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ABSTRACT

Considerable geochemical application may be made of a model or theory which allows
the excess Gibbs energy of mixing to be obtained from the properties of the pure components
in a system. Such a model predicts phase relations; chemical partitioning between coexist-
ing mineral pairs is completely specified by such a model, provided that the species of in-
terest is one of the components; geothermometric and geobarometric specifications are
given, as well as mixing volume, if the model is pressure dependent. The quasi-chemical
model of Guggenheim is shown to be appropriate for subsolidus immiscibility in the system
NaCl-KCl. This system is analyzed by means of the solvus curve; and the resulting param-
eters correctly predict the calorimetrically observed mixing enthalpy, entropy, and heat
capacity. The predicted partial molar mixing heats agree to within 12 percent with the
results of elaborate lattice energy calculations based on a detailed Born-Mayer model with
lattice relaxation. The quasi-chemical model may have broad application to other
systems of geochemical importance.

INTRODUCTION

An understanding of the thermodynamics of interphase equilibria is
fundamental to the explanation of observed petrological phase rela-
tions. Moreover, if petrologists are ever to be able to predict phase
relations for unstudied combinations of components, our knowledge
of the thermodynamics of mixtures, of both solid and liquid solutions,
must be brought to a quantitative level. No matter how accurate or
complete the thermodynamic data for pure phases becomes, geochemical
calculations will still be crucially limited by a lack of knowledge about
knowledge about mixtures, for most mineral systems are crystalline
solutions, and few of them are ideal.

If we divide the molar Gibbs energy of an #-component mineral system
into its ideal and excess parts,

Gorem = G= 4 Y wfud + RT In(xs)], (1)

i1

(where «; is the mole fraction of the i*» component in the mixture and
ui®is the chemical potential of the pure component) the problem may be
formulated as a lack of quantitative or predictive knowledge of the
excess Gibbs energy of mixing as a function of temperature, pressure, and
composition, G=(T", P, %, & ,. . , Xn_1)-

If the excess free energy of mixing can be calculated from the proper-
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ties of the pure components then virtually every physicochemical prop-
erty of the equilibrium system is immediately obtainable. First, the
phase diagram is directly obtainable by the familiar Gibbs (1873)
principle of projection of the tangent plane contacts on the free energy
surface into P-T-composition space. It should be noted, moreover, that
if an analytical expression is known for G, it is no more difficult to deal
with a large number of components than it is with a binary system.
Secondly, the excess chemical potential of each component can be ob-
tained from the excess Gibbs energy and hence the rational activity
coefficient of each component in a particular mineral of composition 4 is
known:

fixia) = explu.(xia)/RT]. (2)

Thirdly, the equilibrium distribution coefficient, which predicts
chemical partitioning between coexisting mineral pairs, 4 and B, is
obtainable:

(%:/%) 4 [(ui“ = g P (Y = ,U-jxs)A}
D= ———=cexp .
(xi/x]')B RT

In addition, geothermometry and geobarometry would be specified by
the composition of the minerals present and a theoretical basis would
be provided for an understanding of non-equilibrium assemblages.

The presentation hereinafter will consist of the development of a
theoretical model appropriate to the system under consideration con-
taining certain parameters numerically unspecified by the theory;
the determination of the values of these parameters by examination of
the phase relations and distribution coefficients in well-studied cases;
the correlation of the fitted values of the parameters with the physico-
chemical properties of the pure components, and the prediction of
parameters for unstudied systems; and finally the prediction, by inseér-
tion of these assumed values into the theoretical model, of phase rela-
tions and thermodynamic properties of unstudied systems of geological
interest. This paper will be concerned with the first two of these aspects.

3)

THE QUuasi-CHEMICAL MODEL

Scope of the Model. The general problem of the calculation of the free
energy of mixtures is a formidable one, involving a detailed knowledge
of the energetics and statistics of all the mixture’s constituent atoms.
However, useful simplifications may be made in statistics, on the one
hand, if we restrict our attention to isomorphous solids, and in energetics,
on the other hand, if we can restrict ourselves to central force field inter-
actions between the constituent particles. Consequently, the model de-
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veloped in this effort will be restricted to subsolidus relations in simple
heteropolar solids and, in this paper in particular, to the system halite-
sylvite.

