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ABSTRACT

Analytic expressions for the binodal curve (solvus) bounding a binary two-phase region
may be obtained by two distinct methods using observed pairs of coexisting phases. One
method is to plot appropriate functions of composition against reciprocal temperature and
to obtain Margules parameters by linear least-squares fits to the values plotted. The other
method makes use of near-linear relationships in the critical region between the square of
the difference in composition of the two phases, the mean composition, and reciprocal
temperature.

Analysis of the two-feldspar data of Orville (1963) and of Luth and Tuttle (1966)
shows that the two methods are in good quantitative agreement, although the second
method is preferable for some data since it completely separates the mean composition
and the composition difference. This is necessary when it seems likely that some experi-
mental runs represent incomplete equilibration. Both methods show that the three sets of
two-feldspar data obtained by Luth and Tuttle (1966), using different starting materials,
yield binodal curves that are clearly distinct from one another. The binodal curve ob-
tained from runs with excess alkali silicate agrees closely with that obtained from the two-
phase data of Orville (1963). The foregoing results are consistent with the hypothesis that
feldspars crystallized in the presence of excess alkali show the least amount of substitution
of hydronium for alkali in their structures, and should yield phases most nearly resembling
naturally occurring feldspars.

INTRODUCTION

In Part I of this series (Thompson and Waldbaum, 1968a) thermo-
dynamic mixing properties of high temperature alkali feldspars were
calculated by making use of the data of Orville (1963) on exchange equilib-
ria between feldspars and alkali chloride aqueous solutions. Part II
(Waldbaum and Thompson, 1968) was an analysis of the volume data
of Donnay and Donnay (1952) and of Orville (1967). In this paper our
purpose is to calculate tentative mixing properties from the compositions
of coexisting phases as given by Luth and Tuttle (1966). We shall also
make use of the two-feldspar runs reported by Orville (1963) in connec-
tion with his exchange studies. Although data from these same runs were
used in Part I, only the fact that each feldspar was in exchange equilib-
rium with the aqueous solutions was used in the calculations in that

1 Published under the auspices of the Committee on Experimental Geology and Geo-
physics of Harvard University. Preliminary results of this study were reported by Thomp-
son and Waldbaum (1968b).
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paper. The additional equilibrium condition that must hold if the two
feldspars coexist with each other was not taken into account, hence the
calculations below that are based on Orville’s two-phase data are to a
large degree independent of those in Part I and make use of relations not
there considered.

The following analysis of the two-feldspar data follows in its essential
features that employed by Thompson and Waldbaum (1969) in an
analysis of the two-phase region halite-sylvite. A first approach will be
to calculate Margules parameters for each pair of coexisting phases and
smooth the results as functions of pressure and temperature by the
method of least squares. A second approach will be to make use of semi-
empirical relationships in the critical region in order to calculate the
critical temperatures, pressures, and compositions independently of the
Margules formulation.

SoURrcCEs oF DATA

Data of Orville (1963). Two distinct feldspar phases were observed by Orville (1963) in the
products of many of his exchange experiments. Tt is clear, however, that some of these
represent incomplete equilibration, particularly in certain short term runs where two feld-
spars were present in the initial materials, and that others must be runs in which only the
partial exchange equilibrium was achieved, as discussed in Part T of this series (Thompson
and Waldbaum, 1968a, see especially Appendix B). Although runs of the latter type were
usable in Part I, where only exchange equilibrium was a requirement for the analysis, we
must here select those two-phase runs that are most likely to represent complete feldspar-
feldspar equilibrium and thus lie on or near the true feldspar binodal (solvus).

Fortunately Orville has given a full account of the nature of each run so that it is pos-
sible to evaluate the necessary factors pertinent to the probable degree of equilibration
and to the direction in which the exchange reaction proceeded. From this it is possible to
select, for each temperature, the run or runs that appear most likely to yield reactants lying
on or near the binodal. The following selection is our own, but from comparison with
Figures 4-8, 9, and 11 of Orville it appears that his own estimate as to the most likely lo-
cation of the binodal is not significantly different from ours.

