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ABSTRACT

Considerable geochemical application may be made of a model or theory which allows

the excess Gibbs energy of mixing to be obtained from the properties of the pure components

in a system. Such a model predicts phase relations; chemical partitioning between coexist-

ing mineral pairs is completely specified by such a model, provided that the species of in-

terest is one of the components; geothermometric and geobarometric specifications are

given, as well as mixing volume, if the model is pressure dependent. The quasi-chemical

model of Guggenheim is shown to be appropriate for subsolidus immiscibility in the system

NaCl-KCl This system is analyzed by means of the solvus curve; and the resulting param-

eters correctly predict the celorimetrically observed mixing enthalpy, entropy, and heat

capacity. The predicted partial molar mixing heats agree to within 12 percent with the

results of elaborate lattice energy calculations based on a detailed Born-Mayer model with

lattice relaxation. The quasi-chemical model may have broad application to other

systems of geochemical importance

INrnonucrroN

An understanding of the thermodynamics of interphase equil ibria is
fundamental to the explanation of observed petrological phase rela-

tions. Moreover, if petrologists are ever to be able to predict phase

relations for unstudied combinations of components, our knowledge
of the thermodynamics of mixtures, of both solid and liquid solutions,
must be brought to a quantitative level. No matter how accurate or
complete the thermodynamic data for pure phases becomes, geochemical

calculations wil l sti l l  be crucially l imited by a lack of knowledge about

knowledge about mixtures, for most mineral systems are crystall ine
solutions, and few of them are ideal.

If we divide the molar Gibbs energy of an m-component mineral system
into its ideal and excess parts,

Gsvstem : G's + E *ofpro + RT ln(r)],

(where r; is the mole fraction of the itr '  component in the mixture and

,l.r;0 is the chemical potential of the pure component) the problem ma1- be

formulated as a lack of quantitative or predictive knowledge of the

excess Gibbs energy of mixing as a function of temperature, pressure, and

composition , G'"(7, P, x;, x.i ,. , , f i ,-1).
If the excess free energy of mixing can be calculated from the proper-

( i )
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t ies of the pure components then viltually every physicochemical prop-
erty of the equil ibrium system is immediately obtainable. First, the
phase diagram is directly obtainable by the familiar Gibbs (1873)
principle of projection of the tangent plane contacts on the free energy
surface into P-?-composition space. It should be noted, moreover, that
if an analytical expression is known for G'*, it is no more diff icult to deal
with a large number of components than it is with a binary system.
Secondly, the excess chemical potential of each component can be ob-
tained from the excess Gibbs energy and hence the rational activit l-
coefficient of each component in a particular mineral of composition ,4 is
known:

fo(x 'o) :  exp[p"" ' * ( roo) /RTl .  Q)

Thirdly, the equil ibrium distribution coefficient, which predicts
chemical partit ioning between coexisting mineral pairs, ,4 and B, is
obta inable:

*  (x i l . r ; ) - t  f  (pt ' "  -  
l . r j ' ' " )n 

-  ( / r0""  -  l l i . " ) l l
D =

( * 0 1 * ) "  
^ L  

R T  I

In addition, geothermometry and geobarometry would be specified by
the composition of the minerals present and a theoretical basis rvould
be provided for an understanding of non-equil ibrium assemblages.

The presentation hereinafter wil l consist of the development of a
theoretical model appropriate to the s1-stem under consideration con-
taining certain parameters numerically unspecified by the theory;
the determination of the values of these parameters by examination of
the phase relations and distribution coefficients in well-studied casesl
the correlation of the fitted values of the parameters with the physico-
chemical properties of the pure components, and the prediction of
parameters for unstudied systemsl and finally the prediction, by insdr-
tion of these assumed values into the theoretical model, of phase rela-
trons and thermodynamic properties of unstudied systems of geological
interest. This paper wil l be concerned with the first two of these aspects.

Tnn Quasr-Crrrluc'u- Moorr,

Scope of t lte Model. The general problem of the calculation of the free
energy of mixtures is a formidable one, involving a detailed knowledge
of the energetics and statistics of all the mixture's constituent atoms.
However, useful simplif ications may be made in statistics, on the one
hand, if we restrict our attention to isomorphous soliCs, and in energetics,
on the other hand, if we can restrict ourselves to central force field inter-
actions between the constituent particles. Conseqr.rently, the model de-
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veloped in this effort wil l be restricted to subsolidus lelations in simple
heteropolar solids and, in this paper in particular, to the system halite-
sylvite.

