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ARBSTRACT

All the possible space groups for mica polytypes have been deduced by making use of
the characteristics of the mica unit layer and stacking mode. Studies on algebraic properties
of the vector-stacking symbol of Ross, Takeda, and Wones lead to a simple algorithm to
deduce the space group from this symbol. A method of enumerating all possible stacking
sequences of mica polytype by computer is developed, and the space groups of the derived
symbols are obtained for polytypes with up to 6 layers.

Statistics on the observed polytypes show that space groups C2, CT, C1 are frequent
among the complex ones. Considering that these sequences are based on the 1/ and 37
forms, one can conclude that the growth mechanism may hias the distribution of polytypes
among space groups.

INTRODUCTION

The 1M, 2M,, 2M,, and 3T forms designated by Smith and Yoder
(1956) have long been the only mica polymorphs whose stacking se-
quences have been known. Recently, with the aid of the periodic inten-
sity-distribution function (Takeda, 1967), there have been elucidated
the stacking sequences of more than ten complex mica polytypes, whose
cell dimension along the stacking direction range from 40 A to more than
200 A (Ross, Takeda, and Wones, 1966).

To describe the stacking sequences of these complex mica polytypes,
Ross, Takeda, and Wones have proposed a ‘“vector stacking symbol,”
which is different from one proposed previously by Zvyagin (1960) for
mica polytypes. They have also established the principles for the syste-
matic generation of all the possible layer-stacking sequences of mica
polytypes.

The present method of enumerating mica polytypes is based in part
on the same principles, but utilizes some algebraic properties of the Ross-
Takeda-Wones symbol. When it is carried out by a computer, this
method of enumeration is more direct and faster than the old one.

The same algebraic properties of the symbol are also used to derive the
space groups of the sequences generated. Because of the restrictions on
the symmetry and cell dimensions of the unit layer, and on the amount
of layer stagger, only a limited number of space groups are possible for
mica polytypes. All are derived in this paper, and the distribution of
mica polytypes of up to 6 layers among these space groups, has been
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displayed. This probability distribution enables us to draw some conclu-
sions regarding the most frequent space groups among mica polytypes,
which may throw light on the problem of the probability distribution of
space group in general.

PossiBLE SPACE GRoUPS IN Mi1ca PoLYTYPES

In this derivation, we will adopt the conventional assumptions of the
cell dimensions and the symmetry of the mica unit layer, which have been
used in earlier studies of mica polytvpes. They may be restated as:

(1) The symmetry of the mica unit layer is 1C12/m.

(2) The cell dimensions of the unit layer are characterized by the
relation b=+/3-¢, and the laver stagger, (1/3)a with respect to
orthogonal axes.

It follows that the resulting polytypes may have C-centered lattices. For
some space groups, in particular those of trigonal or hexagonal symmetry
in which the axis perpendicular to layers is an unique axis characterized
by a screw axis, a primitive lattice (P) should be used instead of the C
lattice.

Among the space groups with C or P lattices, possible structures have
been screened by trial with the aid of the following restrictions:

(1) Because of the layer stagger upon stacking, no rotation axis such
as 2-, 3-, or 6-fold axis can exist perpendicular to the layers; only the
screw axes 2y, 31, 3¢, 61, or 65 are allowed.

(2) A mirror plane may only be perpendicular to the 4 axis (of the unit
layer) or parallel to the layer.

(3) No glide plane can exist parallel to the layer, because a glide
component of half the distance between lattice points can not be built up
to include the stagger component (1/3)a.

(4) For an orthorhombic space group having a mirror perpendicular
to the b axis, there must also be a mirror perpendicular to the ¢ axis.

Conditions (1) and (2) come from the restriction that the layer stagger
upon stacking prohibits the repetition of the same unit on the same level.
Thus, screw axes 63, 63, 64, are not allowed. Condition (1) also eliminates
the existence of rhombohedral lattices in mica polytypes, since 3 or 3 axes
are not allowable.

