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Aesrn,A.cr

The distribution of colors in interference figures of crystal plates of arbitrarily large
thickness and birefringence cannol be treated with the conventional path-difference lor-
mula that is the basis for the use of Bertin's surfaces, but the correct path-difference
formula is nevertheless simple. when applied to the uniaxial flash figure, it shows that the
color will always fall continuously from the center of the figure toward the optic axes,
contrary to statements in some textbooks For most biaxial flash figures, the color will de-
crease toward the acute bisectrix and increase towarcl the obtuse bisectrix. Ilowever, for a
limited range of figures near 2v:90", the color can at first decrease and then begin to in-
crease subsequently toward the acute bisectrix, an effect similar to that envisaged in the
textbook statements mentioned.

INtnooucrr<tr,r

The distribution of interference colors in flash figures is in principle a
point of importance in understanding the erffects of crystal optics that are
shown in interference figures. rn practice, the distribution of colors is not
ordinarily used to ascertain the position of the optic plane, but occasion-
ally it may be helpful, as when the isogyres are too diffuse for their
motion to be observed clearly. The color elfect normally seen in a flash
figure is a fall in interference color from the center of the fi.gure (optic
normal) toward the periphery in the direction of the acute bisectrix (or
optic axis of a uniaxial crystal), and a rise in color in the direction per-
pendicular thereto. However, a statement has occasionally appeared in
textbooks (Johanssen, 1914, p. 420 ; Bloss, 1961, p. 122 ; Wahlstrom, 195 1,
p. 216 [but not in later editions]) to the effect that in flash figures ob-
tained from uniaxial crystal plates of high birefringence or large thick-
ness, the interference color at first falls in the direction toward the optic
axis, but farther out from the center the color begins to rise. I wil l show
that this statement is incorrect as applied t.o the uniaxial flash figure, but
that in certain biaxial flash figures an effect of the type described can in
principle occur.

PnrNcrprBs GovBnNrNc Parrr DTrInRENCE rN CoNoscopE

For a birefringent crystal plate of thickness l, the interference color to
be seen at each point in the conoscopic field is determined from the
relationships shown in Figure 1. An incoming polarized l ight wave C,4
from the condenser, travelling at an angle A with respect to the micro-
scope axis AM (which is normal to the crl,stal plate as shown) , is resolved
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768 BARCLAY KAMB

Frc. 1. Double refraction of light in a crystal plate of thickness l. An incident ray C,4

after double refraction propagates as separate rays with wave-normal directions ABr and

,482, which after emergence lrom the plate again propagate along parallel paths B1O

and Bz.l[. M/ is the direction of the microscope axis, normal to the crystal plate'

at A into two waves of different refractive index nl and nl, which propa-

gate through the crystal plate along the wave-normal directions '481 and

,482, which lie in the plane of incidence defined by CA and AM (plane of

the drawing). The refracted inclinations of these wave normals, d1 and

0{, are not equal if the crystal plate is birefringent. They satisfy Snell 's

Iaw, in terms of the wave indices n{ and nl :

nl sin dl : sin 0

nl sin?l : sin9

In writ ing (1), the refractive index oI air is taken to be 1. Equations (1)

remain valid if plane-parallel sheets of other isotropic media (glass,

Canada balsam) bound, the crystal plate on either or both sides, the

angle 0 being the inclination, i.n a'i'r, of the incident ray CA and also the

emerging rays B1O and Brff.
The emerging rays BtO and Bzl{ ate combined in the conoscope'

coming to a common focus in the interference surface of the objective

lens. Beyond the points Br and l[r their phase difference remains un-

changed; hence the phase difference or path difference that is seen as an

interference color in the conoscope field is that accumulated over the

paths AB2N and ABr. Here Br1[ represents a wave front and is therefore

perpendicular lo Bzl,-. The optical path difference As can be computed

from Figure 1 in the standard way (physical path length times refractive

rt-
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FLASH FIGURES

index equals optical path length):

In drawing Figure 1 and in writ ing down equation (2), we assume that
n{>ni, but the final result, equation (4) below, turns out to be inde-
pendent of this assumption. d in (2) is the distance between Br a.\d 82,
which is

d : t ( t a n ? {  - t a n | { )

