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Alsrnecr

All the possible space groups for mica polytypes have been deduced by making use of
the characteristics of the mica unit layer and stacking mode. Studies on algebraic properties
of the vector-stacking symbol of Ross, Takeda, and Wones lead to a simple algorithm to
deduce the space group from this s)'rnbol. A method of enumerating all possible stacking
sequences of mica polytype by computer is developed, and the space groups of the derived
s]"'rnbols are obtained for polytypes with up to 6 layers.

Statistics on the observed polytypes show that space groups C2, CT, Cl are frequent
among the complex ones. Considering that these sequences are based on the lM and 3Z
forms, one can conclude that the growth mechanism may bias the distribution of polytypes
among space groups.

INrnonucrrom

The lM,2My 2M2, and 3? forms designated by Smith and Yoder
(1956) have long been the only mica polymorphs whose stacking se-
quences have been known. Recently, with the aid of the periodic inten-
sity-distribution function (Takeda, 1967), there have been elucidated
the stacking sequences of more than ten complex mica polytypes, whose
cell dimension along the stacking direction range from 40 A to more than
200 A (Ross, Takeda, and Wones, 1966).

To describe the stacking sequences of these complex mica polytypes,
Ross, Takeda, and Wones have proposed a "vector stacking symbol,"
which is different from one proposed previously by Zvyagin (1960) for
mica polvtypes. They have also established the principles for the syste-
matic generation of all the possible layer-stacking sequences of mica
polytypes.

The present method of enumerating mica polytypes is based in part
on the same principles, but utilizes some algebraic properties of the Ross-
Takeda-Wones symbol. When it is carried out by a computer, this
method of enumeration is more direct and faster than the old one.

The same algebraic properties of the symbol are also used to derive the
space groups of the sequences generated. Because of the restrictions on
the symmetry and cell dimensions of the unit layer, and on the amount
of layer stagger, only a limited number of space groups are possible for
mica polytypes. AII are derived in this paper, and the distribution of
mica polytypes of up to 6 layers among these space groups, has been

I Present address: NASA-Manned Spacecraft Center, Houston, Texas 77058, U.S.A.
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displaved. This probabil ity distribution enables us to draw some conclu-
sions regarding the most frequent space groups among mica polytypes,
which may throw light on the problem of the probability distribution of
space group in general.

I 'ossrlre Space Gnoups rN MrcA Porvrvpns

In this derivation, we wil i adopt the conventional assumptions of the
cell dimensions and the symmetry of the mica unit layer, which have been
used in earlier studies of mica polytl 'pes. They ma-v be restated as:

(1) The symmetry of the mica unitlayer is ICl2/m.
(2) The cell dimensions of the unit laver are characterized b1- the

relation b:^,/3'a, and the layer stagger, (I/3)a with respect to
or thogonal  axes.

It follows that the resulting polytl 'pes mav have C-centered lattices. For
some space groups, in particular those of trigonal or hexagonal symmetry
in which the axis perpendicular to lalrers is an unique axis characterized
by a screw axis, a primitive lattice (P) should be used instead of the C
lattice.

Among the space grollps with C or P lattices, possible structures have
been screened by trial with the aid of the following restrictions:

(1) Because of the layer stagger upon stacking, no rotation axis such
as 2-, 3-, or 6-fold axis can exist perpendiculnr to the layers; only the
Screw axes 21r 3y 32,61, or 6s are allowed.

(2) A mirror plane may only be perpendicular to the 6 axis (of the unit
layer) or parallel to the layer.

(3) No glide plane can exist parallel to the layer, because a glide
component of half the distance between lattice points can not be built up
to include the stagger component (l/3)a.

(4) For an orthorhombic spzrce group having a mirror perpendicular
to the 6 axis, there must also be a mirror perpendicular to the c axis.

Conditions (1) and (2) come from the restriction that the layer stagger
upon stacking prohibits the repetition of the same unit on the same level.
Thus, screw axes 62, 63,6a, a.rE not allowed. Condition (1) also eliminates
the existence of rhombohedral lattices in mica polytypes, since 3 or 3 axes
are not allowable.