It should be noted that space groups such as Cm, P3y, P3,, P61, P6s,
P3,21 or P3,21 appear only for those polytypes with higher layer num-
bers due to lower symmetry. Using these four conditions as a filter, the
possible space groups (listed in Table 1) can be selected. The stackings
that have a polar axis perpendicular to the layers belong to C1, P24, Cm,
CC, P31, P32, P61, and P65
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TaBLE 1. PosSIBLE SPACE GROUPS WHICH ARE EXPECTED IN MI1ca POLYTVPES.
SyMBOLS ARE IN ORIENTED HERMANN-MAUGIN SyMBOLS. THE x AND
vy AXES ARE PARALLEL TO THE PLANE OF THE LAYERS

Acentric Centric
Triclinic Cl (=P1) CI (=PI)
Monoclinic (first setting) P2, (=C112y), P2/m (=CA121/m),
(second setting) C2, Cm, Cc. C2/m, C2/c.
Orthorhombic 222,
Ce2m=C2cm, C2mm. Cemm
Trigonal P3q, P3q,
P3:12, P3,12, P3;21, P3,21.
Hexagonal P6,, P6;,
P6,22, P6;22.

A1LGEBRAIC PROPERTIES OF THE MICA-POLYTYPE SYMBOL

The vector-stacking symbol proposed by Ross, Takeda, and Wones
(1966) expresses the stacking sequence of an N-layer mica by a series of
N numbers, the jth number g; of the series referring to the relative angle
of rotation between the jth and (7+1)** mica layer. The number ¢; can
have the values 0, +1, +2, or 3, which refer, respectively, to rotations
of 0°, £60°, £120° and 180° between adjacent layers. It expresses the
rotation in units of 60°, positive when counterclockwise. Apart from the
geometrical and structural implications of the symbol, we treat the sym-
bol as a string of numbers, to which mathematical operations are to be
applied, so that the enumeration of the possible stacking sequences and
deduction of its space group can be done by a suitable algorithm.

Representing a string of NV numbers by

M =aa - a - ay_10n,

where a; is the jth element of the sequence, we can define three opera-
tions, by which the symbol M may be transformed into those shown below,

M =ayay_q- - - aj - - asay,

M = G1as - - - d; - - - dy_1dn,

M = anGy_1* * * d]., IR d2d1’
and

Mi= Q@i -+ Gjsi - - - an@18s -+ - a3,
where

j=N=G=1.
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In the above definition, there is no priority between the operation M and
M’. Thus, M'= (M)’

For convenience, we shall call M’ the transpose of M, M the supple-
ment of M, and M a cyclic permutation of ¢ elements. Among the M?*
operations, the following will be of crystallographic interest. If a symbol
of an even layer polytype, has an internal repetition as below,

M= aas - a; - - Gyjp018s - - - G5 ¢ ¢ ANy,

for which the equality M = MY/ holds, its structure may have higher
symmetry. There are two similar subperiods, for which the equality
M = MV3 or M = M» holds. Also it should be mentioned that no cyclic
permutations other than the N/2, N/3, and N/6 cycles are possible,
because of the condition

N
> a; =0 mod 6.
j=1

By successive applications of these operations, the symbol may be
brought into self-coincidence # times, #» depending upon the mode of
arrangement of the elements in the symbol. This multiplicity # of the
symbol, which is related to some algebraic properties of the symbol, is
used as an efficient clue for deducing the space group from the symbol.

ENUMERATION OF THE VECTOR-STACKING SYMBOLS

To establish the mathematical principles for enumerating the possible
stacking sequences of a mica polytype, the three operations, namely,
transposition, taking the supplement, and cyclic permulation, must be
interpreted in crystal-structure terms.

By definition each element represents a relative interlayer-rotation,
and after the NV rotations for an N layer mica, the next layer, i.e., the
(NV41)*™ layer must be in the same orientation as the 1stlayer, thus the
N numbers @ia, - - - ay must obey the relation,

N
> a, =0 mod 6.

j=1

Therefore, this relation ensures the periodicity of the stacking.

Next, the cyclic permutation of the N numbers corresponds to succes-
sive shifts of the origin at which the first layer begins. The choice of the
first layer in the succession of stacked layers is essentially arbitrary.
Therefore cyclic permulation is a permissible operation for the mica-
polytype symbol. That is, the actual structure is invariant with respect
to it.



1046 HIROSHI TAKEDA

The fransposition also does not change the structural body, because the
unit layer has a center of symmetry in its mid-point. To {ranspose means
to stack the layers in the reverse order. However, taking the supplement
does change the structure. It reverses the hand of the structure, giving
an enantiomorph. But since we excluded enantiomorphs from our deriva-
tion, the operation is considered to be a permissible one.