Application to Heteropolar Solids. In 1935 Bethe devised a method for
deriving the equilibrium properties of a superlattice. Shortly thereafter
Rushbrooke (1938) applied the method to the study of mixtures of mole-
cules sufficiently alike in size and shape to be interchangeable on a crystal
lattice, but in which the configurational energy depends upon the dispo-
sition of the molecules on the lattice. Subsequently Fowler and Guggen-
heim (1939) showed that the method was equivalent to a much more
elegant and direct method which has become known as the quasi-chem-
ical (QC) treatment. The basic assumptions underlying this treatment
will be subsequently outlined but detailed derivations must be sought
elsewhere.! In the QC treatment it is assumed that intermolecular forces
are central, short-ranged, and two-body additive, and that consequently
the internal energy of the system at the absolute zero of temperature
may be evaluated by summing the pair-potentials over all nearest neigh-
bor pairs. It is further assumed that the configurational and vibrational
contributions to the partition function (or to the free energy of the mix-
ture) are separable, or equivalently, that the vibrational part of the heat
capacity is a linear function of the composition, as suggested by Joule’s
(1844) rule.? Of these assumptions perhaps the most difficult to justify
is the neglect of long range coulombic interactions when dealing with
essentially ionic solids.

We believe, however, that although the Madelung term constitutes
about 90 percent of the lattice energy of a simple ionic crystal, the cou-
lombic contribution to the mixing energy may be neglected in the first
approximation for isomorphous solid solutions. The reasons for this are
twofold. First, because the formal valence charges on substituting iso-
morphous species are identical, the crystal structures and the Madelung
constants are identical (or, in the case of nonisometric crystal systems,
nearly linearly related). Thus the only difference in Madelung energy is
due to lattice parameter variations with composition. These differences
tend to be minimized due to lattice relaxation around substituting ions.

1 In particular see Guggenheim (1952) in which the essential features are developed in
Chapter 4 and the asymmetrical model, subsequently used here, in Chapter 11. Throughout
this paper where equations are equivalent to those of Guggenheim, his equation numbers
are shown in square brackets.

2 Which rule is sometimes invoked in the names of Neumann (1831), Woestyn (1848),
or Kopp (1865).
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That is, the anions around a given substituting foreign cation tend to be
located at distances from it determined by the pair potential minimum
for that given ion pair.

Detailed direct calculations by Douglas (1966) for very dilute crystal-
line alkali halide solutions, based on the Born-Mayer (1932, 1933) poten-
tial function, show that in these face-centered cubic systems interchange
of Na* and K* is accompanied by an increased energy of about 5 kcal
per mole of replacing ion (although the lattice energies of the pure salts
are of the order of —170 kcal mole1).* Of that 5 kcal mixing energy, by
far the most important contribution is from short range overlap repul-
sion. On the basis of less elaborate calculations Durham and Hawkins
(1951) had earlier concluded that the treatment of the specific repulsion
constant was the factor having the greatest effect on the heat of mixing
in alkali halide solid solutions. They attributed the success of their model
to allowances made for fluctuations in interionic distance. Still earlier
Wallace (1949) attributed the failure of his attempt to calculate heats of
mixing from the Born-Mayer model without lattice relaxation to inad-
equate representation of the replusive potential. Wasastjerna (1944,
1949) has produced experimental evidence suggesting the existence of
some local order in alkali halide solid solutions. He has developed a model
which allows the ions to be displaced from average lattice positions in
the mixed crystal depending upon their size and upon the degree of short
range order. With later modifications suggested by Hovi (1950) the
model has been used to calculate excess enthalpy in alkali halide systems
with some degree of success. (¢f. Lister and Myers, 1958, for a comparison
with experiment.) The principal point of failure of this model is the over-
estimation of local order near the composition of order (x,=0.5), and the
invariable prediction of negative excess mixing entropy.

In view of the relative importance of lattice configuration, relaxation,
and short range repulsion, as well as the relative unimportance of coulom-
bic interaction in determining the mixing energy, the nearest neighbor
interaction model may not be as outrageous as it first appears.