Combining (t), (2), and (3) gives

As -- t(nl cos?,j - nI cos?l-)

Equation (4), in combination with (1), gives the path difference at a
point in the conoscope field defined by the ray inclination d in air outside
the crystal plate. It is valid for arbitrari ly large birefringence An'=nl
-n{ and plate thickness L

If the birefringence is small, it is useful to expand (4) in powers of
A,n' , and obtain

t t
A s : n l - - + d s i n 9 - n !  -- 

cos d1 
- 

cos dl

tAn' t(An'\z
As : . tan2 0! sec 01 *

cos d/ 2n

(3)

(4)

(2)

(r /

the omitted terms being of still higher order in Ail . fi the second order
term is neglected, (5) becomes, approximately,

tAnl
o'  =; r t  (6)

where d' can represent either 0{ or 0l in the approximation of small Aa'.
Equation (6) is the expression for path difference commonly given in
texts (e.g. Wahlstrom, 1969, p.242, eqn. (10-1)). It neglects the differ-
ence between the propagation directions 0{ and0l of the refracted waves
in the crystal plate. By the derivation of (6) from (4), it is evident that
this neglect becomes valid in the approximation of small birefringence
(lAn'l < ( 1). Equation (6) is the basis for the use of Bertin's surfaces in
interpreting the color patterns in interference figures.

It is worthwhile to point out a great difference between the predicted
behavior of the path difference As at large inclination angles 0', as given
on the one hand by (4) and on the other by (6). According to (6), at large
g' (---+90o) the value of As increases without bound (unless Arl --+0 fast
enough as d'-+90o), whereas according to (4) the value of As remains
finite for any refracted angles 01 and 0i. It is clear from (5) that as
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0{-->90", the second order term (and probably the higher order terms
also) cannot be neglected no matter how small the value of Ara' (assum-

ing An'l0). Thus the approximate validity of the common formula (6)

is restricted not only to small Lnt but also to sufficiently small 0'. The
underlying reason for the finiteness of the path difference given by (4)

as 01 and 0/ become large is perhaps not obvious intuitively, since for
large 0{ and 0l the physical path lengths become very large (they in-

crease without bound as 0i and 0/ approach 90"). The finite optical path
difference is traceable to the fact that for large inclinations, a small
difference between 0{ and 0/ results in a large difference in the propor-
tions of the physical paths that are traversed inside and outside the crvs-

tal plate for the two separate refracted waves.

Flasu Frcunps

The distribution of interference colors in the flash figure of a crystal
plate of arbitrary birefringence and thickness is a matter oi applying (1)
and (4) to a special case. We suppose that the optic normal stands ver-
tical, parallel to AM in Figure 1, and for simplicity we investigate the
color distribution only in the principal planes of the indicatrix, that is,
along radial lines in the interference figure from the center outward
toward the Bra and toward tt'e Bro. Figure 2 shows the appropriate
principal section of the indicatrix. We choose the vibration direction for
nt tobe the one along the principal axis normal to the plane of incidence
(plane of drawing in Fig. 2). For definiteness we take this indicatrix axis
to be nt. The principal indices wil l be ordered erther h{nz3nz or
n12n22n3, n2 always being the intermediate principal index. ml is in-
dependent of 01 , but ra/ depends on 0l as shown by the elliptical section
of the indicatrix in Fig. 2:

n l : n r

(n i  cos0 . ! )2  (n l  s i n0 { )2

i '+-T:t  Q)

Equations (1), (4), una tZl can be.orllUirr"a to give the desired path

difference along a radial l ine toward the bisectrix:

As' / sin20 - -_

T : " 'V r -  *  
- t / n ' ' - s i n2a  (8 )

UNrlxrar- Frasn-Frouns

If we set n7: nz: o), antd n3-- e , then equation (8) describes the special
case of a uniaxial flash figure traversed along a radial line toward the
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Fro. 2. Principal section of the indicatrix to correspond with Fig. 1 for the case of a
flash figure traversed along a radial line toward the bisectrix Br The optic normal is a.ra.
and the bisectrix Br is taken to correspond to principal refractive index z:.

optic axis:

N i sin2o
r : ( € -d1 i1 - -
t Y o 2

From the form of (9) it is clear that the path difference always decreases
continuously from the center of the figure (8:0) toward the periphery,
no matter how large a conoscopic angle d (less than 90o, of course) is
visible. This conclusion is valid, as is (9), for arbitrarily large birefrin-
gence €-@ and arbitrarily Iarge thickness L It contradicts the textbook
statements noted earlier.