The method of enumerating all possible stacking sequences of mica
polytypes using the vector-stacking symbols, has been briefly described
in the paper by Ross, Takeda, and Wones (1966). A computer program
was also written using these principles by Takeda, who enumerated poly-
types with up to 9 layers. The method described below differs from the
former one in some points. Both methods utilize a ternary or senary num-
ber (numbers using base 3 or 6) to represent a stacking sequence. This
representation is a simple case of the well known coding problem; for
example, for SiC, the base is 2 and for DNA, 4. However, the new method
expresses a sequence by the smallest such number, and thus the principle
of the enumeration lies in that a number expressing a sequence will be
rejected if it becomes smaller when any of the three operations is applied.

The details of the present method will be found in the Fortran IV
(HARP) listings of the new program (Takeda, unpublished, 1968). Item-
ized explanations of each step in the flow diagram of the program follow:

(1) Generate ternary or senary number M.

(2) Convert the number into a Ross-Takeda-Wones symbol and
eliminate it if it does not obey the relation Zﬁvzl a;=0 mod 6.

(3) Make M.

(4) Apply cyclic permutations M for i=1 to N. For each ¢, test and
reject it if M islarger than M7 or (M')? or both; if Mi= M, proceed to the
next 4.

(5) Make M and (3).

(6) Apply cyclic permutations (M)% and ((M'))i fori=1 to N and test
and reject it in the same way as in step (4).

(7) Discard the sequence having a subrepeat that represents a se-
quence of lower layer numbers. This test is carried out only if M= M?,
Say M=M%Y" (n is an integer smaller than N), then a;=a;in/m and

N/ a;=0mod 6.

Only a symbol that has passed these seven tests, is eligible to represent
a possible sequence of mica polytype. When a number fails to pass any
of the tests, control returns to step (1), and repeats the same steps for
the next integer.

A similar method can also be applied to generate all possible mica
polytypes using the symbol proposed by Takeda and Sadanaga (1969).
The details of this method will be described elsewhere.
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DER1vATION OF SPACE GROUP

Some triclinic mica polytypes show monoclinic diffraction patterns
and therefore we have to know the space group of each stacking se-
quences in order not to overlook such cases. It is difficult to find all the
symmetry elements in the drawing of the structure of a complex mica
polytype, especially for polytypes with very high layer numbers. A quick
and direct method of deriving the space groups from the stacking symbol
is also needed for finding the statistical distribution of mica polytypes
among the space groups, since the number of possible polytypes increases
rapidly with the layer number.

The space group of a polytype with a certain stacking sequence may

be deduced, if the orientation and the position of each layer is known,
together with the axial setting of a given polytype. However, as was men-
tioned before, the Ross-Takeda-Wones symbol is orientation-free and
therefore it is necessary to convert this symbol to another, so that the
geometrical picture of the stacked layer is evident for the deduction of
the space group.
b Nevertheless, given a Ross-Takeda-Wones symbol, one may be able to
find a direct method for deducing the space group of a polytype, by mak-
ing use of the algebraic properties of the symbol. Such a method has been
developed by the present author, but the method was tested only with
the aid of a geometrical construction and further study may be required,
in order to be sure of the general method.

Our aim is to correlate the algebraic properties of any R-T-W symbol
and its multiplicity # with the possible space groups for mica polytypes.
First, we investigate how an algebraic operation applied to the symbol
transforms a geometrical object consisting of stacked layers. Then, the
space group may be derived by the combination of such operations.

An interpretation of the equality, M= M’, is as follows. As was stated
above, operation M’ implies stacking the layers in the reverse way.
Therefore, M = M’ simply means that the reversed sequence is identical
to the original sequence and accordingly indicates the existence of a 2-fold
axis perpendicular to the stacking direction. As the operation M implies
a change of hand of stacking, the equality M =M requires a mirror re-
flection which leaves the sequence invariant.

The operation M¥/» implies that the stacked layers are shifted by a
period N /# along the direction of stacking, and therefore M = M¥/» im-
plies the existence of a screw axis, for example, 24, 3;, and 6, for n=2, 3,
and 6, respectively. A similar geometrical approach will also lead us to
correlate inversion and glide reflection with the operations. For this
purpose, we shall examine the combination of the above three operations.

The combination M’ with M¥/» does not make any geometrical sense.
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M = (M)¥”2 implies a glide plane with glide component along the stacking
direction, because the operation changes its hand after a shift of N/2.
The last case, M = M’ is connected with a center of symmetry. By draw-
ing stacking vectors which satisfy the operation, starting in the middle of
the sequence and working both upwards and downwards, we find that the
upper half is the reversed sequence of the lower half, with a change of
hand.

