
THE AMERICAN MINERALOGIST, !'OL. 56, JANUARY-FEBRUARY, 1971

POSITION OF ISOCHROMES IN INTERFERENCB FIGURES

Bancray KAun, Diai,sion oJ Geologicol Sciences,r California
Institute of Technol,ogy, Pasadena, CaliJornia 91109.

Ansrnaer
Isochromes positions in two different types of uniaxial interference figure are explained

theoretically. For figures of one type (Fisher's ,,images',) Mallard,s RuIe is valid.

A useful test of the theory of color distribution in interference figures
(Kamb, 1970) is provided by some measurements made by Fisher (1960)
on uniaxial optic axis figures of two types: (1) figures obtained with a
high-power microscope objective, and enlarged to an image about 6 cm in
diameter by means of an auxiliary lens; (2) figures obtained by direct
projection from essentially a point source of light, through the crystal
(between crossed polaroids), and onto a screen. Figures of type 1, which
Fisher calls "images," can be regarded as the standard type of figure
seen in the polarizing microscope, the Bertrand Iens taking the place of
the auxiliary lens (actually a low-power objective) used by Fisher. Fig-
ures of type 2, called "pictures" by Fisher, are convenient for large-
scale demonstrations of interference phenomena, particularly with sheets
of muscovite. Fisher measured the radii of centered uniaxial isochromatic
curves in the two types of figures, and found large discrepancies between
the two for the curves of higher order. In the present note I wish to show
how Fisher's measurements can be explained. fn addition to providing
a test of the theory, the measurements also serve to confirm the validity
of Mallard's Rule, to a good approximation.

Figures I and 2 show the optical arrangement used in obtaining the
two types of figure. If for type 1 figures we idealize the microscope
objective lens by a simple hemisphere O, then we obtain an optical
geometry that leads to Mallard's Rule for the relation between the initial
ray inclination 0 and the radial distance 11 in Figure 1:

rr : l t sin 0 (1)

lr is the effective Mallard's constant for the objective lens, and is given,
from Figure l, by 11: Rl" / l '  . Note that (1) follows from the geometry of
Figure 1 only in the approximation thatl\)R, so that P'lies essentially
a constant distance l' from lens Z, and /1 is proportional to rt. The actual
objective, being a compound lens system of rather complex design, does
not necessarily admit of the idealization in Figure 1, and does not neces-
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Frc. | (lefl) and Frc. 2 (right). Optical geometry in interference figures of type 1 (left)

and type 2 (right). Light rays (thin lines) that enter the crystal plate X at an angle 0 to its

normal arrive ultimately at point P on screens, v'here the interference figure is observed.

P lies a distance 11 or r2from the centerpoint C. In type 1figures, C is is defined by the

optical axis of the lens system, and in type 2 by the projection of aperture,4 along the
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sarily therefore satisfy Mallard's Rule, equation (1). Ilowever, we
will here use (1) provisionally, and show that for the objective lens used
by Fisher (1) works to a good approximation.

For type 2 figures (Fig. 2), the optical geometry is particularly simple.
Rays which entered the crystal plate at an angle 0 with respect to its
normal are projected to a point P at a distance 12from the center C, given
by

rz : lz tan 0 (2)

(2) is valid if t<<12 (see Fig. 2) .
In Table 1 (columns 2 and 5) are listed the sequences of values r1(ar)

and n(m) measured by Fisher (1960, Table 1) for the dark curves of
successive orders ncin centered optic axis figures from an essentially uni-
axial piece of muscovite, under Hg-vapor light. The measured radii
\ and rz wEtE scaled by Fisher so that rt(l):r2(l); the projection dis-
tance 12 and the effective Mallard's constant lr were not given. If equa-
tions (1) and (2) hold for the rr and /2 values, then they should satisfy

/ r,(n) \ '  / lr\ '  / lo\2 / rJm) \2
I  _r : r - r - r - l l - " )  (3)
\ r , (m)  /  \ t , , /  \ 1 , /  \  t , o  /

obtained from (1) and (2) by eliminating d. In (3), 16 is an arbitrary
scaling distance introduced for convenience. Fig. 3 shows a plot of (rt/rr)'
against (n/lo)z (with lo: 20.0 mm). It shows that the measured values in
Table 1 satisfy (3) to a fairly good approximation. The small systematic
departure of the points from a straight line in Fig. 3 probably reflects
some inaccuracy in equation (1), meaning that the microscope objective
does not satisfy Mallard's Rule exactlv. From the intercept of the straight
Iine fitted to the points in Fig.3 we obtain h/12:1.949, and from the
slope, laf ln:3.87. Hence we deduce lr- 81.1 mm and lz:77.4 mm, dis-
tances which are reasonable in relation to the experiments described by
Fisher (1960).

normal to the crystal plate. The objective lens O used in forming t5,pe 1 figures is here
idealized as a hemisphere of focal length R; from the focal hemisphere (dashed) the figure
is imaged by Bertrand lens Z onto screen,5. In type 2 figures, aperture,4 serves to define
a small, nearly point source of light at distance lz from screen S,' sharpness of the inter-
ference effect seen at P depends on having an adequately small aperture ,4, so that all of
the rays arriving near P travelled through the crystal plate at nearly the same angle, as
shown, Polarizer and analyzer are ornitted from the figures, as are details of refraction of
the light rays within the anisotropic crystal plate,
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Taela 1. Isocnnoue R.lorr ron Crlrrrrao Uxrexrlr, FrouB;es