The preferred values for the several isotherms are selected as follows:

500°C, 2 kbar: The feldspar products of run no. 883 (720 hr) appear to be the only
reasonable choice.

600°C, 2kbar: Run no. 787 (288 hr) probably gives the best values. Run no. 788 (not
plotted by Orville in his Fig. 5) had similar starting materials, but probably represents
only a stage passed en roule to the results of no. 787.

600°C, 5kbar: Run no. 835 (288 hr) is the only pair obtained at this pressure and tem-
perature, but from the course of the reaction and the nature of the results it is probably
reliable. It should be pointed out that this run was not used in the analysis of Part T of
this series solely because there were not enough runs at this temperature and pressure to
define an exchange isotherm.

650°C, 2 kbar: No single run is wholly satisfactory for the present purpose except pos-
sibly no. 756, but the K-rich phase in this run was stated to have an indistinct (201) peak,
suggesting possible inhomogeneity. We have therefore selected the product feldspar of
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run no. 755 and the K-rich feldspar of run no. 703 as the phases most likely to be near the
binodal at this temperature and pressure.

670°C, 2 kbar: No single run appears wholly satisfactory. We have selected the feldspar
of run no. 758 and the K-rich feldspar of run no. 738 as being the most likely values.

680 and 700°C, 2 kbar: Neither isotherm shows clear evidence of a miscibility gap. The
700° isotherm is almost certainly supercritical and that at 680° is probably so. No values
were selected at these temperatures.

The compositions of the two-phase pairs selected as outlined above are listed in Table 1a,
with various parameters calculated from them as indicated.

Daia of Luth and Tuttle (1966). Luth and Tuttle (1966) synthesized pairs of alkali feldspars
hydrothermally from gels at temperatures between 550 and 700°C at 2 kbar and at 650°
at 2, 5, and 10 kbar. Three types of starting material were used: one type containing alkalis,
alumina, and silica in the ideal stoichiometric proportions for feldspar; a second type con-
taining alumina in excess; and a third type containing alkali silicate in excess. The three
types of material gave reproducibly different results, hence we shall treat them below as
three distinct bodies of data. The results of runs with excess alkali silicate are listed in
Table 1b, those with ideal proportions in Table 1c, and those with excess alumina in Table
1d. We shall here refer to these three types of starting malerials as peralkaline, one-lo-one,
and peraluminous, respectively. However, the nature of the feldspars crystallizing from
these starting materials will be discussed later.

Luth and Tuttle reran materials of three selected compositions at different temperatures
in the hope of locating the binodal reversibly. The results were inconclusive but bracketed
the synthesis points in nearly all instances, indicating that the synthesis points are prob-
ably fairly close to the true binodal surface. As we shall see below it is probable that ex-
change equilibrium was achieved in most of their runs, but that complele equilibrium was
achieved is less certain. This is indicated by the fact that the parameter s in Table 1, re-
lated to the composition difference (Appendix A) between the feldspars, behaves more
systematically than does the parameter r, related to the mean composition. A series of
different pairs of feldspars that were in exchange equilibrium only, at a given pressure and
temperature, would have similar values of s (see Thompson and Waldbaum, 1968a, Fig. 2;
Waldbaum and Thompson, 1969, Fig. 4b) but could have widely differing values of 7.

Earlier two-phase data. The earlier hydrothermal investigation at 981 bars by Bowen and
Tuttle (1950) yielded the three feldspar pairs listed in Table le. These show much less
regular behavior than the more recent data. They have therefore not been included in the
following analysis and are listed only for comparative purposes. Yoder, Stewart, and Smith
(1957) synthesized coexisting feldspars from glasses, hydrothermally, at 5 kbar and esti-
mated the critical temperature to be 715+ 5°C and the critical composition to be 44 mole
percent Or, however they reported no coexisting compositions.

We have treated five sets of data in the analysis presented below. These are:

1. Orville two-phase data as selected above.

2. Luth-Tuttle peralkaline data.

3. A combination of (1) and (2) such that Orville’s data points, having been selected
from a larger body of data, are given double weight.

4, Luth-Tuttle one-lo-one data.

