —1/cos(8i-0-8i) is needed to determine
which factors contribute significantly to the regression sum of squares.
Therefore, multiple linear and stepwise regression analyses were under-
taken for all the data in Table 2 with —1/eos (Si-0-81), A¢(0), and
(CN) as independent variables,

The results are listed in Table 4 in the order ranked by the stepwise

Table 4

Analysis of variance: Multiple linear regression analysis for
the data used to prepare Fig. 7 with Si~0(br) bond length as
the dependent variable; t(74, 0.90) = 1,7, The order of the

independent variable was found by stepwise regression methods,l

Added Regression

Independent Variable [tl Partial r Sum of Squares Sample Size
~1/cos(8i-0-51) {7.0 0.63 0.0043 78}
6.4 0.59 0.0038 81
Az (0) {4.2 0.44 0.0020 78}
4.0 0.41 3.0020 81
<CN> {3.2 0.35 0.0005 78}
3.2 0.34 0.0006 81

IThe data from thortveitite, ErZSiZO ,» and Yb_S1,0, were not used to obtain the
statistics given in the first. fow’ mz. the data s€ts eaclosed by braces (see text).
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regression method (cf. Draper and Smith, 1966). The [¢|— values in-
dicate that all three variables contribute significantly to the varia-
bility of the Si-O(br) bond length. In fact, the hypothesis that
Si-O(br) bond length might not be dependent on —1/cos (8i-0-8i)
can be rejected at the 0.0005 level. Baur's (1971) implication that the
length of 8i-O(br) bond depends in part on (CN) is borne out by
our regression analysis, but the regression coefficient ealculated for
(CN) is significantly smaller [0.0063] than the one [0.0152] used
by him to “correct” the observed bond lengths in the four disilicates.

It should be pointed out that the data in Table 2 do not constitute
a random sample in the sense that the data are omitted for structures
where AZ(O) is relatively large and where O(br) is coordinated by
more than two atoms. Therefore the regression coefficient caleulated
for our data probably will not apply to an expanded data set. However,
since AZ(O) and actual coordination number of O(br) are moderately
correlated, we cannot conclude a priori whether the magnitude of the
slope associated with (CN) will be larger or smaller than 0.006 or
whether (CN) will make a significant contribution to the regression
sum of squares in the presence of AZ(O).

Plots of Si-O(br) bond length versus Si-O-Si angle for a wide
variety of silicates (Cannillo et al., 1968; Brown and Gibbs, 1970)
exhibit the same trend as Figures 7a or 7b (see Table 3) irrespective
of the coordination number of the bridging oxygen. Accordingly, it
appears that the length of the Si-O(br) bond is related in part to the
Si-O-Si angle regardless of the value of AZ(O) or (CN), with the
shorter bonds being involved in the wider angles. Although this result
is consistent with a covalent model that includes Si(3d) orbital par-
ticipation, one cannot conclude as indicated earlier that these orbitals
are definitely used in the composition of the Si-O bond (Bartell et al.,
1970).

Tur RELATIONSHIP BETWEEN 7.(Si-0) AND THE OBSERVED Si-O
Bonp LENGTH

As both O-8i—O and Si-O-Si angles appear to exert a pronounced
role in establishing 7.(Si-0), we calculated the bond overlap popula-
tions for isolated and polymerized tetrahedral ions in ten silicates
(Table 5) using the observed 0-Si~O and 8i-O-Si angles and clamping
all Si-O at 1.63&. The calculation for a valence basis set consisting
of silicon 3s and 3p and oxygen 2s and 2p atomic orbitals yields bond
overlap populations which, when plotted against the observed Si-O
distances (Fig. 8), show an apparent linear relation with longer bond
lengths being associated with smaller overlap populations. As expected,
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Table 5