1

Order
1n

Obs. Calc.
fr

4

"!/n"
r

Obs.
r2

Calc.
r2

2 3
Type-l Figure

5 6
Type-2 Figure

1
2
J

4
5
o

7
8
9

20.0
28.6
s5  .0
40.0
M . 2
47 .9

54.7
s7  .4

20.3
28.6
34.8
39.9
M . 3
48.2
5 1  . 8
5 5 .  U

58 .0

20.0
28.4
34.7
40.0
M . 8
49.0
53 .0
56.  6
60.0

20.0
2 9 . 1
36.9
43.7
5 0 . 4

63.6
70.  5

20.1
2 9 . r
3 6 . 8
43 .8
50.4
5 7  . l
64.0
7 1  . 2

Explanation

Col. 2. Radii measured by Fisher (1960, Table 1, "Image").
3. Calculated from eqns. (1) and (6).

4. Calculated by Fisher (1960, Table l, "t"/ifi. nie").
5. Radii measured by Fisher (1960, Table 1, "Picture").
6. Calculated from eqns. (2) and (6).

From the theory (Kamb, 1970)r we obtain the following relation be-
tween ray inclination 0 (see Figs. I and 2) and path difierence As for a
uniaxial crystal plate of thickness l, with optic axis normal to the plate:

/  /  s in20 /  s in20\  (4)
As: /< , rWr -  

, ,  
- l / I -  

, r )

(e and @ are the extraordinary and ordinary refractive indices.) The
angles 0(m) for successive orders of isochromatic curves (dark bands) are
obtained by setting A.s:m\ in (3), where tr is the wavelength of the light
used. For small birefringence 6: e -@r an expansion of (4) to lowest order
in 0 sives

sinz 0(m)

lThere is a tlpographical error in Kamb (1970), eqn. (8): the quantities nrarTd.n2in

this equation shoulcl read n1afi, n?z Earlier references to the basic path-difference ecluation
(4) of Kamb (1970) are Neumann (1834) and Pockels (1906), kindly supplied by D.J.

Fisher.

trc,.r2

t6
(5 )
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I'rc. 3. Plot of lrt(m) /rr(m)|'z against lr 4m)/1612 for successive orders za of isochromes in

centered uniaxial figures of types I and 2. The points represent the measutements of Fisher

(1960), given in columns 2 and 5 of Table 1. The straight line is fitted by eye.

(5) can be solved for sin2d:

sin, o(m) : *,, (l/'t * +'I!: - + #)
where s1:traa'/l6rusing(1). For small m, the factor in parenthesis on the

right side of (6) remains constant. 11, which is proportional to sin 0 from
(i), then goes as Jm. To this approximation we expect the "1/m rule"
quoted by Fisher (1960) to hold.

Because of uncertainty in the exact applicability of Mallard's Rule, it

is best to evaluate the constant sr in (6) by using tine r2(m) data in Table
1. To do this,0(m) values were obtained from the data using equati on (2) ,
and si was adjusted to give the best fit to 0(m) values calculated from (6).

The result is s1:trr27"5:0.0637, corresponding to 0(1) :14.6".If for the

muscovite sample used, 6:0.033 and o:1.585 (values obtained from

ordinary, biaxial muscovite by averaging the B and 7 indices), then the sr

value requires l:0.52 mm, a reasonable inferred thickness for the mus-

covite plate. (I:435.9 my, for Hg vapor.)
With the constants sr, lr, and lz so determined, we can calculate from

equations (6), (1), and (2) the radii r1(m) andr2(m) expected in Fisher's

experiments. They are given in columns 3 and 6 of Table 1. The agree-

ment between calculated and observed radii is good, even for most of the

(6)
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curves of higher order, for which Fisher suggested some uncertainty in
the measured values.

The comparison between t]ne ry(m) values measured by Fisher and
calculated on the basis of equation (1) provides a direct test, for Fisher's
objective, of the validity of Mallard's rule, expressed in (1). The agree-
ment is good, although perhaps slightly poorer at the largest orders
(m:7 -9). These results test Mallard's law up to an effective numerical
aperture sin 8(9):0.72, hence over a large portion of the 1[.,4.0.85 of
conventional objectives used in conoscopic work. (The objective used by
Fisher was a special one of high /tr.,4. : 1.45.)

Note that the radii r(m) calculated simply f rom the " t/ m nt\e" (Table
1, column 4) show significant departures from the measured radii ry(m)
for the larger orders. This shows that the second factor on the right side of
(6) has an appreciable effect on the measurements.

The reduced size of the 11 radii, by comparison with the corresponding
rzradli in Table 1, espresses quantitatively the relative "compression', of
the outer part of the type-1 interference figure, which was noticed by
Fisher (1960, Fig. 3 and p. 18). From the forgoing discussion it is seen
that this effect is directly traceable to the difference between the sin d and
tan d "projection factors" of equations (1) and (2). In effect, the type-1
figure is projected orthographically, the type-2 figures gnomonically.

I wish to thank D. J. Fisher for call ing my attention to the measure-
ments that provide the basis for this note.
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