5. Luth-Tuttle peraluminous data.



TaBLE 1. ALkALI FELDSPAR Two-PHASE DaTa USED IN COMPUTATIONS.
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(a) Orville (1963), peralkaline synthesis conditions

500 2 1.2934 0.0340 0.8030 2.661 0.877 1.3236 —3.6280
600 2 1.1453 0.1240 0.6370 2.045 0.570 1.1049 —2.8626
650 2 1.0832 0.2080 0.5250 1.878 0.485 1.0357 —2.6410
670 2 1.0603 0.2490 0.4500 1.779 0.518 1.0138 —2.4013
600 5 1.1453 | 0.0660 0.6880 2.150 0.834 1.1708 —2.8048
(b) Luth and Tuttle (1966), peralkaline starting materials.
550 2 1.2148 0.0662 0.7490 2.372 0.661 1.2219 —3.3770
575 2 1.1790 0.0757 0.6261 1.916 0.923 1.1246 —2.4200
577 2 1.1763 0.0472 0.6567 1.957 1.1711 1.1618 —2.4341
600 2 1.1453 0.0757 0.6363 1.960 0.892 1.1304 —2.4896
625 2 1.1134 0.1810 0.5252 1.832 0.575 1.0426 —2.4497
627 2 1.1109 0.1330 0.5352 1.741 0.769 1.0599 —2.2064
635 2 1.1011 0.1234 0.5553 | 1.784 0.770 1.0702 —2.2708
642 2 1.0927 0.1810 0.4851 1.714 0.669 1.0327 —2.1938
650 2 1.0832 0.2003 0.4651 1.706 0.642 | 1.0244 —2.1896
658 2 1.0739 0.2584 0.4452 1.786 0.502 1.0119 —2.4321
665 2 1.0659 0.2584 0.4651 1.829 0.462 1.0146 —2.5711
650 5 1.0832 0.0948 0.6059 1.891 0.821 1.1039 —2.4126
650 10 1.0832 0.0378 0.6976 2.146 1.184 1.2011 —2.6591
(c) Luth and Tuttle (1966), one-to-one starting materials.
550 2 1.2148 0.0948 0.6976 2.199 0.588 1.1572 —3.1443
575 2 1.1790 0.1330 0.6465 2.077 0.508 1.1051 —3.0237
577 2 1.1763 0.1330 0.6567 2.102 0.487 1.1102 —3.1184
600 2 1.1453 0.1330 0.6059 1.970 0.596 1.0865 —2.6857
625 2 1.1134 0.1714 0.6059 2.011 0.444 1.0712 —3.0039
627 2 1.1109 0.2293 0.5352 1.926 0.406 1.0331 —2.8921
635 2 1.1011 0.2099 0.5453 1.924 0.440 1.0403 —2.8146
642 2 1.0927 0.2293 0.4651 1.775 0.544 1.0192 —2.3710
650 2 1.0832 0.2974 0.4452 1.850 0.407 1.0074 —2.7142
650 2 1.0832 0.2681 0.4353 1.783 0.497 1.0095 —2.4307
658 2 1.0739 0.2974 0.4552 1.867 0.388 1.0084 —2.7935
665 2 1.0659 0.3464 0.4452 1.907 0.308 1.0033 —3.1366
650 5 1.0832 0.1521 0.5856 1.942 0.557 1.0708 —2.6765
650 10 1.0832 . 0.0567 0.6669 2.043 1.001 1.1623 —2.5718
(d) Luth and Tuttle (1966), peraluminous starting materials.
550 2 1.2148 0.0048 0.6567 | 2.072 0.688 1.1312 —2.7846
575 2 1.1790 0.1138 0.5856 1.867 0.748 1.0860 —2.4039
577 2 1.1763 0.1234 0.6059 1.954 0.644 1.0906 —2.6135
600 2 1.1453 0.1521 0.5654 1.887 0.602 1.0636 —2.5282
625 2 1.1134 0.2003 0.4851 1.764 0.595 1.0284 —2.3129
627 2 1.1109 0.2293 0.4452 1.723 0.589 1.0160 —2,2448
635 2 1.1011 0.1906 0.4951 1.770 0.607 1.0328 —2.3148
642 2 1.0927 0.2974 0.4254 1.814 0.445 1.0055 —2.5660
650 5 1.0832 0.1330 0.5352 1.741 0.769 1.0599 —2.2064
650 10 1.0832 0.0662 0.6567 2.021 0.925 1.1489 —2.5668
(e) Bowen and Tuttle (1950).
500 1 1.2934 ‘ 0.0662 0.7387 | 2 .337 0.690 1.2123 —3.2682
530 1 1.2451 | 0.2099 0.6873 2.154 0.193 1.0884 —4.5513
2.129 0.276 1.0879 —3.8971