It should be noted that space groups such as Cm, P31, P3z, P61, P6s,
P3Ql or P3z2l appear only for those polytypes with higher laver num-
bers due to lower svmmetrv. Using these four conditions as a filter, the
possible space groups (l isted in Table 1) can be selected. The stackings
that have a polar axis perpendicular to the layers belong to Cl, P2y Cm,
Cc, P3y P32, P61, and P6s.
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'fe,nm 
1. Possrt:r,a Spacp Gnoups wgrcrr ARE ExpBcrrn rN Nftca Por,ytvprs.

Slrrsor,s Anr rN OnraNrBn HrnrnnN-MrucrN SvMeor.s. Trrn r lxn
y ,A,xrs enn Prln,llr,nI, ro run Plexl or rnr L.q.l'lr.s

Acentric Centric

Triclinic
Monoclinic (first setting)

(second setting)
Orthorhombic

Trigonal

Hexagonal

c r  ( : P l )
PL l :Cl12t),
C2, Cm, Cc.
c2221,
Cc2nt.:C2cm, C2tnm.
P31, P32,
P3J2, P3212, P3Qt, P3221.
P6t, P6s,
P6122, P6t22.

cT ( :P I )
P2y/m ( :Ql l ) ' / ry1,

C2/nt,, C2/c.

Ccmtn

Ar,cpnnerc PnoprnrrBs ol rHE Mrca-polyrypE SyMBoL

The vector-stacking symbol proposed by Ross, Takeda, and Wones
(1966) expresses the stacking sequence of an ly'-layer mica by a series of
1[ numbers, theTth number a1 of the series referring to the relative angle
of rotation between the jth and (l*1)th mica layer. The number aj car'
have the values 0, + 1, -1 2, or 3, which refer, respectively, to rotations
of 0o, + 60o, + 120o, and 180o between adjacent layers. It expresses the
rotation in units of 60o, positive when counterclockwise. Apart from the
geometrical and structural implications of the symbol, we treat the sym-
bol as a string of numbers, to which mathematical operations are to be
applied, so that the enumeration of the possible stacking sequences and
deduction of its space group can be done by a suitable algorithm.

Representing a string of ly' numbers by

M : a r a z '  ' o j O w-rd  w.

where o7 is the 7th element of the sequence, we can define three opera-
tions, by which the symbol M ma1,be transJormed into those shown below,

M '  :  a u a x - t '  e j ,  & z a L t

I V I : a r a 2 '  ' d j  '  a N , r a N t

l u f  - -  A w d W - t '  A j , ' ' '  A z A b

M d  :  a i a l A i + 2 ' ' '  a j + i ' '  a y a 1 a 2 ' '  a i t

and

where

j ' : r t r - ( j -1 ) .
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In the above definition, there is no priority between the operation M and

M'.  Thus,  M'  :  (M) ' .
For convenience, we shall call M'the transpose oI M, XI the supple-

ment of M, and. Mi a cyclic permutation of i elements. Among the Mi

operations, the following will be of crystallographic interest. If a symbol

of an even layer polytype, has an internal repetition as below,

M  :  a p z '  a j A 1 7 1 2 A 1 A 2 '  ' A j  A N l z t

for which the equality M:MNt2 holds, its structure may have higher

symmetry. There are two similar subperiods, for which the equality

M: MNts or M:MNl6 holds. Also it should be mentioned that no cyclic

permutations other than the l{/2, \:/3, and Ar,/6 cycles are possible,

because of  the condi t ion

N

E  o , :  o  m o d  6 '

By successive applications of these operations, the symbol may be

brought into self-coincidence n times, n depending upon the mode of

arrangement of the elements in the symbol. This multiplicrty n of the

symbol, which is related to some algebraic properties of the symbol, is

used as an efficient clue for deducing the space group from the symbol.