—Sphasis ____epdbasts
Structurs Rood 84:0(br)  Si-Ofnbrl $4-021,6) S{-Cmcbs $1-0=1.63 Si-Ovobs Reference.
Dicptase 81-0(1) 1.646 0.48% 0,475 0.747 0.734 Hamil, Gibbs and Ribbe
S1-0(1)* 1.645 0.486 0.478 0.756 0.739 1s71)
51-0(2) 1.617 0.508 0.516 0.942 0.956
$1-0(3) 1,600 0,511 0.530 0.946 0.978
Heaimorphite 51-0(1) 1.626 0.500 0.922 McDonald and
51-0(2) 1.631 0.505 0,931 Cruickehank (1967)
51-0(4). 1.627 0.495 0.758
Thortvelitite $1-0(1) 1,608 0.49% 0.506 0.761 0.775 Previtt (personal
$1-0(2) 1,627 0.50L 0.501 0.923 0.925 comsunioatien)
$1-0(3) 1.628 0,303 0,502 0.926 0.926
Tourmalina $2-0(4) 1.623 0.491 0.492 0.758 0.761 Tippe and Hamilton
51-0(3) 1.628 0,488 0.485 0,753 0.752 as71)
$1-0(6) 1.616 0.510 0.516 0.947 0.560
$1-0(7) 1.607 0.508 0.521 0.944 0.968
Eserald $1-0(1) 1.604 0,505 0.511 0.778 0.782 Gibba, Breck and
$1-0(1)" 1,588 0.508 0.530 0.782 0.815 Meagher (1968)
$1°0(2) 1.623 0.503 0.503 0.939 0.942
Beryl 51-0(1) 1,894 0.505 0.522 0.777 0.795 Gibbs, Breck and
51-0(1)* 1.595 0.508 0.518 0.782 0.800 Meaghar (1968)
51-0(2) 1.620 0.503 0.504 0,939 0.946
Quaree 51-0(1) 1.603 0.506 0,516 0.782 0.787 Zachartasen and
81-0(3) 1,616 0.504 0.508 0.762 0.768 Pletcinger (1965)
Benitoite 51-0(1) 1.630 0.499 0.499 0.776 0.782 Flacher (1969)
$1-0(1)* 1.648 0.486 0.471 0.757 0.735
$1-0(2) 1.605 0.307 0.521 0.940 0.564
Margarossnite  S1(1)-0(1) 1,587 0.508 0537 0.941 0.98% Pread and Peacor (1969)
$1(1)-0(2) 1.621 0.509 0.514 0.940 0.948
51(1)-0(3) 1.656 0,484 0.470 0.753 0.742
$1(1)-0(4) 1.672 0.488 0.465 0.761 0.730
$1(2)-0(4) 1.679 0.475 0.433 0.743 0.711
51(2)-0(5) 1.596 0.521 0.545 0.959 0.999
51(2)-0(6) 1.608 0.506 0.523 0.934 0.960
51(2)-0(7) 1.680 0.477 0.454 0.741 0.714
51(3)-0(¢7) 1,478 0.483 0.462 0.745 0.725
51(3)-0(8) 1.617 0.512 0.523 0.945 0.960
$1(3)~0(9) 1,595 0.507 0.538 0.939 0.987
$1(3)-0(3) 1.698 0.483 0.445 0.751 0.693
High pressurs  $1(1)-0(1) 1.607 0.521 0.963 Trojer (1969)
Cas10, S1(1)-0(2) 1,603 0,523 0,964
51(1)-0(3) 1.683 0.462 0.703
51(1)-0(9) 1.626 0.488 0.771
$1(2)-0(3) 1.701 0.440 0.693
$1(2)-0(4) 1.589 0.549 14001
$1(2)-0(5) 1.609 0.522 0.959
51(2)-0(8) 1.652 0.469 0.738
51(3)-0(6) 1.669 0.463 0.724
51(3)-0(7) 1.600 0.525 0.971
$1¢3)-0(8) 1.558 0.555 1,016
51(3)-0(9) 1,681 0.453 0.701
Ardenniza §1(2)-0(2) 1.604 0.523 9.960 Donnay and Allman
$1(2)-0(3) 1.631 0.499 0.918 (1968)
51(2)-0(8) 1.649 0.451 0.702
$1(3)-0(6) 1.631 0.515 0.951
$1(3)-0(8) 1,647 0.468 0.723
Forsterite S1-0(1) 1.614 0.516 0.526 0.935 0.952 Brown and Gibbs (1972);
51-0(2) 1,654 0.480 0.470 0.878 0.862 Loutsnathan and G'bbs
$1-0(3) 1.635 0.489 0.487 0.898 0.890 19
Datolite 81-0(1) 1.570 0.506 0.546 0.918 0,987 Foit, Phillips and Gibbe
51-0(2) 1.648 0.493 0.484 0.900 0.885 (in preparatfon)
51-0(3) 1.651 0,492 0,482 0.899 0,881
$1-0(4) 1.661 0.487 0.469 0.890 0.861