600 1 1.1433 | 0.1906 0.6669
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Combination of (1) or (2) with (4) or (5), or of (4) and (5) with each other did not prove
successful, and the following analysis suggests strongly that the feldspars of (4) and (5)
are quite distinct from each other and from (1) and (2).

SMOOTHING OF DATA

The procedures followed in the following analysis have been developed
elsewhere (Thompson, 1967; Thompson and Waldbaum, 1969). The
definitions of the parameters used and the relationships from which the
various quantities may be calculated are listed in Appendix A of this
paper. Our (1969) analysis of the two-phase region halite-sylvite was
carried out in the expectation that that system would constitute a
simplified analogue of the alkali feldspars. (Readers interested in a more
complete theoretical treatment are referred thereto.)

First method. This method employs a simple asymmetric Margules-type
equation containing two adjustable parameters at any given pressure
and temperature. The dimensionless Margules parameters B¢ and Cg
have been calculated for each coexisting pair using the relationships given
in Appendix A. A linear least-squares fit in terms of (1/7) and (P/T)
vields the results shown in Tables 2 and 3. The quantities in Table 2 per-
mit calculation of a complete binodal or solvus, using either graphical
methods of locating the coexisting phases or iterative methods most
easily handled by computer (Thompson and Waldbaum, 1969). The re-
results for the combined Orville and Luth-Tuttle peralkaline data are also
shown in 2-kilobar sections in Figure 1 so that they may be compared
with the data points at that pressure. It is graphically evident, and has
been partially confirmed by using the Gauss criterion (Thompson and
Waldbaum, 1969, Appendix A), that higher order fits are not warranted.

It is also apparent in Figure 1 and Table 3 that the least-squares fits
for B¢ are generally more satisfactory than for C¢ (based on the stan-
dard deviation of fit), and of interest to note that By is largely, but not
wholly, dependent upon the quantity s, which is a mesaure of the compo-
sition difference between the phases, and that Cgq is largely, but not
wholly, dependent upon the magnitude of 7, which is a measure of the
mean composition of the two phases (Appendix A). Unfortunately the
quantities » and s can not be separated in the equations of the Margules
type owing to the transcendental terms in which they appear. It is thus
desirable to try an alternative approach in which » and s, or functions of
them, may be smoothed separately.

Second method. 1t was found in our analysis of the two-phase region
halite-sylvite that the quantities In(»*) and (artanh s)/s were nearly
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TABLE 2. MARGULES PARAMETERS CALCULATED FROM LEAST-SQUARES
F1rs To Two-PHASE Data

D Bs Cs By Cr By Cy

e, (cal deg™) (cal deg™?) | (kcal) (kcal) | (eal bar™) (cal bar)
Orville 2.22 1.30 3.73  1.54 | 0.0177 0.0645
peralkaline A7 .22 14 .12 .0085 .0110
Luth-Tuttle | 1.76 2.28 3.14  2.55 | 0.0465 0.0644
peralkaline | 24 .36 21 .32 .0040 .0061
Combined | 2.32 1.24 3.90  1.57 | 0.0415 0.0622
peralkaline | A7 .23 14 .20 .0048 .0067
Luth-Tuttle | 0.75 0.97 2,37 145 | 0.0214  0.0644
one-to-one/ .12 .14 A1 .25 .0020 .0024
Luth-Tuttle || 1.03 0.92 2.35  1.26 | 0.0336  0.0474
peraluminous| .21 22 | .18 .19 .0030 .0032