ENulrpn.q.rroN otr' THE VBcron-srecrrtrc Svlt,rsol-s

To establish the mathematical principles for enumerating the possible

stacking sequences of a mica Polrlrttp., the three operations, namely,

transposition, taking the swpplement, and cycl'ic permutation, must be

interpreted in crystal-structure terms.
By definition each element represents a relative interlarrer-rotation,

and after the Iy' rotations for an 1[ Iayer mica; the next layer, i.e., the

(,T+1)th laver must be in the same orientation as the 1st layer, thus the

At numbers araz ' ' ' 41,r must obey the relation,

N

E  o ' :  o  m o d  6 '

Therefore, this relation ensures the periodicity of the stacking.

Next, the cyclic permutation of the AI numbers corresponds to succes-

sive shifts of the origin at which the first layer begins. The choice of the

frrst layer in the succession of stacked layers is essentially arbitrarl'.

Therefore cycl'ic permulation is a permissible operation for the mica-

polytype symbol. That is, the actual structure is invariant with respect

to i t .
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Thetronsposition also does not change the structural body, because the
unit layer has a center of symmetry in its mid-point. To tronspose means
to stack the layers in the reverse order. However, taking the supplement
does change the structure. It reverses the hand of the structure, giving
an enantiomorph. But since we excluded enantiomorphs from our deriva-
tion, the operation is considered to be a permissible one.

The method of enumerating all possible stacking sequences of mica
polytypes using the vector-stacking symbols, has been briefly described
in the paper by Ross, Takeda, and Wones (1966). A computer program
was also written using these principles by Takeda, who enumerated poly-
types with up to 9 layers. The method described below differs from the
former one in some points. Both methods utilize a ternary or senary num-
ber (numbers using base 3 or 6) to represent a stacking sequence. This
representation is a simple case of the well known coding problem; for
example, for SiC, the base is 2 and for DNA, 4. However, the new method
expresses a sequence by the smallest such number, and thus the principle
of the enumeration lies in that a number expressing a sequence will be
rejected if it becomes smaller when any of the three operations is applied.

The details of the present method will be found in the Fortran IV
(HARP) Iistings of the new program (Takeda, unpublished, 1968). Item-
ized explanations of each step in the flow diagram of the program follow:

(1) Generate ternary or senary number M.
(2) Convert the number into a Ross-Takeda-Wones symbol and

eliminate it if it does not obey the relation Ef-, oi:0 mod 6.
(3) Make M'.
( ) Apply cyclic permutations Mi f.or i:l to /y'. For each i, test and

reject it i f. M is larger than Mi or (M')t or both ; it Mi : M, proceed to the
next i.

(5) Nlake M and (tL).
(6) Appl-v c.vclic permutations (M)t and, ((14:)),for i:1 to 1/ and test

and reject it in the same way as in step (4).
(7) Discard the sequence having a subrepeat that represents a se-

quence of lower layer numbers. This test is carried out only if. M: Mt.
Say M:MN|" (n is an integer smaller than 1[), then or.:aiapp and

Efl ot:o mod 6.
Only a symbol that has passed these seven tests, is eligible to represent

a possible sequence of mica polytype. When a number fails to pass any
of the tests, control returns to step (1), and repeats the same steps for
the next integer.

A similar method can also be applied to generate all possible mica
polytypes using the symbol proposed by Takeda and Sadanaga (1969).
The detai,ls of this method will be described elsewhere.
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Dnnrvarlox ol Specn Gnoup
some triclinic mica polytlpes show monoclinic diffraction patterns

and therefore we have to know the space group of each stacking se-
quences in order not to overlook such cases. It is difficult to find all the
symmetry elements in the drawing of the structure of a complex mica
polytype, especially for polytypes with very high layer numbers. A quick
and direct method of deriving the space groups from the stacking symbol
is also needed for finding the statistical distribution of mica polytypes
among the space groups, since the number of possible polytypes increases
rapidly with the layer number.