From the combination of these fundamental operations, we will be able
to differentiate mica polytypes into space groups. For this purpose, we
use symbols M, M', M, etc., to mean that the stacking-sequence symbol
is brought into seli- comc1dence by these operation. A simple key (Table
2) differentiates symbols into space groups. A hierarchy number is used
so that whenever an operation of higher number is found, the space group
must be found under it.

It is also to be noted that the operation M¥/3 implies M*V/3(n=3).
Likewise MN/6 implies M2N/S, - . - MP¥/S (n=6). M"'® and M’ indicate
that, in addition to the operation M*'?, operations (M9, (MN3+%)" and
(M2V13+%)" (n=6) are possible. Likewise, M¥/® and M’ represent a group
of operations in addition to M¥/:(M")’, (M’ - (MPANIELY
(n=12).

TABLE 2. DIFFERENTIATION OF POLYTYPE SYMBOLS INTO SPACE
GROUDPS ACCORDING TO THE HIERARCHY NUMBER

Hierarchy Operation Subdivision Operation Space Groups
¢ M SO S Ci
M G IR il CT
M’ S R R o C2
(2) MN2 (a) M o P2,
(b) Y, L r— Px/m
() Mo C222,
MN1 (a) M .. P3is
(b) M s P31 212, P31,521
My (a) M P61,
(b) M’ s e P6, 522
3 MY (a) M, M. C2/c
(b) M, M/, (MHNez_ . Ce2m=C2m
(€)] M (a) M Cm
(b) M M'. C2/m, C2mm
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We list, below, the space groups and, for each one, the corresponding
operations of the symbol. In the list of operations, it is understood that
the symbol is rearranged so that the operation is applicable directly to
the written symbol. Note also that we have to consider the symbol as a
ring rather than a string, even though it is written in string form. For
some sequences, the symbol, as written in the present string form, will be
brought into self-coincidence only after an additional M* operation (one
shift of symbol) has been applied. Some stacking sequences, given as
examples below, are illustrated by Smith-Yoder diagrams (Figures 1,
2, 3).

Triclinic Space Groups.

C1(=P1) : The symbol is not brought into self-coincidence by any
B _ operation, other than M (identity), n=1.
C1(=P1) : M and M’ (which implies a;=dy_j;1), no other symmetry,
n=2,

Monoclinic Space Groups. The cell must be monoclinic or metrically
orthorhombic.

P2;(=C112;) : M and MY 2 no other operation. Example: 012012.
P2y/m(=c112y/m) : M, M¥”2 and M'. Example: 131131.
C2: M and M’', n=2.
Ce : M and (M)VP2, p=2.
Cm : M and M. This implies a; must be either 0 or 3. No other symme-
try present. n=2. Example: 0030333.

C2/¢c : M, M', M', and (M)¥2. Each operation takes place at a different
position; for example one operation is applicable after the other
followed by permutation M¥/4,

C2/m : M, M', M and M’ are required with condition a;=0 or 3.

Orthorhombic Space Groups. The cell must be orthogonal.

C222; : M, M"? and M’, no other operation is permissible, n=2.
' fvﬁ a;=3 mod 6.

Ce2m : M, MY "2 and after M operation M', M’, or (M ')¥"2, The symbol

may have form a; - - -2 - - - aumad - - -2 - - - @,3, where

2 and 2 are at N/4 and 3N /4, respectively. For the symbol

having no element at such positions, the general form will be

a1 s agym—13 - - 11 - - - ay_43
or
ay -+ 22 - - awmy_13 - - 22 -+ - ay_43.
C2¢m : The same as above, but the symbol may have form a, - - - 1

i BN 3 a(N/'..’)—ls s B 1 % B aN__13'
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Fic. 1. Examples of stacking sequences for space groups with no mirror perpendicular
to the b axis drawn by Smith-Yoder diagrams projected along ¢*. The symbols of sym-
metry elements are the same as those of International Tables for X-ray Crystallography Vol.
1. (The Kynoch Press, Birmingham, England, 1965.) Some of the stacking symbols are not
in accordance with the convention given in the text. (Left to right) C1 0231, CT 202, C2
2220, Cc 121121, C2/c 2020, €222, 221221, Cc2m 3232, C2om 3131.

F1c. 2. Examples of space groups with the unique axes as the ¢ axis, drawn by Smith-
Yoder diagrams projected along thisaxis. (Left toright) P2:(C112,) 201201, P2:/m(C 112,/m)
371311, P3; (231)5, P3,12 (02);, P3121 (3T1T)5, PG (122)s, P6:22 (20)s
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Fic. 3. Examples of space groups with mirror perpendicular to the & axis, drawn by
Smith-Yoder diagrams projected along this axis. (Left to right) Crm 0303330, C2/m 33330,
C2mm 033303, Cemm 030030.