The least-squares thermochemical wuncertainties (Thompson and Waldbaum, 1969,
Appendix A) are shown below the coefficients.

linear functions of reciprocal temperature. The results of linear least-
squares fits for these quantities as functions of 1/T are given for the five
sets of 2-kilobar data in Table 4a, and the results are plotted in Figures 2
and 3. Higher order fits show no improvement according to the Gauss
criterion, and inspection of the points in Figures 2 and 3 also indicates
that it would be unreasonable to ascribe curvature to the existing data.
Similar plots of In(»2) and (artanh s)/s against P or P/T for data at
constant temperature show near-linear relationships. We have, therefore,
also carried out polybaric least-squares fits expressing In(#?) and (artanh
s)/s as functions of 1/7 and P/T. The results are given in Table 4b.

TABLE 3. STANDARD DEVIATION OF LEAST-SQUARES EQUATIONS 1N TABLE 2

Data sy for B(P, T) sy for C(P, T)
Orville peralkaline 0.04 0.05
Luth-Tuttle peralkaline 0.10 0.16
Combined peralkaline 0.10 0.14
Luth-Tuttle one-to-one 0.06 0.07

Luth-Tuttle peraluminous 0.06 0.06
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Fic. 1. Margules parameters calculated from two-phase data (first method). Solid
lines denote least-squares fits to combined peralkaline data. Dashed lines are least-squares
standard deviations.

The results of the isobaric least-squares equations give direct solutions
for T, and 7. (hence N,) by simply setting s equal to zero in the series
expansion (Eq. A-9, Appendix A), or, in practice, by setting the expres-
sion for (artanh s5)/s=1. The polybaric equations, similarly, give direct
solutions for T, and 7, as functions of P. The least-squares equations also
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TABLE 4a. COEFFICIENTS OF ISOBARIC (2 KBAR) LEAST-SQUARES F1T$ OF
(ArTANH 5)/s AND In (#?) as Funcrions or 1/T

(artanh s)/s In 72
ap (23] I b}
Orville —0.4219 1345 2.887 —5037
Luth-Tuttle peralkaline —0.4556 1368 3.379 —4305
Combined peralkaline —0.4437 1361 3.176 —5089
Luth-Tuttle one-to-one —0,1103 1040 0.214 —2730
Luth-Tuttle peraluminous |  —0.0456 966 0.742 —2814

TABLE 4b. COEFFICIENTS OF POLYBARIC LEAST-SQUARES F11s TO
(ARTANH 5)/s AND In (72) as IFuncrions oF 1/7" anp P/T

(artanh s)/s In 72

@ ai s bo by ba
Orville —0.4219 1315 0.0151 | 2.887 —5082 —0.0224
Luth-Tuttle peralkaline —0.4432 1317 0.0205 2.392 —4231 —0.0428
Combined peralkaline —(.4323 1312 0.0193 | 3.278 —5160 —0.0300
Luth-Tuttle one-to-one —0.1104 1006 0.0169 | 0.216 —2772 +0.0199
Luth-Tuttle peraluminous —0.0364 923 0.0172 | 1.220 -3168 —0.0275

permit direct calculation of binodal (solvus) points and the Margules
parameters By and Cg at any appropriate P and 7. The Margules
parameters so obtained are nof, however, simple linear functions of 1/7
and P/T, though they are nearly so (see Thompson and Waldbaum,
1969, Figure 6) in the range of the data points.

A comparison of Figures 2 and 3 shows clearly that s is a much better
behaved quantity than 7. The three bodies of Luth-Tuttle data are
clearly separable in Figure 2, but are not in Figure 3. It is also evident
that Orville’s two-phase data are not significantly different from the
Luth-Tuttle peralkaline data, and that a combination of the two is quite
justifiable.

As we have already noted the parameter » should not behave smoothly
unless the phases are in complete equilibrium, whereas s should behave
fairly smoothly even if only exchange equilibrium were achieved. Both
r and s show smoother behavior in the Orville data as should be expected
from our method of selecting what appear to be the most completely
equilibrated feldspars.
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F16. 2. Results of second method of treating two-phase data. Heavy solid lines denote
least-squares fits to Luth-Tuttle data; light solid lines, Orville’s data. Dashed lines rep-
resent standard deviations to fit to the one-fo-one data. Ath=tanh™' =artanh.