the overlap populations obtained using observed tetrahedral angles
and bond distances in the calculations show a similar but better de-
veloped trend when plotted against the observed bond length (Fig. 9).
The:slopes, intercepts, correlation coefficients, and |¢|— statistics ealcu-
lated for the data in Figures 8 and 9 are given in Table 6 and show
that both trends are highly significarit.

. The curves of Bartell et al. (1970) which relate bond length to bond
overlap population are similar to those obtained.in Figures 8 and 9
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suggesting that the overlap populations calculated for the sulfates,
phosphates, and the silicates are comparable when the 3d basis func-
tions are neglected. Correlations can also be made between the Si-O
bond length, the net non-bonded geminal populations (cf. Bartell
et al.,, 1970), and the net charge differences on Si and O; however,
inasmuch as the non-tetrahedral cations were not included in the
calculations, such correlations are not appropriate here.

When the valence orbital basis set of silicon is extended to include
the five Si(3d) orbitals, the EHMO calculation gives n(Si-O) that
again correlate with observed Si-O bond lengths but as two separate
trends with the overlap populations for the Si-O (nbr) bonds exceeding
those for the Si-O(br) bonds by about 20 percent (Figs. 10 and 11,
Table 5). The overlap populations calculated using the observed
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tetrahedral angles and all Si-O = 1.63A are plotted against Si-O (obs)
in Figure 10 whereas those calculated using observed distances and
angles are plotted against Si-O (obs) in Figure 11. The trends in both
scatter diagrams are highly significant as evinced by the |t| —values
(Table 6). The correlations are much better developed in Figure 11
where n(8i-0) were calculated using the observed Si-O distances and
angles. In addition, the slopes calculated for the Si-O (br) bond trends
(Figs. 10 and 11) are steeper than those of the Si—-O{nbr) bonds. The
Si-O (br) bond trends for the data given in Figures 8 and 9 also appear
to be steeper, indicating that the Si-O (br) and 8i-O(nbr) bond over-
lap populations characteristically constitute two distinet populations
even when a Si(sp) valence basis set is used (Table 4). The difference
calculated in n(8i-O) for the Si-O (br) and 8i—O (nbr) bonds is due in

Table 6

Intercepts, a_, slopes, b., and correlation coefficients, r, for linear
regression equations fitfted to data in Figs. 8-11; |t| for Hozﬁl =0

a b

A 1 r el

Observed Si-0 bond length vs.
n(Si-0) calc. for 8i-0 = 1.63%; 2.763 =-2.281 -0.84 9.1
Fig, 8

Observed 5i-0 bond length vs.
n[S1~-0(br)] calc. for Si-0 = 3.025 -2,.822 -0.89 8.3
1.63; Fig. 8

Observed Si-O bond length vs,
n[Si-0(nbr)] cale, for Si-0 = 2,513 -1.778 -0.77 5.3
1,63; Fig, 8