C2mm : M, M, M’, and M', n=4. ;=0 or 3 only. The general form is
given as 3asa; - - - ay/3anyy - - - Gsas.

Comm : M, M, MN2, W52 M’ (M")V2, (M), and (M)')V"2, n=8. a;=0
or 3 only. General form:
Oazas - - - 3 - - aw;0ayns - - -3 - - - azas, where 3 is at N/4
and 3N /4.

T'rigonal Space Groups. Primitive hexagonal lattice derived from metri-
cally orthorhombic C lattice.

N3
2. a;=2mod6 or 4mod6.
i=1
P3ior P3y : M, MN3, and M?N/3) p=3, no other operation. Example:
123123123.

P31 12 or P3,12 : M, M¥3 M', n=6, but a;=2 01;5. Example: 020202.
P3,21 or P3;21 : The same as above, but a;=1, 1 or 3. Example:

131113111311.

Hexagonal Space Groups. Primitive lattice derived from metrically ortho-
rhombic C lattice,
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a;j=1 mod 6 or 5 mod®6.
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P6; or P6; : M and MM/6, n=6, no other operation. Example:
122122122122122122.
P6,22 or P6522 : M, MY/6 and M', n=12. Example: 212121212121.

A method of deriving the space group from another kind of polytype
symbol may also be found. Since Takeda and Sadanaga’s symbol gives
the position of the individual layer in the given coordinate system, it will
be easy to find space group directly. Conversion of other symbols into
this will give another check on the space group derived.

DISTRIBUTION OF MicA PoLYTYPES AMONG THE SPACE GROUPS

The enumeration of possible mica polytypes has been carried out with
a program written in Fortran IV (HARP) on HITAC5020E. The number
of possible mica polytypes having any combination of 0°, +60°, + 120°
and 180° layer rotation (senary case) has been obtained for up to 6 layers,
and the number of those having 0° and 4 120° rotations only (ternary
case), for up to 9 layers (Ross, Takeda, and Wones, 1966). By our new
program, the 572 possible polytypes (ternary) for 10 layers have been
enumerated, and 1776 and 9212 polytypes (senary) for 7 and 8 layers,
respectively.

The space groups of these polytypes were deduced completely up to 4
layers by Ross, Takeda, and Wones (1966), who used graphical methods.
The same space groups have been obtained by our new method, and the
method has been applied to derive all possible space groups of the poly-
types of 5 and 6 layers. Part of them are listed in Table 3 under the layer
numbers and space groups. Their distribution among the 23 possible
space groups is listed in Table 4. The numbers found in natural and syn-
thetic micas are given in Table 5.

It may be interesting to note that the orthorhombic space groups ap-
pear for polytypes with layer number N =0 mod 2; the trigonal space
groups for N =0 mod 3; and the hexagonal space groups for ¥ =0 mod 6.
Some acentric space groups, for example, Cc, Cm, P31, P3s, P61, and P6;
may appear for polytypes with very high layer numbers.

DiscussioN

From Table 4 and 5 we may conclude the following: For polytypes with
high layer numbers, some space groups of low symmetry occur with high
frequency, and also tend to occur frequently in nature. However, one can-
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TaBLE 3. ALL POSSIBLE STACKING SEQUENCES FOR A GIVEN LAYER NUMBER N
CrassiFIED UNDER Spack Grouprs (Ross, TAKEDA, AND WONES, 1966)

N=1 N=4
C2/m 0 (1M) C1 0112 0213
0123 1322
0132 1122
N=2 C1 0110 1331
C2/c 22 (2My) 0220 2332
11 (2My) 1221
Cemm 33 (20) c2 0121 1221
0222 1232
1131
N=3 C2/c 0101 2222
Cl 123 0202 1212
1111
C1 022 (3Tcy)
01T @ 0033
C2 112 C2224 1212
C2/m 033 Ce2m 2323
C2cm 1313
P3,12 222 (3T)
Cemm 0303

not say that the lower the symmetry, the more frequent the occurrence.
The reason for this may be that there are two or three series of mica
polytypes which occur very frequently in nature and their space groups
are C1, C2, or C1.