Properties of the Quasi-chemical Model. 1f we restrict our attention to
condensed phases at moderate pressures, the distinction between the
Gibbs and Helmholtz energy of mixing becomes negligible, especially for
isomorphous solids, which have small mixing volumes. Then the QC
expression for the molar excess Gibbs (or Helmholtz) energy of mixing in
a binary model with ideal athermal terms (i.e., we assume that the solu-
tion becomes ideal as the interchange energy vanishes) is given by

! Throughout this paper cal=4.184 J, gibbs=4.184 J °K~.
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where Z is the number of nearest neighbors of each component, the sub-
scripts [1] and [2] refer to the components, ¢ and ¢, are constants which
we shall refer to as contact factors?, the contact fractions ¢; and ¢» are
defined by

(4), [11.08.4]

x
¢ = —“‘h—, (5a), [11.03.13]
X1q1 + XG>
Xag2
by = . (5b)
X1q1 + x99

and B is a measure of the tendency toward non-randomness in the mix-
ture (8 =1 for a perfectly random mixture, 3> 1 indicates a tendency for
clustering, and 8 <1 indicates a trend toward compound formation):

B = {1 — 4¢:¢:[1 — exp(2Wa/ZRT)]}}, (6), [11.07.12]

where 2Wg, the molar interchange energy, is a parameter of the theory
which measures the energy requirement to effect the interchange of a
[1Jand a[2] atom between two pure crystals.

An approximate form of the QC mixing expression may be derived for
the limiting case of small interchange energy, W, or high temperature.
In this case we note that the expression in square brackets in (6) is
small. Expanding 8 in binomial series yields

g—1 |'3|'T""(; g 1 (2”’{; )2+ }
s+1 ke T 2\ ke

el
21 s ZRT

Finally, expanding the logarithmic terms about unity one obtains correct

to second powers of Wq/T:

G ¥1X2G1G2 (W G> x1%09%q1%q5" <VVG>2
RT

RT  mg1 + 2o

RT

= 8
Z(xlql + x292)3 ( )

! For a discussion of the significance of the contact factors as molecular configurational
partition functions, the reader is referred to Rushbrooke (1938) and to Guggenheim (1952,
p. 186).



THERMODYNAMIC MODELS OF HALITE-SYLVITE 1697

The first term on the right will be recognized as a form of the van Laar
(1906, 1910)-Hildebrand (1929) expression for the enthalpy of mixing if
we take the contact factors, ¢i/ga=V1/ Vs, to be proportional to the
molar volumes of the components. The second term on the right can be
identified with Lumsden’s (1952, p. 318) correction term for nonrandom-
ness if we take the contact factors to be proportional to the 4 power of
Lumsden’s atomic radii: qi/¢gz= (r1/rs)%. Thus it is seen that the van
Laar-Hildebrand and Lumsden treatments may be considered to be
limiting forms of the QC model.

For our purposes, however, it is no more difficult to work with the full
QC expression (4), and the approximate relations (8) will not be treated
further. The enthalpy of mixing may be obtained from (4) using a version
of the Gibbs-Helmholtz relation,

d(G*/RT)
d(1/RT) @)
However, before doing so it is useful to define two new quantities:
W= Wq — Tiwﬁ, (10a), [4.27.1]
daT '
Wy = — dev('} (10b)
dT

related to the interchange energy Wg as enthalpy and entropy are related
to the Gibbs energy. Then we obtain

221202012 W

H» = — : ; (11)
(%191 + 22g2) (B + 1)
and the excess entropy may be evaluated from
Hee — (572
AS'I:Z e = — = (12)
Z

The excess chemical potentials may be obtained from the Gibbs energy
surface by differentiation of (4) with respect to composition. Considering
that ¢1, ¢2, and 8 are all functions of composition, it is a pleasure to note
the surprisingly simple form of the chemical potential expressions,

xs Z — 1
s _ el [1 + ﬁ(ﬁ_—)} (13a), [11.08.2]
RT 2 $1(8 + 1)

rs Za — 1
w24 [1 L E(L__)]‘ (13b)
RT 2 (8 + 1)
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It is well known that the van Laar and Lumsden binary models predict
a miscibility gap for positive W, so it is not surprising that the QC model
does also. The consolute conditions of temperature and composition,
T, %14, X9, could, in principle, be evaluated from the conditions,

62Gsystem 63Gsystem
— Te — \ — Te = 0, (14)
du,? dx?

where the derivatives are the total compositional derivatives (dx1= —dws)
at constant temperature, evaluated at composition %y, xs.. In practice,
however, the derivatives become progressively less attractive beyond the
first. Tt is easier to employ another mathematically equivalent device.
We shall find the spinodal curve, defined as that temperature determined

by
A, P
(_“),, =0, (15)
da;

and then find the maximum in the spinodal where
ar,

=0
dxq‘,

(16)