The space group of a polytype with a certain stacking sequence may
be deduced, if the orientation and the position of each layer is known,
together with the axial setting of a given polytype. However, as was men-
tioned before, the Ross-Takeda-wones symbol is orientation-free and
therefore it is necessarv to convert this symbol to another, so that the
geometrical picture of the stacked layer is evident for the deduction o{
the space group.
b Nevertheless, given a Ross-Takeda-Wones symbol, one may be able to
find a direct method for deducing the space group of a polytype, by mak-
ing use of the algebraic properties of the symbol. such a method has been
developed by the present author, but the method was tested only with
the aid of a geometrical construction and further study may be required,
in order to be sure of the general method.

Our aim is to correlate the algebraic properties of any R-T-W symbol
and its multiplicity n with the possible space groups for mica polytypes.
First, we investigate how an algebraic operation applied to the symbol
transforms a geometrical object consisting of stacked layers. Then, the
space group may be derived by the combination of such operations.

An interpretation of the equality, M: M', is as follows. As was stated
above, operation M' implies stacking the layers in the reverse way.
Therefore, M: M' simply means that the reversed sequence is identical
to the original sequence and accordingly indicates the existence of a 2-fold
axis perpendicular to the stacking direction. As the operation 7Z implies
a change of hand of stacking, the equality M:M requires a mirror re-
flection which leaves the sequence invaripnt.

The operation MNtn implies that the stacked layers are shifted by a
period N/n along the direction of stackfug, and therefore lltf:]1,4Nt. i^-
plies the existence of a screw axis, for example, 21r 31, and 61f.or n:2,3,
and 6, respectively. A similar geometrical approach will also lead us to
correlate inversion and glide reflection with the operations. For this
purpose, we shall examine the combination of the above three operations.

The combination M' with MNttu does not make any geometrical sense.
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M: (fu1Ntz implies a glide plane with glide component along the stacking

clirection, because the operation changes its hand after a shift oI 1v"/2.

The last case, M:M' it conttected with a center of s1'mmetry' By draw-

ing stacking vectors which satisfy the operation, starting in the middle of

the sequence and working both upwards and downwards, we find that the

upper half is the reversed sequence of the lower half, with a change of

hand.
From the combination of these fundamental operations, we will be able

to differentiate mica polytypes into space groups. For this purpose, we

use symbols M, M',M, etc', to mean that the stacking-sequence symbol

is brought into self-coincidence by these operation. A simple key (Table

2) differentiates symbols into space groups. A hierarchy number is used

so that whenever an operation of higher number is found, the space group

must be found under it.
It is also to be noted that the operation Mill3 implie, ylzrttt(n:3)'

Likewise MNl6 implies M2Nt6,. . M5Nt6 (n:6).MNt| arld M'indicate

that, in addition to the operation MNt3, operations (Mi)', (MNt3+t;', and

(Mzutz+t1' @:6) are possible. Likewise, MNtB and M' represent a group

of operations in addition to MNt6'(M1)', (MNt6+t)', '  '(MsNta+t)' '  '  '

(n: 12).

Tner,E 2. Drrlnr.BNrt,q.troN ot Polvrvpn Svnnor-s INro Splce

G"""". A""."tt-. ta 
Y"" _

Hierarchv Operation Subdivision Operation Space Groups

(1)

(2)

M
M,
M'
i\Ix/2

MN/3

MN/6

MNi2

M

CI
CI

(a)

(b)
(c)

(a)

(b)

(a)

(b)

(a)

(b)

(a)

(b)
(c)

(3)

M
M
Ml

C2
P2t

P21/rn
4771.

M P3t.z

N I '  . . .  .P3 t , z l 2 ,P3 t , z2 l

M  . ,  P 6 , ,

M'  . .  P6l222

Nr" M' .. . .. cT/c
M', M', (M'; iviz . .cc2m:c2ctrt

M  . .  C m
M', M'. C2/nt., c2mnt
M' ,  M ' ,  MN/2 ,  Mx/2 .  . . . . ccmm

(4)
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We list, below, the space groups and, for each one, the corresponding
operations of the symbol. In the list of operations, it is understood that
the symbol is rearranged so that the operation is applicable directly to
the written symbol. Note also that we have to consider the symbol as a
ring rather than a string, even though it is written in string form. For
some sequences, the symbol, as written in the present string form, wil l be
brought into self-coincidence only after an additional Ml operation (one
shift of symbol) has been applied. Some stacking sequences, given as
examples below, are i l lustrated by Smith-Yoder diagrams (Figures 1,
t ? \

Triclinic S pace Groups.