Observed Si-0 bond length vs.
n(Si~0) calc. for obs. Si-0; 2.139 -1.024 -0.94 20.0
Fig. 10

Observed Si-0 bond length vs.
n[S1-0(br)] cale. for Si-0 = 3.220 -2.076 -0.77 6.0
1.63; Fig, 8

Observed Si-0 bond length vs.
n[Si-0(nbr)] calec. for Si-0 = 2.372 -0.816 ~0.70 5.6
1.63; Fig. 8

Observed Si-O bond length vs.
n[Si-0(br)] calc, for obs. 2.319 -0.906 -0.94 13.4
Si-0; Fig, 11

Observed 5i~0 bond length vs.
n[Si-0(nbr)] cale. for obs. 2,134 -0.548 -0.94 10.2
5i-0; Fig. 11
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part to the very different environments imposed on these bonds by
our modeling of the tetrahedral ion in each silicate as an isolated
molecule. According to Bartell et al. (1970), part of the difference may
also be steric and part may be due to electrostatic forces not reflected
in the bond overlap populations.

The n(8i-O) values used to prepare Figures 8 and 10 were calculated
with the Si-O distances clamped at 1.63& but with observed O-Si-O
and Si-O-8i angles. Clamping all 8i-O distances at 1.63A may elim-
Inate the bias inherent in using the observed positional parameters,
but it can introduce bias because the bond lengths are not allowed to
respond to differences in the bond overlap populations estimated by
Hiickel theory. Moreover, for many complex polymerized SiO, ions,
the Si-O bond lengths cannot always be clamped at 1.63& and still
retain the observed angles and the continuity of the polymerized unit
at the same time. In these cases, it may be possible to obtain a rea-
sonable estimate of the n(Si-0) by using the observed distances and
angles in the calculations. This is because well-developed correlations
exist between n(Si-O) calculated for Si-O = 1.63& and those calcu-
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lated using the observed positional parameters (Fig. 12) (see Cameron,
1971).

CONCLUSIONS

Allen (1970) has implied that EHMO results may be useful in
determining a relationship between bond overlap population and bond
length relations like that obtained for the hydrocarbons (cf. Schug,
1972) but this is the most he believes that it can do. Our calculations
appear to have been successful in demonstrating such a relationship
and suggest that at least part of the Si-O bond length variations ob-
served in the silicates can be rationalized in terms of a covalent bond-
ing model. Our results also imply that the steric details of a silicate
cannot be used to prove the participation of the Si(3d) orbitals in a
Si-O bond formation because similar structural trends are predicted
when they are omitted and a valence basis set is used. Nevertheless, a
covalent bonding model including d-orbital participation permits an
understanding of the X-ray emission (Dodd and Glen, 1969; O’Nions
and Smith, 1971; Collins et al., 1972) and fluorescence spectra (Urch,
1969, 1971; Collins et al.,.1972) and the bond polarizabilities (Revesz,
1971). In addition, it gives a reasonably good account of the trends
in Si-O bond length variations. Consequently a covalent bonding
model that includes Si(3d) orbital involvement should not be dis-
missed as chemically insignificant. Since EHMO theory fails to take
explicit account of electrostatic effects, the senior author and his stu-
dents are presently undertaking MO calculations at the next level of
sophistication which involve the inclusion of the two electron integrals
and refinement of the linear coefficients to self consistency as em-
bodied in the CNDQ/2 approximation of Pople, Santry, and Segal
(1965). These calculations do take ordinary Coulomb interactions
into account. It will be of interest, therefore, to compare the CNDO/2
results with those obtained in the present study as well as with those
obtained by the ab nitio method.