Appl i ,cat ion to Heteropolar  Sol ids. In 1935 Bethe devised a method for
deriving the equil ibrium properties of a superlattice. Shortly thereafter
Rushbrooke (1938) applied the method to the study of mixtures of mole-
cules sufficiently alike in size and shape to be interchangeable on a crystal
Iattice, but in which the configurational energy depends upon the dispo-
sit ion of the molecules on the lattice. Subsequently Fowler and Guggen-
heim (1939) showed that the method was equivalent to a much more
elegant and direct method which has become known as the quasi-chem-
ical (QC) treatment. The basic assumptions underlying this treatment
wil l be subsequently outl ined but detailed derivations must be sought
elsewhere.l In the QC treatment it is assumed that intermolecular forces
are central, short-ranged, and two-body additive, and that consequently
the internal energy of the system at the absolute zero oI temperature
may be evaluated by summing the pair-potentials over all nearest neigh-
bor pairs. It is further assumed that the configurational and vibrational
contributions to the partit ion function (or to the free energy of the mix-
ture) are separable, or equivalently, that the vibrational part of the heat
capacity is a l inear function of the composition, as suggested by -Joule's
(1844) rule.2 Of these assumptions perhaps the most diff icult to justif l '
is the neglect of Iong range coulombic interactions when dealing with
essentially ionic solids.

We believe, however, that although the Madelung term constitutes
about 90 percent of the lattice energy of a simple ionic crystal, the cou-
lombic contribution to the mixing energy may be neglected in the first
approximation for isomorphous solid solutions. The reasons for this are
twofold. First, because the formal valence charges on substituting iso-
morphous species are identical, the crystal structures and the Madelung
constants are identical (or, in the case of nonisometric crystal systems,
nearll. l inearly related). Thus the only difference in Madelung energy is
due to lattice parameter variations with composition. These diflerences
tend to be minimized due to lattice relaxation around substitutins ions.

1 In particular see Guggenheim (1952) in which the essential features are deveioped in

Chapter 4 and the asymmetrical model, subsequently used here, in Chapter 11. Throughout
this paper where equations are equivalent to those of Guggenheim, his equation numbers

are shown in square brackets.
'zWhich rule is sometimes invoked in the names of Neumann (1831), Woestyn (1848),

or Kopp (1865).
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That is, the anions around a given substituting foreign cation tend to be
located at distances from it determined b-v the pair potential minimum
for that given ion pair.

Detailed direct calculations by Douglas (1966) for very dilute crystal-
l ine alkali halide solutions, based on the Born-Mayer (1932,1933) poten-
tial function, show that in these face-centered cubic systems interchange
of Na+ and K+ is accompanied by an increased energy of about 5 kcal
per mole of replacing ion (although the lattice energies of the pure salts
are of the order of -170 kcal mole t).1 Ol that 5 kcal mixing energy, by
far the most important contribution is from short range overiap repul-
sion. On the basis of less elaborate calculations Durham and Hawkins
(1951) had earlier concluded that the treatment of the specific repulsion
constant was the factor having the greatest effect on the heat of mixing
in alkali halide solid solutions. They attributed the success of their model
to allowances made for f luctuations in interionic distance. Sti l l  earlier
Wallace (1949) attributed the failure of his attempt to calculate heats of
mixing from the Born-Mayer model without lattice relaxation to inad-
equate representation of the replusive pctential. Wasastjerna (1944,
1949) has produced experimental evidence suggesting the existence of
some local order in alkali halide solid solutions. He has developed a model
which ailows the ions to be displaced from average lattice positions in
the mixed crystal depending upon their size and upon the degree of short
range order. With later modifications suggested by Hovi (1950) the
model has been used to calculate excess enthaipy in alkali halide systems
with some degree of success. (c/. Lister ancl Myers, 1958, for a comparison
with experiment.) The principal point of lailure of this model is the over-
estimation of locai order near the composition of order (r2:0.5), and the
invariable prediction of negative excess nixing entropy.

In view of the relative importance of lattice configuration, relaxation,
and shorl range repulsion, as well as the relative unimportance of coulom-
bic interaction in determining the mixing energy, the nearest neighbor
interaction model may not be as outrageous as it f irst appears.