In silicon carbides the polytypes 4H, 6H, and 15R have been con-
sidered to be the basic forms from which the complex polytypes can be
derived. The similarity between silicon-carbide polytype and complex
mica polytypes has been discussed (Takeda, 1967). In the mica case,
complex polytypes are derived from the 1M, 3T, or 2M; forms (no good
example of the 2/, series has yet been observed). These phenomena may
be attributed to the spiral growth mechanism of polytypes proposed by
Frank (1951) and Mitchell (1957).

The six simplest mica polymorphs proposed by Smith and Yoder
(1956), namely, 1M, 2My, 2M,, 20, 3T, and 6H have given the impres-
sion that these six forms might also occur frequently in nature. However,
up to the present time two of them 20{Cemm), and 6H(P6;22) have not
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TasLe 4. DistrIBUTION OF MicA PoLvyTyPEs WITH N LAYERS
(N =1 10 6) AMONG 23 PossIBLE SPACE GROUPS

(Space groups, Cm, P3;, P3s, P3,21, P3;21, P6y, and P6; are not listed below,
because they appear for N greater than 6).

N

—_—— | 2 3 4 3 6

Space Groups

Cl (PY) 1 6 48 259
C1 (P1) 2 5 16 53
C2 1 S 16 52
C2/c 2 5) 12
Ce2m=C2cm 2 10
Ce 4
C2/m 1 1 1 3 3
P3,12, P3;12 1 2
Cenn 1 1 1
C222, 1 ]
P2i/m 2
P2, 1
C2mmn 1
P6,22, P6;22 1

Total 1 3 6 26 83 402

yet been found. We might consider that the absence of these two forms
with very high symmetry could be due partly to chance, as was pointed
out by Mackay (1967) for the absence of some space groups, even if the
basal oxygen net work approaches ideal hexagonality.

Apart from the simple structures such as silicon carbide, this kind of
structural control must also be taken into account for such complex
structures as micas. The predominance of those polytypes which have 0°
or +120° interlayer rotations, is definitely due to the ditrigonal nature of
the basal oxygens. Thus, 1M, 2M, and 3T have the highest frequency
among micas. The problem on this subject, that is, structural control of
mica polytypism, is an important field in mica crystal chemistry and has
been discussed by many workers.

The reasons why the 37 form is found relatively frequently in spite of
its high symmetry, have to be investigated thermodynamicaily and
crystal-chemically as is being done for SiC by other workers. One reason
may be the structural control mentioned in the above paragraph and
discussed by Giiven and Burnham (1967). 3T is one of the basic forms of
the series which occur frequently. The stacking sequence, expressed by
the Takeda-Sadanaga layer-position symbol (Takeda and Sadanaga,
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TABLE 5. DisTRIBUTION OF MIcA PoLyTyPE CRYSTALS AMONG SPACE GROUPS

Space Groups No. of Crystals Stacking Sequence
C2/m 94 1M (0) (1)
56 2M; (22)
s 66{10 2M, (17)
P3,12 6 3T (222)
C1 5 3T¢, (022) (2)
8Tcy ((0)s22) @
14Tc, K(O)IQZQ) (2)
23Ty ((0)n22) @
8Tc. ((22)522) 3)
Cl 3 4Tc; (0132) 4)
8Tc;e (00022202) 2)
10T'c; ((2)522200) @
C2 3 4M, (2220) 2
8M; ((222),22) )
1M, ((222)523) @

» References: (1) Statistics reported by Takeda and Mackay (1969); (2) Ross, Takeda,
and Wones (1966); (3) Smith and Yoder (1956), and Takeda (1969); (4) Takeda (1967).

1969), is seen to be one of the simplest sequences with a periodic displace-
ment of the layers.

The statistics of the distribution of the crystallized compounds over
space groups have been given by Nowacki and his co-workers (Donnay
and Nowacki, 1954; Nowacki, Matsumoto, and Edenharter, 1967;
Nowacki, 1967). They reveal that the zig-zag arrangement of the or-
ganic molecules probably accounts for the predominance of space group
such as P2;2,2; and P2;/c, and that the closest packing of spheres or its
modifications, give a high frequency to some space groups.

Now, from our statistics we must conclude that principles other than
those considered above must account for the abundance of certain space
groups. The case of the mica polytypes and other polytypes such as SiC,
ZnS, or Cdl,, are certainly examples where the frequency distribution is
governed by the principles other than the above, though the total number
of these compounds may not be large enough to affect the distribution of
all compounds taken together among the space groups. In general, when
structures are made up of simple units of one kind with regular stacking
principles, the resultant space groups will be greatly restricted in num-
ber.
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