CI(: Pl) : The symbol is not brought into self-coincidence by any
operation, other than M(identity), n:1.

C1(:Pl) : M and M' lwnicn implies ai:ou-i+r), no other svmmetrl.,
" " - 1

Monoclinic Space Groups. The cell must be monoclinic or metrically
orthorhombic.

P2t(:ClI21) : M and MNt2, no other operation. Example: 0I20I2.
P21 /m( :  c l t 21 /m)  :  M ,  MN t2 ,  andT t r ' .Examp le :  13T131 .

C2
Cc

Cm

C2,/c

C2/m

M and M' ,  n:2.
M and (M)Ntz,  n:2.
M and M. This implies ox.must be either 0 or 3. No other symme-
try present. n:2. Example: 0030333.
M, M' , M' , and (M1'vt,. Each operation takes place at a different
position; for example one operation is applicable after the other
followed by permutation MN14.
M, M' ,M andM' are requi red wi th condi t ion @i:0 or  3.

Orthorhombic Space Groups. The cell must be orthogonal.

C2221 : M, lylNtz and M', no other operation is permissible, n:2.

>Y!? oi:3 mod 6.
Cc2m : M,Mutz, and af ter Mt operation M' , M' , or (M)nn. The symbol

may have form or . . . 2 . . agt1z1-r3' . . 2 . . . ana3, where
2 and 2 are at I,{/4 and 3I{f4, respectively. For the symbol
having no element at sr.rch positions, the general form will be

a 1 .  . '  1 1  .  .  .  a g , r 1 1 1 - r 3 .  .  .  1 1  .  .  .  a y - r 3
or

a 1 . . . 2 2
C2cm : The same as above,

' " a 1 t r 1 z 1 - 1 3 " ' 7

' '  a g t l l 1 - r 3 ' ' '  2 2 ' '  a u - t 3 .
but the symbol may have form o1 . . 1
.  , a r - t 3 ,
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Frc. 1. Examples of stacking sequences for space groups with no mirror perpendicular

to the b axis drawn by Smith-Yoder diagrams projected along c*. The s).'rnbols of sym-

metry elements are the same as those of International Tobl,es Jor X-ray Crystal'lography Yol.

1. (The Kynoch Press, Birmingham, England, 1965.) Some of the stacking syrynbols are not

in accordance with the convention given in the text. (Left to right) Cl 0231, CI202, C2

2220, Cc l21Dl, C2/c 2020, C222rntnl, Cc2m 3232, C2cm 3131.

1

Frc. 2. Examples of space groupswith the unique axes as the c axis, drawn bySmith-

Yoder diagrams projected along thisaxis. (Left toright) P^(Cll2t)201201,P2t/m(Cl12t/ m)

3T13T1, P3t (231)3, P3J2 (02)8, P3L2t (3111)8, P6 (122)6, P6122 (2I)6.

/ \
,/ \ -,/

L \I
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o

Frc. 3. Examples of space groups with mirror perpendicular to the b axis, drawn by
smith-Yoder diagrams projected along this axis. (Left to right) cm 0303330, c2/m 33330,
C2mm 033303, Ccmm 03O030.

C2mm i M, M, M', and.M', n:4. d;:0 or 3 onlv. The general form is
given aS 3a2as . . - ap123ay12 . asaz.

Ccntm : M, M, MN tz,M N t2, M', (y'\N tz, (M)', and, ((T[1'1tt rr, n : g. a, : o
or 3 only. General form:
0 a z a t " ' 3  . '  a N 1 2 0 a n 1 2  ' . . 3 .  .  @ t a z t  w h e r e  3  i s  a t  I V / 4
and 3N/4.