Properties of the Quasi-chemical, Model. If we restrict our attention to
condensed phases at moderate pressures, the distinction between the
Gibbs and Helmholtz energy of mixing becomes negligible, especially for
isomorphous solids, which have small rnixing volumes. Then the QC
expression for the molar excess Gibbs (or Helmholtz) energy of mixing in
a binary model with ideal athermal terms (i.e., we assume that the solu-
tion becomes ideal as the interchange energy vanishes) is given by

I  Throughout th i ;  paper ca1:4.184 J,  g ibbs:4 184 J "K 1.
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( ; . . s  z {  , l - .  O , (0 -1 ) l
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where Z is the number of nearest neighbors of each component, the sub-
scripts [1] and [2] refer to the components, 4r and q2 are constants which
we shall refer to as contact factorsl, the contact fractions Qt and 6z are
defined by

(sa),  I t t .os. t ; ]

I t 0 t
(sb)Q z :

fr rQt I  f rzQz

and B is a measure of the tendency toward non-randomness in the mix-
ture (B:1 for  a per fect ly  random mixture,6)  1 indicates a tendency for
clustering, and 0 ( 1 indicates a trend toward compound f ormation) :

p : Ir - 4e,6,[r - exp(2We/zRT)]l+, (6), Lrr.07.r2l

where 2W6, the molar interchange energy, is a parameter of the theory
which measures the energy requirement to effect the interchange of a

[1] and a [2] atom between two pure crystals.
An approximate form of the QC mixing expression may be derived for

the l imiting case of small interchange energy, Wc, ot high temperature.
In this case we note that the expression in square brackets in (6) is
small. Expanding B in binomial series yields

Finally, expanding the logarithmic terms about unity one obtains correct
to second powers of. Wc/T:

=.-" -1:xzQ.a-z f I1  -  9"s"r r - (y : \ ' * . . . .  (8)
R T  r g r  I  x r q . ! \ R T /  Z ( x g 1 *  r , q : ) * \ R r l

r l'or a discussion of the significance of the contact factors as molecular configurational
partition functions, the reader is referred to Rushbrooke (1938) and to Guggenheim (1952,
p.  186).
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The first term on the right wil l be recognized as a form of the van Laar
(1906, 1910)-Hildebrand (1929) expression for the enthalpy of mixing if
we take the contact factors, h/ t lz:Vrl Vr, to be propbrtional to the
molar volumes of the components. The second term on the right can be
identif ied with Lumsden's (1952, p. 31S) correction term for nonrandom-
ness if we take the contact factors to be proportional to the $ power of
Lumsden's atomic radii q1f q2:(rrld+.Thus it is seen that the van
Laar-Hildebrand and Lumsden treatments may be considered to be
limiting forms of the QC model.

For our purposes, however, it is no more diff icult to work with the full

QC expression (4), and the approximate relations (8) wil l not be treated
further. The enthalpy of mixing may be obtained from (4) using- a version
of the Gibbs-Helmholtz relation,

d(G^ /RT\

t1t/*) 
: H'"' (9)

However, before doing so it is useful to de{rne two new quantit ies:

dWn
W r t :  W c  -  T

d T

dll/ c
II/
v t  s  -  --  

l T '

(roa), [4.27 .r]

(10b)

related to the interchange energy Iy'c as enthalpv and entropy are related
to the Gibbs energy. Then we obtain

H," :
2xp2qyq'214'I

(1  1 )
(*rq, I rzQ)(p + 1) 

'

and the excess entropy ma)'be evaluated from

(r2)

The excess chemical potentials may be obtained from the Gibbs energy
surface by differentiation of (a) with respect to composition. Considering
that 51, Qz, and B are all functions of composition, it is a pleasure to note
the surprisingly simple form of the chemical potential expressions,

T: : 1:,,^[, + g9---l l ,  ( l ja), t11.08.21
R T  2  L  d r ( 6 * 1 ) l

+:?r^[1 + o 'q- l ) - l  (13b)
RT 2 L 6,(0 1- r)J

.s"*
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It is well known that the van Laar and Lumsden binary models predict
a miscibii i t l 'gap for positive l,tr/6, so it is not surprising that the QC model
does also. The consolute conditions of temperature and composition,
7", xr", r26, could, in principle, be evaluated from the conditions,

(14)

where the derivatives are the total compositional derivatives (drr: - 6*r,
at constant temperature, evaluated at composition ff1,, rz". In practice,
however, the derivatives become progressively less attractive beyond the
fi.rst. It is easier to employ another mathematically equivalent device.
We shall f ind the spinodal curve, defined as that temperature determined
b-v

- 0 , (1s)

and then find the maximum in the spinodal where

dT"
_ : 0 .
d,r;.