Differentiating (13a) with respect to x; and noting that x;=1—1x, in the
binary system, we obtain

1 /9 1 Z -1
_<_£‘_1> . ,[_1 ! QIQE(B_—L], (17)
RT \ 9x, %1 2(x1q1 + %2q9)B

where the first term in the square brackets arises from the ideal contri-
bution and the second from the excess potential of (13a). The spinodal
curve is thus defined by

I,) =——s————————x s (18)
el q192Z — 2(xq1 + Xaqs)

Differentiating again with respect to x; and setting d7',/dx»=0 we obtain
by combination of (6) and (18)

<‘95> B B* — 1)(¢1 — ¢2) _ 2¢19:Z(q2 — q1) (19)
dxs 2Bx1%9 [Q1(]2Z - 2(x191 + x2‘]2)]2

which may be rearranged in combination with (6) to give

[x292 - x191][(]1Q2Z - (xlq1 + x292)][91Q2Z - 2(x1q1 + x2Q2)] (20)

+ (g2 — q1)q:2q:22Z%1%2| = 0.
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This relation involves only g1, gs, and Z; and thus the critical consolute
composition is defined in terms of these parameters. The relation is, how-
ever, cubic in #1; and as a consequence the simplest methods of solution
will be numerical rather than analytical. Having found the consolute
composition it is a straightforward procedure to substitute this value in
(18) to obtain the consolute temperature.

ANALYSIS OF THE HALITE-SYLVITE SYSTEM

Previous Work and Sources of Data. One of the principal reasons for
choosing the NaCl-KCl system as an initial effort in applying the QC
model was the recent appearance of an interesting analysis of this same
system by Thompson and Waldbaum (1969) who used Hardy’s (1953)
essentially empirical subregular (SR) model. Although they find that the
halite-sylvite phase relations may be fitted to the SR model parameters
in a simple smooth fashion, the resulting thermodynamic consequences
bear a rather disappointing correspondence with the available calori-
metric data. We had hoped that the QC model might prove more fruitful
in this regard, and will show subsequently that this hope was not without
foundation.

For other reasons as well, the halite-sylivite system is ideal as an initial
choice for demonstration of the method. The bonding and structure in
these solids, being octahedrally coordinated atoms with almost purely
ionic interactions, are among the simplest kinds known to chemistry.
The system is isomorphous and among the best studied of all solid solu-
tions. Although of limited geological application it is of some interest as
a comparison with other mineral pairs in which Na—K substitution occurs.

In order to facilitate direct comparison of results the choice of solvus
data will be the same as that of Thompson and Waldbaum (1969). As
they have discussed the available measurements at some length the data
will not be reviewed again here. The 15 critically chosen data points are
listed in Table I.

Evaluation of the Quasi-chemical Paramelers. In correspondence with
Thompson and Waldbaum we take component [1} to be NaCl and [2] to
be KCl and identify the Na-rich phase and K-rich phase as 4 and B, re-
spectively. If we take the standard state of each component, regardless
of its concentration, to be the respective pure phase!, and if the system
is adequately described by the QC model, we may write for interphase
equilibria at any appropriate constant temperature

t In which case the activity coefficient of a component at infinite dilution will not in
general be unity.
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These two independent relations involve 3 unknown parameters: qi, g»,
and W¢. However, the contact factors, ¢1 and ¢, are not independent. It
is required that ¢i1/¢>—1 as either become unity. Any number of func-
tional relations might satisfy this simple requirement. We shall make the
ad hoc assumption that the geometric mean of the contact factors is
unity,

Vg = 1, (22)

as this choice allows considerable algebraic simplification. In view of the
fact that the ratio ¢1/¢s does not deviate widely from unity, it appears
that this assumption is not critical. Moreover parallel analyses which we
have performed under the assumption that the arithmetic mean of the
contact factors is unity,

g+ g =2, (23)

produce essentially identical results. For this octahedrally coordinated
fec system we take Z=6. With the aid of (22), the two chemical equilib-
rium equations (21) are reduced to the two unknowns (¢1/¢2) and W.
Although transcendental in these parameters the unknowns may be ob-
tained by standard Newton-Raphson methods. The results are shown in
Table I, columns 6 and 7. It is expected from QC theory that the ratio
q1/¢2 depends only upon the geometry of the substituting chemical species
and is essentially independent of temperature. We find that this is the
case; the contact ratio displays no obvious trend with increasing tem-
perature and there is no reason to fit to the data a functional form other
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than a constant. The mean value for this constant and its root-mean-
square (standard) deviation are,

g1/g2 = 0.692 + 0.023. (24)