Trigonal Space Groups. Primitive hexagonal lattice derived from metri-
cally orthorhombic C lattice.

N l t

Z " t : 2  
m o d 6  o r  4 m o d 6 .

P31 or  P32 :  M,114ula,and M2Nlsrn:3,no other  operat ion.  Example:

123123123.

P3r12 or  P3zl2 i  M,  MNt\ ,  M' ,  n--6,but  aa:2 or2.  Example:  020202.
P3Ql or  P3221 :  The same as above,  but  o; :1,  1 or  3.  Example:

1 3 1 1 1 3 1 1 1 3 1 1 .

Hetcagonal Space Groups. Primitive Iattice derived from metrically ortho-
rhombic C lattice,
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N / 6

E  o t : 1  m o d  6  o r  5  m o d  6 '

P6t or P6r : M and MNtu, n--6, no other operation. Example:

r22 t22 r22122r22122 .

P6Q2 or P6s22 : M, MNtt and M', n:12. Example: 21'212121'2L21'

A method of deriving the space group from another kind of polytype

symbol may also be found. Since Takeda and Sadanaga's symbol gives

the position of the individual layer in the given coordinate system, it will

be easy to find space group directly. Conversion of other symbols into

this will give another check on the space group derived.

DrsrnrsurroN or Mrca PorvrvpBs AnoNc rrrE SPACE Gtoups

The enumeration of possible mica polytypes has been carried out with

a program written in Fortran IV (HARP) on HITACS020E. The number

oipossible mica polytypes having any combination of 0o, +60", + 120o

and 180" Iayer rotation (senary case) has been obtained for up to 6 layers,

and the number of those having 0o and +120" rotations only (ternary

case), for up to g layers (Ross, Takeda, and Wones, 1966). By our new

program, the 572 possible polytypes (ternary) for 10 layers have been

enumerated, and 1776 and 9212 polytypes (senary) for 7 and 8 layers,

respectively.
The space groups of these polytypes were deduced completely up to 4

Iayers by Ross, Takeda, and Wones (1966), who used graphical methods'

The same space groups have been obtained by our new method, and the

method has been applied to derive all possible space groups of the poly-

types of 5 and 6 layers. Part of them are listed in Table 3 under the layer

numbers and space groups. Their distribution among the 23 possible

space groups is listed in Table 4. The numbers found in natural and svn-

thetic micas are given in Table 5.
It may be interesting to note that the orthorhombic space groups ap-

pear for polytypes with layer number 1[:0 mod 2; the trigonal space

groups for /y':0 mod 3; and the hexagonal space groups for 1{:0 mod 6'

Some acentric space groups, for example, Cc, Cm, P31, P32, P6v and P6s

may appear for polytypes with very high layer numbers.

DtscussroN

From Table 4 and 5 we maY conclude the following: For polytypes with

high layer numbers, some space groups of low symmetry occur with high

frequency, and also tend to Occur frequently in nature. Hqwgver, one Can-
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Telr,r 3. Ar,r, Possrrr,n SrecrrNo SnquoNcns lon n Grl,r;N Laycn NuMeBn If
Cr,essmrno Uxonn Spacn Gr.oups (Ross, Terone, eNl Wor.rns, 1966)
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tr: 1

T T  - )

n :3

^ r - n

C2/m.

C2/c

Ccmnt,

C2
C2/m

P3l2

0 (1M)

22 (2M)
11 (2IVI2)
33 (2O)

0ttz
ol23
0132

01T0

0220
r22I
0121
0222
1131

0101

0202
11T1

02t3
1322
tT22

1331

2332

t22l
1232

2222

T2I2

C I

Cl

C2

CI

CT

r23

022 (3Tcr)
01I
Lt2
033

222 (3T)

C2/c

C2/m
c222r
Cc2m
C2cm.

Cemm

0033
t212
2323
13T3

0303

not say that the lower the symmetry, the more frequent the occurrence.
The reason for this may be that there are two or three series of mica
polytypes which occur very frequently in nature and their space groups
are CI, C2, or Cl.