(16)

Dif ferent ia t ing (13a)  wi th respect  to  rz  and not ing that  r r :1-rz  in  the
binarv system. we obtain

({#)' : (1::;"-)"": o,

#(*iu)7. : o :;t- ,.#,::=,h1, ( 1 7 )

where the first term in the square brackets arises from the ideal contri-
bution and the second from the excess potentiai of (13a). The spinodal
curve is thus defined by

89tZ (18)a t r \ - _ _

Q4zZ
- 2(*tqt I  rzqz)

Differentiating again with respect to 12 and setting dT"f th.z--0 we obtain
by combination of (6) and (18)

@'-  r )@r -  O ' ) 2qqzZ(qz -- Q) (1e)
2Br1x2 lqrqrz - 2(*rq, I xzqz))'

rearranged in combination with (6) to give

f*rq" - rrqrffqrq"Z - (rrq, + rrq)llqrqrZ - 2(x.gt I x'qz)l

f [(q, - qr)qr'qr'Z2r'trr] : tt.

(#) '"
which may be

(20)
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This relation involves only qr, {2, and Z;and thus the crit ical consolute
composition is defined in terms of these parameters. The relation is, how-
ever, cubic in 11; and as a consequence the simplest methods of solution
will be numerical rather than anall ' t ical. Having found the consolute
composition it is a straightforward procedure to substitute this value jn

(18) to obtain the consolute temperature.

ANarvsrs oF lHE Har,rrn-Svr,vrrE SysrEM

Previous Work and Sowrces of Dat.a. One of the principal reasons for
choosing the NaCI KCI system as an inil ial effort in applying the QC
model was the recent appearance of an interesting anall 'sis of this same
system by Thompson and Waldbaurn (1969) who used Hardy's (1953)
essentially empirical subregular (SR) model. Although they find that the
halite-sylvite phase relations may be fi.tted to the SR model parameters
in a simple smooth fashion, the resulting lhermodl-namic consequences
bear a rather disappointing correspondence with the available calori-
metric data. We had hoped that the QC model might prove more fruitful
in this regard, and wil l show subsequently that this hope was not without
foundation.

For other reasons as well, the halite-sylivite sirstem is ideal as an init ial
choice for demonstration of the method.'fhe bonding and structure in
these solids, being octahedrally coordinated atoms with almost purely
ionic interactions, are among the simplest kinds known to chemistry.
The system is isomorphous and among the best studied of all solid solu-
tions. Although of l imited geological application it is of some interest as
a comparison with other mineral pairs in which Na-K substitution occurs.

In order to facil i tate direct comparison of results the choice of solvus
data wil l be the same as that of Thompson and Waldbaum (1969). As
they have discussed the available measurements at some length the data
will not be reviewed again here. The 15 crit ically chosen data points are
listed in Table L

Evalual,ion oJ the Qwasi-chem'ical Paramelers. In correspondence with
Thompson and Waldbaum we take component [1] to be NaCl and [2] to
be KCI and identify- the Na-rich phase and K-rich phase as A and B, re-
spectively. If we take the standard state of each component, regardless
of its concentration, to be the respective pure phasel, and if the system
is adequately described by the QC model, we ma)' write for interphase
equil ibria at any appropriate constant temperature

I In which case the activitv coefficient of a comoonent at infinite dilution rvill not in
general be unity.
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These two independent relations involve 3 unknown parameters: ql, q2,
andWe . However, the contact factors, gr and qz, are not independent. It
is required that qtf qz--->l as either become unity. Any number of func-
tional relations might satisfy this simple requirement. We shall make the
ad hoc assumption that the geometric mean of the contact factors is
unity,

t /qqz :  r , (22)

as this choice allows considerable algebraic simplif i.cation. In view of the
fact that the ratio Qtf qrdoes not deviate widely from unity, it appears
that this assumption is not crit ical. Moreover parallel analyses which we
have performed under the assumption that the arithmetic mean of the
contact factors is unitv.

q t  t  q z :  2 , (2s)

produce essentially identical results. For this octahedrally coordinated

/cc system we take Z:6.W|th the aid oI (22), the two chemical equil ib-
rium equations (21) are reduced to the two unknowns (qt/ qr) andWa.
Although transcendental in these parameters the unknowns may be ob-
tained by standard Newton-Raphson methods. The results are shown in
Table I, columns 6 andT.It is expected from QC theory that the ratio
qrf qzdepends only upon the geometry of the substituting chemical species
and is essentially independent of temperature. We find that this is the
case; the contact ratio displays no obvious trend with increasing tem-
Derature and there is no reason to fit to the data a functional form other
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than a constant. The mean value for this constant and its root-mean-
square (standard) deviation are,

q r /qz :  0 .692  +  0 .023 . (24)