Guggenheim (1944) takes the contact factors to be proportional to the
surface area of a molecule involved in contacts with dissimilar molecules.
Thus he shows for simply branched polymer chains of length 7,

_2—|—ri(Z——2)

= (25), [11.01.1]

g

For compact molecules of molar volume V', however, probably a better
surface area representation would be

qi = KV 213, (26)

where K is some geometrical constant. This would be in correspondence
with Langmuir (1925) who found for mixtures of rather large organir
molecules the ratio H®%(x,—0)/H*(x;—0) to be equal to the ratio
(V1/V2)?, provided that the molecules of the two species have approxi-
mately the same shape. The representations of van Laar (1910), Hilde-
brand (1929), and Lumsden (1952) have been discussed in a previous
section. For the NaCl-KCl system we find, from the tabulations of
Robie, et al. (1967),

Vi/Vs = 0.7199, (27a)
V4203/V 3218 = 0.8033. (27b)

If we consider atomic sizes rather than molar volumes we find, using
octahedral ionic radii of Pauling (1948, p. 246),

Nt/ TRy = 0.714, (28a)
72Na+/"2K+ = 0510 (28b)

The observed contact ratio is very close to either the molar volume or
cation radius ratios. We shall defer, however, any attempt to correlate
the ¢-factors with physical properties of the components until a later
paper in this series. We prefer at this time to consider ¢i/¢: simply a
parameter which may be evaluated from the QC model and the solvus
data. For the system under discussion we shall take its value to be the
mean of the estimates (24).

Having taken this value we can use the two equations (21) to obtain
two independent estimates of Wg. These are also shown in Table I,
columns 8 and 9. The variance between these two independent estimates
allows an objective evaluation of the conformance of the solvus data
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TaBLE 1. OBSERVED AND CALCULATED Two-PHASE COMPOSITIONS
AND CALCULATED QUASI-CHEMICAL PARAMETERS

Compositions: mole fraction | QC Parameters
B | =
st red Tud ‘ Wa/RT
oC — References
Ob- Calcu- | Ob- Calew- | V& C.:fk'.u_lutud Assuming
served lated |served lated with iy =682
at left
250 0.010 0.944
275 0.014 0.927
309 0,021 0.022 | 0.889 0O 897 0.670 F.460 3425 3,509 Bunk and Tichelaar (1953)
335 0,020 0.031 | 0.880 0 8§67 0.648 3.433 3F.3658 3,535 Nacken (1918)
367 0.044 0.045 | 0.830 0 822 0.698 3.074 3.080 3.065 Barrett and Wallace (1954a)
367 0.044 0.045 | 0.830 0.822 0.698 3.074 3,080 3,065 Barrett and Wallace (1954a)
391 0.061 0.061 | 0.771 0.779 0.684 2870 2.866 2.881 Bunk and Tichelaar {1953)
400 0.060 0.068 | 0.740 0.760 0.649 2.810 2,791 2,878 Nacken (1918)
422 0.096 0.089 | 0.709 0.708 0.710 2,608 2.703 2.677 Barrett and Wallace (1954a)
422 0.096 0.089 | 0.712 0.708 | 0.707 2,008 2.607 2,076 | Barrett and Wallace (1954a)
447 0.137 0.125 | 0.634 0.633 0.712 2,556 2,556 2.337 | Bunk and Tichelaar (1953)
462 0.139 0.157 | 0.612 0.574 0.695 2:530 2,529 2,527 Barrett and Wallace (1954a)
462 0.138 0.157 | 0.612 0.574 0.696 2.529 2.519 '2.515 Barrett and Wallace (1954a)
465 0.150 0.165 | 0.560 0.560 0.670 2.467 2.474 2,480 Nacken (1918)
466 0.195 0.168 | 0.542 0.556 0.716 2,447 2,439 2.429 Bunk and Tichelaar (1953)
472 0.191 0.187 | 0.521 0.525 0.693 2.427 2,426 2.426 Bunk and Tichelaar (1953}
496 0.292 0.436 0.734 2,382 2.363 23060 | Barrett and Wallace (1954a)