In sil icon carbides the polytypes 4H,6H, and 15R have been con-
sidered to be the basic forms from which the complex polytypes can be
derived. The similarity between silicon-carbide polytype and complex
mica polytypes has been discussed (Takeda, 1967). In the mica case,
complex polytypes are derived from the tM, 37, or 2Mr forms (no good
example of the2Mr series has yet been observed). These phenomena may
be attributed to the spiral growth mechanism of polytypes proposed by
Frank (1951) and Mitchell (1957).

The six simplest mica polymorphs proposed by Smith and Yoder
(1956),  namely,  lM,2My 2M2,20,37,  and 6H have g iven the impres-
sion that these six forms might also occur frequently in nature. Ifowever,
up to the present time two of them 2O(Ccmm), and 6H(P6122) have not
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'I'arr-n 4. DrsrnteutroN or Mrc,q Polvrvlns wrrrr ff Lewts

(l[:1ro 6) Auowc 23 Possrsr.r Sp.rcn Gr.oups

(Space groups, Cn, P31, P32, P3121, P3z2l, P6, and P6s are not listed below,

because they appear for N greater than 6).

Space Groups

cr \Pt)
c1 (P1)
C2
C2/c
Cc2nt.:CZcm,
Cc
C2/m
P3tr2, P3212

Cantn
C2227
P2t/m
P2t

CZttun
P622, P6522

yet been found. We might consider that the absence of these two forms

with very high symmetry could be due partly to chance, as was pointed

out by Mackay (1967) for the absence of some space groups' even if the

basal oxygen net work approaches ideal hexagonalit)'.
Apart from the simple structures such as silicon carbide, this kind of

structural control must also be taken into account for such complex

structures as micas. The predominance of those polytypes which have 0o

or * 120o interlayer rotations, is definitely due to the ditrigonal nature of

the basal oxygens. Thus, 1M, 2My and 3? have the highest frequency

among micas. The problem on this lubject, that is, structural control of

mica polytypism, is an important field in mica crystal chemistry and has

been discussed by many workers.
The reasons why the 3? form is found relatively frequently in spite of

its high symmetry, have to be investigated thermodynamically and

crystal-chemically as is being done for SiC by other workers. One reason

may be the structural control mentioned in the above paragraph and

discussed by Gi.iven and Burnham (1967).3? is one of the basic forms of

the series which occur frequently. The stacking sequence' expressed by

the Takeda-Sadanaga layer-position symbol (Takeda and Sadanaga,

o

5

.f

2

48
l o

l o

259

52
T 2
10

A

3
a

1
1
a

1
1
1
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Tenr,r 5. DrstnmurroN or Mrcl Por.vrvpr Cnvsr,r.r-s Auorc Slecr Gnoups

Space Groups No. of Crystals Stacking Sequence'

C2/m

C2/c

p 7 .  t J

CT

(1 )94
. - 1 J Ooo\ to

6

lM (0)
2N\ (22)
2M, (1T)

3T (222)

3Tq (022)
8Tcr ((0)022)

14Tcr t(0)u22)
23Tq ((0)x22)
sTct (22)f l2)

4Tcs (0132)
STcu (00022202)

lulcs (Q)r2,22oo)

4M2 (2220)
8M8 ((222)'2D

rlMt ((222)322)

(2)
(2)
(2)
(2)
(3)

(4)
(2)
(2)

(2)
(2)
(2)

" References: (1) Statistics reported b)' Takeda and Mackal' (.1969); (2) Ross, Takeda,
and Wones (1966); (3) Srnith and Yoder (1956), and lakeda (1969); (4) Takeda (1967).

1969), is seen to be one of the simplest sequences with a periodic displace-
ment of the layers.