Guggenheim (1944) takes the contact factors to be proportional to the
surface area of a molecule involved in contacts with dissimilar molecules.
Thus he shows for simply branched polymer chains of length 11,

2 l r { Z - 2 )
( 2 s ) ,  [ 1 1 . 0 1 . 1 ]q i :

For compact molecules of molar volume tr/;, however, probably a better
surface area representation would be

q i  :  KV t2 t3 , (26)

where K is some geometrical constant. This would be in correspondence
with Langmuir (1925) who found for mixtures of rather large organi"
molecules the ratio H""(x;->Q)/9""(rz->0) to be equal to the ratio
(V/Vz)3, provided that the molecules of the two species have approxi-
mately the same shape. The representations of van Laar (1910), Hilde-
brand (1929), and Lumsden (1952) have been discussed in a previous
section. For the NaCI-KCI system we find, from the tabulations of
Robie, et al. (1967),

1701

V r / V 2 :  0 . 7 1 9 9 ,

V 1 2 t \ f V 2 2 t 3 : 0 . 8 0 3 3 .

If we consider atomic sizes rather than rnolar volumes we find, using
octahedral ionic radii of Pauling (1948, p. 216),

(27 a)

(27b)

(28a)

(28b)

rxu+/rx+ :  0 .7 1+,

r'xo+/r'x+ : 0.510.

The observed contact ratio is very close to either the molar volume or
cation radius ratios. We shall defer, however, any attempt to correlate
the q-factors with physical properties of the components until a later
paper in this series. We prefer at this time to consider qtf qz simply a
parameter which may be evaluated from the QC model and the solvus
data. For the system under discussion we shall take its value to be the
mean of the estimates (24).

Having taken this value we can use the two equations (21) to obtain
two independent estimates of IUc. These are also shown in Table I,
columns 8 and 9. The variance between these two independent estimates
allows an obiective evaluation of the conformance of the solvus data
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T,q.Br,B 1. Orsrnvpn aNr Car,cur,ltan Two-Pnasn Corrposrrroxs
axn Car,cur,arro Quasr-Cnnurcar- Panauetons

Compositions : mole f raction

Calcu
lated

QC Parameters

Temp.
References

Bunk andTichelaar (1953)

Nacken (1918)

Barett and Wallace (1!t54a)

Barrett and Watlace (1954a)

Bunk and Tichelaar (1953)

Nacken (1918)
Barrett and Wallacc (19.54a)

Barrett and Wallace (19.54a)

Bunk and Tichelaar (1953)

Barrett and Wallace (1954a)

Barrett and Wallrce (195'la)

Nackcn (1918)
Bunk and Tichelaar (1953)

Bunk and Tichelaar (1953)

Barrett and Wallace (19.54a)

ob-
served

ob-
served

250
275
309
335
367
367
391
400
t r7

422
447
462
462
465
466
472
496

0  0 1 0
0  0 1 4

0 021 0 022
0 020 0 .031
0 044 0 .045
0 044 0 .045
0  0 6 1  0 . 0 6 1
0 060 0 .068
0 096 0 .089
0.096 0 .089
0 . 1 3 7  0 . 1 2 5
0 .  1 3 9  0 .  1 5  7
0 . 1 3 8  0  1 5 7
0 . 1 5 0  0  1 6 5
0  1 9 5  0 . 1 6 8
0  l s 1  0 . 1 8 7
o 292

o  _ 9 4 4
o 927

0.889 0  897
0.880 0  667
0.830 0  822
0.830 0  822
o - 7 7 r  o  1 7 9
0 i40  0 .760
0.709 0  708
0 . 7 1 2  0  1 0 8
0 634 0  633
o 612 0 574
0 612 0 574
0  5 6 0  0 . 5 6 0
0  5 4 2  0 . 5 5 6
0 . 5 2 1  0 . 5 2 5
0 . 4 3 6

o 670
0 648
0 698
0 698
0 684
0 649
0  7 1 0
o . 7 0 7
o . 7 1 2
0 . 6 9 5
0 696
0 670
o  7 1 6
0 693
0 . 7 3 4

with the QC model. The model is relatively insensitive to small changes
in the contact ratio. We have obtained essentially the same estimates of
We by setting the contact ratio equal to the molar volume ratio (27a).
This insensitivity is seen by comparison of the data of Table I, column 7,
with the mean from columns 8 and 9 (c/. Figure 1).In contrast, exam-
ination of the data shows that the paramet er Wc/RT is clearly dependent
upon temperature. The values are plotted against reciprocal absolute
temperature in Figure 1, where the straight l ine represents the Iinear
least-squares fit to the data of Table I, columns 8 and 9, weighed accord-
ing to the reciprocal variance between the two observations at each tem-
perature. The resulting best l inear equation is