For completeness we may derive also from (8) the color distribution
along the radial Iine perpendicular to the optic axis. For this purpose,
Set  n2:1, t : . ,  h :  e,  and Obtain

As'
- : lo, -;inr7 - t/? - sinr 0
t

a 2 - e 2
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(e)

t / r ' -  s in2d *  1 /e2  -  s inz0

(10)
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Because both terms in the denominator of (10) decrease with increasing
d, it is clear that the interference color in this case increases progressively
outward to arbitrarily large conoscopic angles.

Brexrer- Fr,asn FrcunB

To describe the color distribution in a biaxial flash figure, we return
to (8). From the form of (8) as its stands, it is difficult to tell what radial
color variation is predicted, but an expansion in powers of sin d is helpful:

,

!  :  ,n,  _ n) *  7 
ni  

,n,0, ,  , rn,  u
i 

'2 
nint

112 - /l 'sl'11
sln 'd - i -

ntnl

A s  1  e , - e "  1  3 e t - e *
. : ( r r r - 1 1 ) *  ^  - -  - s i n 2 0 f  ^  -  ,  s i n a 8 *
t Z n ; 6 n i

I
+-

8
( 1 1 )

(13)

To a first approximation, the radial color variation near the center of the
interference figure is described by the sin2 d term on the right side of (11).
If the intermediate principal index nzis the geometric mean of the largest
and smallest principal indices, i..e. nz--Jnrnr, then to the first approxi-
mation there is no radial color variation. The geometric mean condition
for n2is not precisely the conditionlor 2V:90o, but it is close, and the
two conditions become the same as the birefringence tends to zero. I l
zz is closer to nr than would be true for the geometric mean condition,
then the first and second terms on the right side of (11) have opposite
sign, and the interference color falls radially. This is essentially the case
when axis 3 is the acute bisectrix, so that we may expect the colors to fall
toward the acute bisectrix. Similarly, a rise toward the obtuse bisectrix
is expected, for in this case (n2 closer to nz than would be true for the
geometric mean condition), the first and second terms on the right in
(11) have the same sign. These conclusions are most easily verif ied in the
case of small birefringence. If we express the indices as

|',|'t : Mz -f et (r2)
1 4 1  : 7 1 ' 2 - t 1

and suppose e3 &nd e1 to be small quantities, then to lowest order in er and
es,  (11)  becomes

ln the approximation of small birefringence, €1:e is equivalent to 2V
:90o.
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The radial fall in color toward the acutc bisectrix can reverse toward
the periphery of the conoscopic field if the sina0 termin (11) has opposite
sign from the sin2 0 term. The angle 0 at which the reversal occurs will be
that for which d,As/dd:0, and the condition for this can be found with-
out any approximations by differentiating (8), giving:

a t ? : 0 n ,

where

dAs- : 0
d0

l l,3l'11 - 142
S r n ' Y R :  ,  

-  
,

n3 - txi
(14)

The range of conditions over which a reversal effect can theoretically
occur corresponds to a variation in gn in (14) from dn:0 to 0n=90o,
approximately the practical conoscopic Iimit even for oil-immersion
conoscopes. [Theoretically, for an oil-immersion system the quantity sin
g (where 0 is defined as the conoscopic angle in ail) can actually increase
to the N.A. of the objective, which is as large as 1.25 for standard oil-
immersion objectives.] In the case of small birefringence, (12), for
which (14) becomes

-  2  : € B - € r
s i n  dn  a  n2 - - - ' - , (1s)

the range dn:0o to 90o corresponds to a range in 27 (about axis 3) from
90o to 76o, as calculated Ior nz--1.60.

A more stringent limit on observability of the reversal effect is ob-
tained by requiring that As at 0:90o be the same as at 0:0". In this
case, a reversal must take place within the d range 0o to 90o, since near
the center there is an init ial radial fall irr color as shown by (13). The
above requirement corresponds, from (8), to the following condition on
the refractive indices:

n t _ l n ? r - l * w

?12 {ni - ! 'l nt

For small birefringence, (16) becomes

(16)

\/n2 - I

17:t

e l

€ B

(r7)
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and for nz:1.60, the corresponding lower l imit on 2V, lor the reversal
effect to occur along the radius toward the acute bisectrix, is 27:83o.