The statistics of the distribution of the crystallized compounds over
space groups have been given bv Nowacki and his co-workers (Donnay
and Nowacki, 1954; Nowacki, Matsumoto, and Edenhafier, 1967
Nowacki, 1967). They reveal that the zig-za,g arrangement of the or-
ganic molecules probablv accounts for the predominance of space group
such as P2QQ1and P21f c, and that the closestpacking of spheres or its
modifications, give a high frequency to some space groups.

Now, from our statistics we must conclude that principles other than
those considered above must account for the abundance of certain space
groups. The case of the mica polytypes and other polytypes such as SiC,
ZnS, or CdI2, a1g certainly examples where the frequency distribution is
governed by the principles other than the above, though the total number
of these compounds may not be large enough to affect the distribution of
oll compounds taken together among the space groups. In general, when
structures are made up of simple units of one kind with regular stacking
principles, the resultant space groups will be greatly restricted in num-
ber.



1056 HIROSHI TAKEDA

AcKNo$'LEDGEMENTS

The author wishes to thank Dr. Maicolm Ross and Prof. R. Sadanaga for their con-

tinued interest in the work. Prof. A. L. Mackay and Prof. J. D. H. Donnay kindly read

early drafts of the manuscript and made many helpful suggestions. The enumeration of

mica polytypes was performed on HITAC 5020E at the Computer Center, University of
'Iokyo. 

Part of the cost of this study was defrayed by a Grant from the Japanese Govern-

ment (Fund for Scientific Research of the Ministry of Education). The manuscript was

completed while the author held a National Research Council Associateship at the Manned

Spacecraft Center, supported by the NASA.

RBnrxnNcns

DoNN,lv, J. D. H. exo W. Nowecrr (1954) Crysta'l data. classification of substances by

space groups and their identification from cell dimensions Geol.. Soc. Amer., Metn 6O.

Fnmx, F. C (1951) The growth of carborundum; dislocations and polytypism. Phil,. Mag.

42,1014,1027.
GUrcN, N. eNo C. W. BrrnNnau (1967) The crystal structure of 3T muscovite Z. Krist'otr-

Iogr. 125, 163-183.
Nfecrav, A. L. (1967) The statistics of the distribution of crystal substances among the

space groups. A cto Crystollo gr. 22, 329-330.
Mrrcrmr.r., R. S (1957) A correlation between theoretical screw dislocations and the known

polytypes of silicon carbide. Z. Kristallogr.109, 1-28.

Nowecxr, W. (1967) Crystal data, systematic tables, 2nd. d., Amer. Crystall'ogr. Assoc.

Monogr.6.
T. Marsuuoro, AND A. EnnNrrnnrep (1967) Classification of crystaliine sub-

stances by crystal systems, crystal classes, Bravais lattices and space groups. Ael'a

Cry strotr1o fr. 22, 935-940.
Ross, M., H. T.Lrnu, ,q.Nn D. R Wonns (1966) Mica potytlpes: systematic description

and identification. Science 151, 191-193.
Surrrr, J. V., exr H. S. Yornn, Jn. (1956) Experimental and theoretical studies of the mica

poll'rnorphs. Miner al' M ag. 31, 209-235.
Taxrr.r, H. (1967) Review of complex mica polytlpes. J. Mineral'. Soc. Jap.8, Spec.

Issue No. 1,39-41.
- (1967) Determination of the Iayer stacking sequence of new complex mica poly-

type : a 4Jayer lithium fluorphlogopite. A cta Cry stdl' o gr. 22, 845-853.
- (1969) Existence of complex mica polytlpe series based on2Mr sequence (abstr).

Auktmn Meet. Minerol. Soc. Jap.
- AND A. L. Mecr,qv (1969) Mica-polytype symbols and its space grotrps. I. Miner-

aJ  Soc .  f ap .9 ,357 .
.tNo R S.to.twece (1969) New unit layers for micas MineroJ. J.5' 434.449.

ZwacrN, B. B, (1960) Theory of mica polymorphism Kristallografiya 6,714' lTronsl.
Sor Phys. A,ystal'logr. 6, 5711.

Manuscri.pt receized, October 19, 1970; accepled' for publ'ication, October 26, 1970.