W e : W v - T W s ,

trIlH : 5559. * 565 cal mole-l,

Ws : 2.630 + 0.759 gibbs mo!.e-l

(2e)
(30a)

(3ob)

Colrpanrsolt oF THE Moopr, Pnoppnrrps wrrg ExpERTMENT

The Phase Diagram. The determined values oI qr/ q2 (24) and l/. (30)
may now be entered into (4) and the excess Gibbs energy of mixing cal-
culated at any temperature or composition. The binodal curve or solvus
bounding the two-phase region may be determined by the graphical
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dor,rble tangent method or by equivalent iterative numerical methods.
The calculated two-phase compositions are shown in Table I, columns
3 and 5; and the calculated binodal is shorvn by the solid l ine in Figure 2,
where are also plotted the original data and the boundary calculated by
Thompson and Waldbaum (1969) with the SR model. As was discussed
above, the crit ical conditions may be obtained by substitution of (24)
into (20). The functional relation of (20) is shown in Fiqure 3 for several

1.4 t.5 ,t.6

RECIPROCAL ABSOLUTE TEMPERATURE: IO3IT

Frc. 1. Reduced interchange energy for NaCI-KCI crystalline solutions. Vertical bars
connect the two independent calculations. The solid line is the best linear weightedJeast-
squares fit. The dashed lines bound the 9501., confidence limits (two standard deviations).

different coordination numbers. For Z:6 and qt/ gz as determined (24),
we find

rr .  :  0.338. (31)

The crit ical consolute temperature depencls upon both the parameters
qrf qz and We(f).However, the reduced consolute temperature, as de-
fined by 2RT"/WG and of the order of unitv, may be represented in terms
of qr/ qz. This function is shown in Figure 4 for several different coordi-
nation numbers. It wil l be noted that greater asymmetry in the system
tends to raise the reduced consolute temperature slightly. For perfectly
symmetr ica lsystems (qr /  qr :1)  Guggenheim (1952,  p.41)  hasshown

1703
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o.2 0.4 0.6
MOLE FRACTION

^ 450
C)
o

lrl
E

b 400
E
lrJ
(L

lrj
F  - - ^

25o3
NoCl

o.8 t.o
KCI

Frc. 2. Observed two-phase data and binodal curves calculated from QC model (solid line)

and SR model (dashed line) where the latter diverges from the former.

2RT" 2
r  when  q t f  qz :  1 ,  ( 32 ) ,  [ 4 .12 .131'[ve f z I

Z I n l  -  |
L Z  _ 2 J

which tends to unity as Z becomes large. For Z and qrf qzol the halite-
sylvite system we determine from Figure 4:

2RT"

w; 
:0 .8s38.  (33)

Substitution of (30) into (33) yields

o O Borreff  ond Wolloce (1954)
tr  Bunk ond Ticheloor ( , |953)

* Nocken ( i918)

T" : 763.0" K. (34)
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Frc. 3. Consolute composition (mole fraction of component two in the binary system
at the maximum temperature at which two separate phases co-exist) as calculated from
the QC model for various coordination numbers.

The critical conditions determined, (31) and (34), are verv close to those
yielded by the SR model of Thompson and Waldbaum (1969), r2"--0.448,
T " :765 .2 "K .

It is seen that both the QC and SR models represent the data well
(allhough the QC model does so with one less parameter) and that on
this basis alone there is little to recommend one model over the other.
Such is not the case, however, when the thermodynamic predictions of
the models are compared with the experimental calorimetric data.

Colori.metric Measuremenls. Barrett and Wallace (195aa) have measured
the enthalpy of mixing in the system NaCl-KCl using a differential
calorimeter and obtaining heat of solution differences between solid solu-
tions and mechanical mixtures of the same composition. Their measure-
ments were made at 25oC but some discussion of the measurement tem-
perature is in order to allow a correct interpretation of the observed
enthalpy. NaCl-KCl crystalline solutions are thermodynamically un-
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CONTACT FACTOR RATIO: qrlQz

Frc. 4. Reduced consolute temperature as calculated from the

QC model for various coordination numbers.

stable at room temperature. The measurements were made on the meta-
stable phase which had been homogenized and annealed at 630oC, then
rapidly quenched to room temperature. Consequently while the vibra-
tional contribution to the measured enthalpv was that characteristic of
25oC, the configurational contribution was that which was frozen-in at
630oC or slightly below. Barrett and Wallace (1954b) assumed that Co
for the solid solutior, at constant conf,guration is given by the Joule rule so
that the purely vibrational contribution to the excess enthalpy is near
zero. This is not to imply that Co"" is zero, since negative excess heat
capacitv may arise from configurational changes such as order-disorder
transitions or declustering. Positive excess heat capacity may result from
other configurational changes, e.g.,the appearance in the solid of equil ib-
rium def ects. What it does imply is that the excess enthalpy measured is
the 630oC enthalpy and any comparison with theory should be made at
that temperature.