with the QC model. The model is relatively insensitive to small changes
in the contact ratio. We have obtained essentially the same estimates of
W¢ by setting the contact ratio equal to the molar volume ratio (27a).
This insensitivity is seen by comparison of the data of Table I, column 7,
with the mean from columns 8 and 9 (¢f. Figure 1). In contrast, exam-
ination of the data shows that the parameter W¢/RT is clearly dependent
upon temperature. The values are plotted against reciprocal absolute
temperature in Figure 1, where the straight line represents the linear
least-squares fit to the data of Table I, columns 8 and 9, weighed accord-
ing to the reciprocal variance between the two observations at each tem-
perature. The resulting best linear equation is

We = Wua — TWs, (29)
Wa = 5559. + 565 cal mole™!, (30a)
Wgs = 2.630 + 0.759 gibbs mole=!. (30b)

COMPARISON OF THE MODEL PROPERTIES WITH EXPERIMENT

The Phase Diagram. The determined values of ¢1/¢s (24) and W¢ (30)
may now be entered into (4) and the excess Gibbs energy of mixing cal-
culated at any temperature or composition. The binodal curve or solvus
bounding the two-phase region may be determined by the graphical
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double tangent method or by equivalent iterative numerical methods.
The calculated two-phase compositions are shown in Table 1, columns
3 and 5; and the calculated binodal is shown by the solid line in Figure 2,
where are also plotted the original data and the boundary calculated by
Thompson and Waldbaum (1969) with the SR model. As was discussed
above, the critical conditions may be obtained by substitution of (24)
into (20). The functional relation of (20) is shown in Figure 3 for several

36

Wg/RT
w
»

[
n

30

28

26

REDUCED INTERCHANGE ENERGY:

24

Il L
13 14 15 16 1t

22’ i L i A

RECIPROCAL ABSOLUTE TEMPERATURE: 10%T

I'16. 1. Reduced interchange energy for NaCl-KCl crystalline solutions. Vertical bars
connect the two independent calculations. The solid line is the best linear weighted-least-
squares fit. The dashed lines bound the 95%, confidence limits (two standard deviations).

different coordination numbers. For Z =6 and ¢:/¢> as determined (24),
we find

X9 = 0.338. 31)

The critical consolute temperature depends upon both the parameters
q1/¢2 and We(T). However, the reduced consolute temperature, as de-
fined by 2RT./W¢ and of the order of unity, may berepresented in terms
of q1/gs. This function is shown in Figure 4 for several different coordi-
nation numbers. It will be noted that greater asymmetry in the system
tends to raise the reduced consolute temperature slightly. For perfectly
symmetrical systems (g1/¢q:=1) Guggenheim (1952, p. 41) has shown
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F1c. 2. Observed two-phase data and binodal curves calculated from QC model (solid line)
and SR model (dashed line) where the latter diverges from the former.

2RT, 2
= » when ¢1/gs = 1, (32), [4.12.13]

We
ZlnI:

which tends to unity as Z becomes large. For Z and ¢1/¢. of the halite-
sylvite system we determine from Figure 4:

2RT,
—— = 0.8538. (33)
G

Substitution of (30) into (33) yields
T. = 763.0° K. (34)
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F16. 3. Consolute composition (mole fraction of component two in the binary system
at the maximum temperature at which two separate phases co-exist) as calculated from
the QC model for various coordination numbers.

The critical conditions determined, (31) and (34), are very close to those
yielded by the SR model of Thompson and Waldbaum (1969), x,. = 0.448,
T.=1765.2°K.

It is seen that both the QC and SR models represent the data well
(although the QC model does so with one less parameter) and that on
this basis alone there is little to recommend one model over the other.
Such is not the case, however, when the thermodynamic predictions of
the models are compared with the experimental calorimetric data.