Finally, the ultimate goal of any bonding theory for the silicates
is to provide some insight into the physical laws that govern atom
arrangements, physical properties and stabilities. Molecular orbital
theory in its simplest form has been used with moderate success by
the organic chemist to rationalize reaction mechanisms, spectra, bond
length variations, and shapes for a large number of organic molecules
(Streitwieser, 1961). The trends obtained in our study suggest that
extended Hiickel molecular orbital theory, unlike the extended elec-
trostatic valence rule, may be used to classify and order the bond
length variations in the tetrahedral portion of a silicate when AZ(O)
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=~ 0. Moreover, similar calculations by Urch (1971) have provided
valuable insight into the Lj s X-ray fluorescence spectra recorded for
silica glass. As the rewards are great, earth scientists are urged to
consider the use of MO theory in their interpretation of spectra,
physical properties, order-disorder mechanisms, and phase transforma-
tions of minerals. Even if application of the theory proves only mod-
erately successful, it should, for example, improve our ability to
evaluate evidence bearing on the physical conditions that prevailed
when a mineral or a mineral assemblage formed.
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APPENDIX

Stepwise regression analysis is a systematic and objective procedure for
recognizing those variables that contribute most significantly to the variation
in the response, regardless of their actual entry points into the model. As a first
step, a correlation matrix is computed and the variable most highly correlated
with the response variable is used to compute a linear regression. The second
variable to be entered into the regression is the one whose partial correlation
with the response is the largest, 7.e., the one that makes the greatest reduction
in the error sum of squares. Next, the method examines the contribution the
first variable would have made if the second one had been entered first and
the first variable second. If the partial F of the first variable is statistically.
significant at some preselected confidence level, the first variable is retained;
otherwise it is rejected. Assuming that both the first and second variables make
a significant contribution, the method selects the next variable to be entered, %.e.,
the one that now has the largest partial correlation with the response given that
the first and second variables are in the regression. A regression equation is
calculated with all three variables and the third variable is tested for significance.
Moreover, partial F tests are again made for the first and second variables te
learn whether they should be retained in the regression model. If their partial Fs
exceed the preselected level, they are retained; otherwise they are rejected. The
procedure is continued and the next most highly correlated variable is entered
into the regression. Significance tests are made as before and the method con-
tinued with each variable incorporated into the model in a previous step being
tested. The method is terminated when all the variables have been considered
and no more are rejected (c¢f. Draper and Smith (1966), p. 178-195 for numerical
example).
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Note added in proof by GV@: The electrostatic valence rule proposed by
Pauling (1929) and extended by Baur (1970) was originally" concelved to charsdc-
terize strengths of ionic-type bonds and local charge balance in stable ‘ionie
crystals. It is evident, however, that the model seems to apply equally well to
compounds in which the bonds have a relatively large amount of covalent char-
acter. For these compounds, Pauling (1960, 547-548, Footnote 64) has indicated
that “if the bonds resonate among the alternative positions, the valence of the
metal atom will tend to be divided equally among the bonds to the coordinated
atoms, and a rule equivalent to the electrostatic valence rule would express the
satisfaction of the valences of the nonmetal atoms.” Pauling’s statement implies
[1] that the strength of an electrostatic bond, s, can be equated with bond
number, n (Pauling, 1947, J. Amer. Chem. Soc. 69, 542-553) ; [2] that the correla~
tions between {(0) and the length of the Si~O bond (Smith, 1953, Amer. Mineral.
38, 643-661; Baur, 1970) are similar to the well known bond-length bond-number
curve for carbon-carbon bonds; and [3] that the charges on bonded atoms are
small in agreement with his electroneutrality principle (Pauling, 1956, General
Chemistry, W. H. Freeman and Co., 236-237). The inference that n and s are
equivalent is consistent with the observation that {(0) and n(Si-0) are inversely
correlated (Louisnathan and Gibbs, 1972b). Although Baur calls his model the
extended electrostatic valence rule, he is careful to note that the correlation be-
tween observed Si-O bond length and {(0) could be interpreted in terms of
Cruickshank’s (1961) double bonding model as well as the Born model for ionic
crystals.