Comparison of the methods. The results of both methods permit calcula-
tions of a complete binodal for each body of data in P-T-N space. We
shall confine our attention for the moment to the critical lines. Figures
4 and 5 show the P-T projections of these lines as deduced by our first
and second methods, respectively. Figures 6 and 7 show the correspond-
ing P-N projections of these lines giving the variation of the critical
composition with pressure.
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T'16. 3. Results of second method of treating two-phase data. Dashed lines denote maxi-
mum limits of standard deviations for all 4 sets of data. Vertical arrow indicates values of
In 72 for possible critical compositions (r.) ranging from —0.28 to —0.33, where 7 is defined
by (A-1).

The P-T projections based on our second method are necessarily
straight lines. The other projections all show some curvature. Those
based on our first method all have curvature of like sign, but we hesitate
to ascribe any special significance to this. The critical line is, in itself, an
extrapolation from the two-phase data, and the limited high-pressure
data are all at either 650 (Luth and Tuttle) or 600°C (Orville). The criti-
cal lines are thus best known at their intersection with the 2-kbar isobar
and with the 650° isotherms (Luth and Tuttle) or 600° isotherms {Or-
ville). Figures 6 and 7 show all critical compositions as becoming more
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Ti1c. 4. Critical lines calculated from polybaric equations obtained by first method.
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F16. 5. Critical lines calculated from polybaric equations obtained by second method.
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T16. 6. Critical lines calculated from polybaric equations obtained by first method.

B

sodic with rising pressure. This may, as we shall discuss below, be re-
lated to the monoclinic-triclinic transformation in the Na-rich feldspars,
and might disappear in an analysis based solely on data from monoclinic
feldspars rather than mixed monoclinic-monoclinic pairs (high tempera-
tures, low pressures), and triclinic-monoclinic pairs (low temperatures,
high pressures) as is the case here.

Despite the scatter and uncertainty, however, the present results are
not inconsistent with previous authors’ estimates based on these and
other data. Bowen and Tuttle (1950), on limited data, estimated the
critical temperature and composition at 981 bars to be 660+ 10°C and
about 44 mole percent Or. Their data should be comparable to the Luth-
Tuttle one-fo-one data; if so, Bowen and Tuttle’s estimated critical
temperature seems reasonable, but the critical composition does not.
Yoder, Stewart, and Smith (1957) using similar starting materials esti-
mated 715°C and 44 mole percent Or for the corresponding values at 5
kbar. Again the temperature is in agreement with the present results but
the composition is not (the data upon which they based their estimate
were not reported). It is also of interest to compare Orville’s estimates,
obtained graphically from his own two-phase data, with the results of the
two methods used here. Orville estimates T, and N, at 2 kbar to be at
680° and 30 mole percent respectively, whereas we obtain 669° and 36
mole percent (first method), and 673° and 35 mole percent (second meth-
od). At 5 kbar the corresponding values are 710° and 30 mole percent
(Orville); 711° and 33 mole percent (first method), and 705° and 33 mole
percent (second method).

Another basis for useful comparison of the data is to calculate the bi-
nodal points and Margules parameters for each set of data for 650°C and
2 kbar (Table 5). This temperature and pressure is near the center of
gravity for each set of data points, and is also in the temperature range
where both coexisting feldspars are very likely to be monoclinic. This is
also the approximate center of gravity for Orville’s exchange data points,
hence we have also included in Table 5 the preferred results of the analy-
sis presented in Part I of this series (Thompson and Waldbaum, 1968a).