Calorimetric Measurements. Barrett and Wallace (1954a) have measured
the enthalpy of mixing in the system NaCl-KCl using a differential
calorimeter and obtaining heat of solution differences between solid solu-
tions and mechanical mixtures of the same composition. Their measure-
ments were made at 25°C but some discussion of the measurement tem-
perature is in order to allow a correct interpretation of the observed
enthalpy. NaCl-KCl crystalline solutions are thermodynamically un-
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F1c. 4. Reduced consolute temperature as calculated from the
QC model for various coordination numbers.

stable at room temperature. The measurements were made on the meta-
stable phase which had been homogenized and annealed at 630°C, then
rapidly quenched to room temperature. Consequently while the vibra-
tional contribution to the measured enthalpy was that characteristic of
25°C, the configurational contribution was that which was frozen-in at
630°C or slightly below. Barrett and Wallace (1954b) assumed that C,
for the solid solution at constani configuration is given by the Joule rule so
that the purely vibrational contribution to the excess enthalpy is near
zero. This is not to imply that C,* is zero, since negative excess heat
capacity may arise from configurational changes such as order-disorder
transitions or declustering. Positive excess heat capacity may result from
other configurational changes, e.g., the appearance in the solid of equilib-
rium defects. What it does imply is that the excess enthalpy measured is
the 630°C enthalpy and any comparison with theory should be made at
that temperature.

Lister and Meyers (1958) have made a comparable set of measure-
ments in a very similar manner. Their annealing temperature was 600°C.
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TaBre 2. CALORIMETRIC DATA ¥OR NaCl-KCl CRYSTALLINE SOLUTIONS

Reduced Heat

Mole Fraction Reduced Excess Reduced Excess  Capacity between 500°
of KCl1 Lnthalpy, kcal mole™® Entropy, gibbs mole™ and 630°C,
X2 H"/xlxz Sx‘i/xz.’)Cz glbbS mole?
Cofmaxs

BARRETT AND WaALLACE (1954), 630°C

0.10 5.16 0.56

0.30 4.18 1.24
0.50 4.18 1.12 0.40
0.70 4.09 1.14

0.90 4.47 —0.22

LisTER AND MEVERS (1958), 600°C

0.04 4.58
0.11 4.16
0.15 4.35
0.26 3.92
0.34 4,39
0.42 4.21
0.55 4.08
0.68 4.27
0.90 3.1
0.95 4.91
0.98 4.57

The excess heat capacity estimate of Barrett and Wallace (1954b) sug-
gests that the correction of the 600° data to 630°C would amount to an
addition of only 0.01 kcal. As this is no doubt smaller than the uncer-
tainty in the data, we will compare them without making this adjust-
ment. The two sets of measurements are in good agreement with the
early work of Zhemchuzhnuii and Rambach (1910) and the more recent
work of Popov et al. (1940a, b), who found the equimolar reduced excess
enthalpy to be 4.20 and 4.23 kcal, respectively.

In Table 1I are listed the Barrett-Wallace (1954a) and the Lister-
Meyers (1958) data recalculated on a reduced basis, H*s/xx,. Figure 5
shows, in addition to this, the mixing enthalpy obtained from the QC
model (11), (24), and (30), as well as the value predicted by the SR
model as analyzed by Thompson and Waldbaum (1969). It is seen that
the calorimetric data is remarkably well represented by the QC model,
especially considering that the representation is obtained by an extrap-
olation over 130° from the nearest data point. The QC model may be
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F1c. 5. Reduced enthalpy of mixing for NaCl-KCl crystalline solutions at 630°C. The
solid line represents the QC model (this work), the dashed line is the SR model (Thompson
and Waldbaum, 1969), and the points are the calorimetric observations.

systematically slightly high. The SR model is considerably less satis-
factory. Not only is the predicted excess enthalpy almost twice too large,
but the SR model totally fails to provide a reasonable representation of
the enthalpic compositional dependence.

Barrett and Wallace (1954b) have also calculated excess entropies of
mixing in this system by combining their enthalpy data and the solvus
curve, using a reversal of the method of double tangents. Their entropy
data recalculated to an excess, reduced basis, S*/x1xs, is shown in Table
II and in Figure 6 together with the QC and SR predictions. Because of
the awkward way these data were obtained, it is difficult to assess their
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reliability. The probability of systematic error in these values, moreover,
does not allow us to make meaningful detailed comparisons. Even so, the
QC model is again clearly superior with respect to the magnitude of the
entropy, and the agreement with the experiment is not too bad consider-
ing the method in which the comparison data were obtained.