The reversal effect does not depend in principle on thickness of the
crystal plate, contrary to the textbook statements mentioned earlier.
On the other hand, the amplitude of the init ial decrease and subsequent
increase in path difference indicated by (8) or (11) wil l be increased in
proportion to plate thickness, and the effect is therefore more likely to
be detectable for plates of large thickness.

Increased birefringence also tends to increase the amplitude of the
effect, but as the bireiringence becomes finite, a complication enters.
The limiting condition nz:\/nth, that is pertinent in (11) and (14)
corresponds to

where Z3 is measured about axis 3. At this l imiting condition, (11) be-
comes

tan2 V, : !1
11,1

,  1  t ' t a - t z t
: ( r r r - r t i t  ^  _  s l n ' 0 +

6 n;n i

(18)

(1e)
As

t

which shows that at the limiting condition, the. radial color variation
near d:0 will be an outward increase both toward the B*a and the Br,o.
If nrlnt, then actually axis 1 is the Bxa; for example, if n1:1.50 and
u:t.8o, then 2Vy about axis 1, is 84.8o at the l imiting condition
nz:\/nrnt. As we depart from this l imiting condition in the direction
that makes the optic axes close together about axis 1, that is nz)t/nrn,
in case ns>n\ then the reversal effect wil l appear in the quadrant of
the conoscopic field containing axis 1, and, conversely, for m2 slightly
Iess than Jrrn", the reversal effect will move into the quadrant contain-
ing axis 3, even though this axis is not yet the Bxa. From this situation
we can infer that for biaxial negative cry-stals of large birefringence, the
reversal effect can be observed at somewhat Iower 2V than for biaxial
positive crystals. As an actual example, we may choose nz:1.70, nz
:1.90,  and f rom (14)  calculate nr :1.558 for  ds:90o.  This is  the b iax ia l
positive case. For the biaxial negative case, we can interchange the roles
of ns and lr '1in (14), and again calculate nrfor 0n--90o, giving nr:1.446.
For the reversal effect to occur, the lowest biaxial positive 27 is thus
2V7:92.2" ,  whereas the lowest  b iax ia l  negat ive 2V is  2Vx:77.5o.  In
the results for this example there is no indication that high birefringence
increases the total range of 2V over which the reversal effect could theo-
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retically be observed. In fact, the total range is much more dependent on
nzthan on the birefringence, as shown by (15), from which we can infer
that effect is more likely to be observed f or cr:ystais of low mean refractive
index. This is due simply to the fact that the effective conoscopic field
(maximum di and 0/ ) is increased for low mean refractive index.

AcrNowleocunnt

I was prompted to publish the above results by the receipt of a manuscript by Robert

Greenwood, which discussed the uniaxial flash figure on the basis of equation (6) above.

I wish to thank Dr. Greenwood for the stimulus thus provided. A treatment of the uniaxial

flash figure on the basis of (6) leads quatitatively to the same conclusions as those based on

(4), because as the optic axis is approached, Az tends to zero rapidly enough to ofiset the

effect of the cos 9'factor For the biaxial flash figure this does not happen, so that a quali-

tative as rvell as quantitative discrepancy between the results of (4) and (6) would arise in

this case.
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I{ote Added in ProoJ

I find that the basic path-difference formula, Equation (4), has been
given previously by C. Burri lDas Polarisotionsmikroscape. Birkhaiiser,
Basel, Equation (A43), p. 63, (1950)1, and in fact was derived originally
by F. Neumann in 1834. The present derivation (which was made without
knowledge of the earlier work) may help, I hope, to introduce this basic
formula into the English-language literatltre ol crystal optics. The for-
mula has been used by R. Rath [Exakte Darstellung der isochroma-
tischen Kurven, Neues Jarb. Mineral. Abh,. LO8, 131, (1968)], for calcu-
lating the shapes of isochromatic curves in interference figures, but it

has not previously been applied to the problem of the present paper, as
far as I know.