>

Fic. 7. Critical lines calculated from polybaric equations obtained by second method.
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TaBLE 5. MARGULES PARAMETERS AND CALCULATED COEXTSTING
ComposITIONS AT 650°C aAnD 2 kbar

Data ‘ W (kcal) Was (keal) | Nsa Ny
e I_ — - i —————
Orville ion-exchange data 2.9 4.20 2564 .5347

(peralkaline; Part I, Table 5) ‘
Orville 2-phase data) 7, s method | 2.48 4.35 .2032 .5201
(peralkaline) f B, C method 2.47 4.34 .2055 5172
Luth-Tuttle peralkaline| r, s 2.10 4.32 .2003 . 4806
data B, C 2.06 4.34 1943 .4827
Combined peralkaline) 7, s | 2.236 4.336 2007 4946
data B, C ‘ 2.17 4.35 .1954 .4936
[
Luth-Tuttle one-to-one| 7, s 2.67 4.19 .2650 .4813
data B, C | 2.65 4.18 .2712 .4720
Luth-Tuttle peraluminous| , s 2017 4.13 [ 3118 .3669
data [ B, C 2.13 4,12 | (7,=648.9°C)

It is clear from Table 5 and Figure 8 that the exchange results indicate
larger values of G, than do the results obtained from peralkaline two-
phase pairs to which they should be comparable. The exchange results
might be untrustworthy through an error in our assumptions concerning
the activity coefficients in the aqueous phase, or possibly to undetected
unmixing or other anomalous behavior in the aqueous phase, but it is
more probable that the general magnitudes of G.. indicated by the ex-
change data are more nearly correct than are those calculated from two-
phase data. G, at any given composition and at a temperature and pres-
sure corresponding to one of Orville’s exchange curves, is related directly
to the area under a fairly well-defined curve (Thompson and Waldbaum,
1968a, p. 1976, Fig. 9a), hence its magnitude is quite well known. Knowl-
edge of only the compositions of two coexisting phases, however, yields
reliable information only on the shape of the G.. curve near those compo-
sitions for the pressure and temperature in question, and may be rather
seriously in error (see Thompson and Waldbaum, 1969; also Sundquist,
1966) with regard to the magnitude of G.. and hence of the quantities
(wi—u;®). In fact to yield correct values of (u1—ui®), (pa—wu2"), Naa, and
Nag for a two-phase equilibrium e—8 would require a Margules formula
with four' rather than only two adjustable parameters for each pressure

1 A Margules formula may be extended to any number of adjustable parameters ac-
cording to the scheme:
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F1c. 8. Gibbs energy of mixing at 650°C and 2 kbar calculated from Margules param-
eters obtained from ion-exchange data (W g =2.95, W g:=4.20) and two-phase data Wea
=2.236, W ¢.=4.336). Open circles and e and ¢’ denote compositions and chemical poten-
tials, respectively, of coexisting feldspars calculated from ion-exchange parameters; solid
circles and ¢ and # denote the same for coexisting feldspars calculated from two-phase
parameters. Light solid lines, ee’ and #’ are tangents to the respective curves at the com-
positions of the coexisting phases. See Figure 1 of Part IV (Waldbaum and Thompson,
1969) for a plot of the Gibbs energy of mixing of an ideal solution at 650°C.

Xoo = NiNo(NsWx1 + N Wxs) + N2N2(NVaWxy + NiWxs)
+ NiENB(NWxs — NWxe) + - -+ + NeNe2(NaWx ooty + NilWxea))

Terms for which Wxg_1y=Wx@ yield only symmetrical contributions to Xos-
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Fi16. 9. Isothermal, isobaric, reciprocal ternary section in the system K;0-AlO3-SiOz-
H:0. Dashed line represents the KAlSi;Os-H,O join (see text). Solid lines represent pos-
sible equilibrium tie lines.

AlgSig 0y AlySig Oy

\ " Sifimanite or Muliite
+ Quartz
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\ \ = Quarlz

- 18I0 Muscovite

iz +Quortz
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Fi16. 10. Isothermal, isobaric section (schematic) through the system K,O-AlQO;-
Si0-H,O at low temperatures (Fig. 10a) and at higher temperatures (Fig. 10b). Dashed
line represents the alkali feldspar-hydronium feldspar join. The join alkali feldspar-hy-
drogen feldspar (not shown) is parallel to the join KyO-H.0, passing through the piercing
point of the quartz-muscovite join.

and temperature. In view of this it is of interest that the agreement in
Table S is as close as it is.