Lister and Meyers (1958) have made a comparable set of measure-
ments in a very similar manner. Their annealing temperature was 600'C.
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'faer.n 2. Cer,oruMernrc Dare ron NaCl,KCl Cnvsr,q.u;Nr Sor,urroNs

Mole Fraction Reduced Excess
of KCl Dnthalpy, kcal mole-l

x2 IIr" f arz

I{educed Excess
Entropy, gibbs mole-t

S"u f rzxz

Reduced Heat
Capacity between 500"

and 630"C,
gibbs moie-r

c;"f ''62

Banncrr .q.No Welraco (1954), 630'C

0 1 0
0 . 3 0
0 5 0
0 7 0
0 .90

5 .  1 6
4 1 8
4 1 8
4 . 0 9
4 . 4 7

0 .  5 6
1 . 2 1
1 1 2
1 1 4

- 0  2 2

Lrsrnn axo Mryens (1958),600"C

0 . 0 4
0 . 1 1
0 1 5
0 2 6
0 3 4
0 . + 2
0 . 5 5
0 6 8
0 . 9 0
0 9 s
0  . 9 8

4 .  5 8
4 .  t 6
4 . 3 5
3 9 2
4 3 9
4 2 t
4 0 8

3  . 7 1
4 9 1
4 5 7

The excess heat capacity estimate of Barrett and Wallace (1954b) sug-
gests that the correction of the 600o data to 630oC would amount to an
addition of only 0.01 kcal. As this is no doubt smaller than the uncer-
tainty in the data, we wil l compare them without making this adjust-
ment. The two sets of measurements are in good agreement with the
early work of Zhemchuzhnuii and Rambach (1910) and the more recent
work of Popov et al. (1940a, b), who found the equimolar reduced excess
enthalpy to be 4.20 and 4.23 kcal, respectively.

In Table II are l isted the Barrett-Wallace (1954a) and the Lister-
Meyers (1958) data recalculated on a reduced basis, H""f x1r2. Figure 5
shows, in addition to this, the mixing enthalpy obtained from the QC
model (l l), (24), and (30), as well as the value predicted by the SR
model as analvzed by Thompson and Waldbaum (1969). It is seen that
the calorimetric data is remarkably well represented by the QC model,
especially considering that the representation is obtained by an extrap-
olation over 130o from the nearest data point. The QC model may be
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Frc. 5. Reduced enthalpy of mixing for NaCl-KCl crystalline solutions at 630'C. The

solid line represents the QC model (this work), the dashed line is the SR model (Thompson

and Waldbaum, 1969), and the points are the calorimetric observations.

systematically slightty high. The SR model is considerably less satis-

factory. Not only is the predicted excess enthalpy almost twice too large,

but the SR model totally fails to provide a reasonable representation of

the enthalpic compositional dependence.
Barrett and Wallace (1954b) have also calculated excess entropies of

mixing in this system by combining their enthalpy data and the solvus

curve, using a reversal of the method of double tangents. Their entropy

data recalculated to an excess, reduced basis, S'"/rrr2, is shown in Table

II and in Figure 6 together with the QC and SR predictions. Because of

the awkward wav these data were obtained, it is diff icult to assess their

o.8 l.o
KCI
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Frc. 6. Reduced excess entropy of mixing of NaCl-KCl crystalline solutions at 630'C.

The solid line represents the QC model (this work), the dashed line is the SR model

(Thompson and Waldbaum, 1969), and the points are the available measurements.

reliability. The probability of systematic error in these values, moreover,
does not allow us to make meaningful detailed comparisons. Even so, the

QC model is again clearly superior with respect to the magnitude of the
entropy, and the agreement with the experiment is not too bad consider-
ing the method in which the comparison data were obtained.