Finally, it is of interest to compare estimates of excess heat capacity,
obtained by differential calorimetry on equimolar NaCl-KCl solutions
annealed at 500°C, with the predictions of the models. The SR model
does not predict an excess heat capacity. The QC model excess heat
capacity may be obtained by temperature differentiation of (11) to yield
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I'1c. 7. Excess heat capacity of mixing for equimolar NaCl-KCI
crystalline solutions as calculated from the QC model.

(35)

Co™  2q1gamima[B — (1 — ¢2)7] <WH>2

R Z(x191 + %202)(8 + 1)°8 \RT
for the case where dWw/dT =0. This function is shown in Figure 7 for
the equimolar solid as calculated from (35) using (24) and (30). Between
500° and 600°C the model predicts the equimolar excess heat capacity to
be about 0.44 gibbs mole~'. This is a substantially larger value than the
experimental 0.10 gibbs mole™, but it should be noted that the heat
capacity is related to the second temperature derivative or curvature of
the Gibbs energy surface and somewhat larger errors in this function are
tobe expected.

Other Theoretical Calculations. Although derived from a statistical me-
chanical framework, the QC model, as applied here, is essentially a
macroscopic model; that is, the parameters which enter into it are ob-
tained from classical macroscopic properties of the components. It is of
interest, therefore, to compare its predictions with those of an atomic
model. The high temperature, infinite dilution, partial molar heats of
mixing in this system have been calculated by Douglas (1966) as discussed
carlier. The same quantities may be obtained from (11) by differentia-
tion:
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Wu

hy#*(xy =0, T — ) = ¢x;Wu = - = 6.68 kcal mole=!  (36a)

B (21— 0, T — o) = ¢;Wa = v/q1/g: W = 4.63 kcal mole™. (36b)
The values Douglas obtains are 6.04 and 4.09 kcal mole™!, respectively,
for hy™ and k™. Again the agreement is quite remarkable.

SuMMARY AND CONCLUSIONS

In the foregoing, some of the model properties of the quasi-chemical
theory of mixtures have been developed and applied to an analysis of the
subsolidus miscibility gap in the system NaCl-KCL It has been noted
that high temperature values of the excess thermodynamic parameters,
G==, Hxs, §*, C,**, are surprisingly well-predicted by the model and model
parameters. These parameters are derived from phase diagram data at
temperatures 130° to 320° lower than the calorimetric data. From exam-
ination of this single system it is difficult to say to what extent the agree-
ment is fortuitous and to how wide an extent the model may be applied.
These questions will be examined in a succeeding paper. It may be noted
here, however, that allowing temperature dependence of the interchange
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F1c. 8. Reduced excess Gibbs energy of mixing for equimolar NaCl-KCl crystalline
solutions. The solid line represents the QC model (this work), the dot-dashed line is the
prediction of the SR model (Thompson and Waldbaum, 1969), and the dashed line repre-
sents the experimental observations (Barrett and Wallace; 1954a, b).
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energy term allows a great deal of flexibility in the theory; and it is
probably this feature as well as the model’s general appropinquity for
cooperative phenomena that is responsible for its success here.

The model always predicts a positive excess heat capacity (35) if Wy
is not strongly temperature dependent. This does not imply, however,
that S is always positive; in the high temperature limit $% will have
the same sign as Wg. This is because S*(T—0) does not vanish for con-
stant composition but remains finite due to the “frozen-in” disequilib-
rium composition. Figure 8 displays the function G**/RT versus reciprocal
temperature for the equimolar model system halite-sylvite, ,=0.5. It
should be noted that the slope of this curve at any temperature is equal to
H=/R and that the extrapolated intercept of the slope tangent is equal to
—S=/R. The curve is concave downwards for positive Cp*. Above
1/T=1.33X10"*K! (below 477°C) the system is metastable, as deter-
mined by the phase diagram. Above 1/T=2.15X107*K~* (below 193°C)
the excess entropy becomes negative due to configurational effects, al-
though it will be observed that the excess heat capacity is everywhere
positive.

The extent of the model’s low temperature agreement with thermo-
dynamic parameters derived from aqueous-solid distribution coefficients
will be reviewed in a subsequent paper. The high temperature corre-
spondence between model and experiment leads us to suggest that prog-
ress may be made toward theoretical prediction of phase diagrams by
consideration of appropriate thermodynamic models.
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