Finally, it is of interest to compare estimates of excess heat capacity,
obtained by differential calorimetry on equimolar NaCI-KCl solutions
annealed at 500oC, with the predictions of the models. The SR model
does not predict an excess heat capacity. The QC model excess heat
capacity may be obtained by temperature differentiation of (11) to yield

o o.2
NoCl
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Frc. 7. Excess heat capacity of mixing for equimolar NaCl-KCl
crystalline solutions as calculated from the QC model

2qgzxrrzlB2 - (or- 6il,1

Z(*rqr+ nrq)(g + 1) 'B

for the case where dWH/dT:O. This function is shown in Figure 7 for
the equimolar solid as calculated from (35) using (24) and (30). Between
500o and 600oC the model predicts the equimolar excess heat capacity to
be about 0.44 gibbs mole-l. This is a substantially larger value than the
experimental 0.10 gibbs mole-l, but it should be noted that the heat
capacity is related to the second temperature derivative or curvature of
the Gibbs energy surface and somewhat larger errors in this function are
to be expected.

Other Theoret'ical Cal,culations. Although derived from a statistical me-
chanical framework, the QC model, as applied here, is essentially a
macroscopic model; that is, the parameters which enter into it are ob-
tained from classical macroscopic properties of the components. It is of
interest, therefore, to compare its predictions with those of an atomic
model. The high temperature, infinite dilution, partial molar heats of
mixing in this system have beencalculated by Douglas (1966) as discussed
carlier. The same quantit ies may be obtained from (11) by differentia-
t ion:
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i l r " " ( rz- - ->0,  T-- - '  oo)  :  QzWu: J\ -  =:  6.68 kcal  mole- l  (36a)
!  9t /  Qz

hf"( r t - - ->0,  T - -+ oo)  :  q tWt:  l - , i lStWs:1.63 kcalmole-1.  (36b)

The values Douglas obtains are 6.04 and 4.09 kcal mole-1, respectively,
for i l .2"" and ilf". Again the agreement is quite remarkable.

Suulranv AND CoNCLUSToNS

In the foregoing, some of the model properties of the quasi-chemical
theory of mixtures have been developed and applied to an analysis of the
subsolidus miscibil i ty gap in the system NaCl-KCl. It has been noted
that high temperature values of the excess thermodynamic parameters,
G*", H*", S*', Co*', are surprisingly well-predicted by the model and model
parameters. These parameters are derived from phase diagram data at
temperatures 130" to 320o lower than the calorimetric data. From exam-
ination of this single system it is diff icult to say to what extent the agree-
ment is fortuitous and to how wide an extent the model may be applied.
These questions wil l be examined in a succeeding paper. It may be noted
here, however, that allowing temperature dependence of the interchange

CENTIGRADE TEMPERATURE
2o,0

0 5  1 0  1 5  2 A  2 5  3 . O
RECIPROCAL ABSOLUTE TEMPERATURE: IO3IT

Frc. 8. Reduced excess Gibbs energy of mixing for equimolar NaCl-KCl crystaliine

solutions. The solid line represents the QC model (this work), the dot-dashed line is the

prediction of the SR model (Thompson and Waldbaum, 1969), and the dashed iine repre-

sents the experimental observations (Barrett and Wallace; 1954a, b).
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energy term allows a great deal of flexibility in the theory; and it is
probably this feature as well as the model's general appropinquity for
cooperative phenomena that is responsible for its success here.

The model always predicts a positive excess heat capacity (35) if tflg
is not strongly temperature dependent. This does not imply, however,
that ,S"" is always positive; in the high temperature limit S"" will have
the same sign as l/s. This is because S'"(Z+0) does not vanish for con-
stant composition but remains finite due to the "frozen-in" disequilib-
rium composition. Figure 8 displays th e f unction 5" f RT versus reciprocal
temperature for the equimolar model system halite-sylvite, f2:0.5. It
should be noted that the slope of this curve at any temperature is equal to
H^ / R and that the extrapolated intercept of the slope tangent is equal to
-S^/R. The curve is concave downwards for positive Co'*. Above
I/T:1.33X10-3K-1 (below 477"C) the system is metastable, as deter-
mined by the phase diagram. Above l/T:2.15 X10-3K-r (below 193'C)
the excess entropy becomes negative due to configurational effects, al-
though it will be observed that the excess heat capacity is everywhere
positive.

The extent of the model's low temperature agreement with thermo-
dynamic parameters derived from aqueous-solid distribution coefficients
will be reviewed in a subsequent paper. The high temperature corre-
spondence between model and experiment leads us to suggest that prog-
ress may be made toward theoretical prediction of phase diagrams by
consideration of appropriate thermodynamic models.
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