THE PROBLEM OF THE STARTING MATERIALS

One possible explanation of the distinctly different behavior of the dif-
ferent types of starting material is that anhydrous alkali feldspars are not
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strictly binary solutions, but vary from their jdealized formulas in both
alkali-alumina ratio and alkali-silica ratio. We do not regard the evidence
for this as convincing, however, owing to analytical uncertainties, even
when dealing with well-crystallized natural specimens.

A more likely interpretation, to us, is that alkali feldspars placed in
contact with an aqueous phase will undergo hydrolysis involving substi-
tution of either protons or—more likely—hydronium ions, H;O*, (Vol-
mer, 1924; Hamilton and Ibers, 1968, p. 116) for the alkalis (Luth and
Tuttle, 1966, p. 1372). This would be in essence an alkali-hydronium ex-
change reaction between a feldspar and an aqueous phase. A consequence
of such an exchange reaction would be that the aqueous phase should con-
tain excess alkali at the completion of a run. Results obtained by Morey
(1957), by Garrels and Howard (1959), and by Wyllie and Tuttle (1964)
indicate that this may be so in fact. Hydronium substitution for alkalis,
particularly for K+ to which it is comparable in size, is structurally rea-
sonable and may well be anticipated in view of the recent discovery and
synthesis of ammonium-bearing feldspar (Erd, White, Fahey, and Lee,
1964; Barker, 1964).!

Let us consider this possibility with respect to possible hydronium ex-
change in a potassium feldspar. The apparent distribution constant for
such a reaction would be?

Nor teptin;ot fluid

I4
D =

.
Nui tsp MK" fluid

It is evident that increasing mx" i1uia/Mm,07,11uia Will minimize Naz sp,
hence it is likely that runs with excess alkali, either as alkali silicate or as
alkali chloride, should be buffered against extensive hydronium substitu-
tion and should then yield feldspars that are more nearly simple alkali
feldspars. It is also evident from the geometry, distribution of joins, and

1 Alkali-hydronium-ammonium cation sabstitution in crystals has been reasonably
well established (Havighurst, Mack, and Blake, 1925; Hendricks, 1937; Ross and Evans,
1965; Pezerat, Mantin, Kovacevic, 1966; and others). Bondam (1967) reports experimental
data which he states verifies potassium-hydronium exchange in adularia. The data pre-
sented, however, are somewhat equivocal and probably cannot be regarded confirming
hydronium substitution in feldspars. The infrared spectral data of Erd, ef al. (1964, Table
6), on the other hand, suggests that some of the water in buddingtonite may in fact be
hydronium (see Taylor and Vidale, 1956). C. Frondel, W. K. Sabine, and R. W. T. Wilkins
(in preparation) recently obtained water analyses and infrared spectra of adularia that
indicate the presence of structural water with properties which are also fully consistent
with at least some of the water being hydronium ion.

2 The subscript “HF" identifies the component Hy;O(AlSi;Os) and fsp refers to a feldspar
phase as distinct from a fluid or other crystalline phase.
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known solubility relations in a system such as KyO-ALO;-5i0.-H,0, that
aqueous phases coexisting with assemblages containing alkali in excess of
alumina (peralkaline) will have higher values of mx* fiia/#H;0% f1uid
than those coexisting with assemblages having an excess of alumina over
alkali (peraluminous). We may thus anticipate that runs using peralu-
minous starting materials should yield feldspars showing maximum hy-
dronium substitution, hence showing greatest departure from simple
alkali feldspar.

Some possible exchange reactions are shown schematically in Figure 9.
The dashed line represents compositions of starting mixtures in which
the feldspar or glass of feldspar composition has the ideal formula:
K (AlSi;0s). Point 1 represents a high ratio of fluid to glass or crystal and
point 2, a low ratio. The arrows show the expected course of reaction in
each case. Hence, where the ratio of fluid to other phases is high, as in
most hydrothermal experiments, compared with a natural igneous or
metamorphic environment, the possibility of extensive hydronium sub-
stitution is enhanced—other things being equal.

The maximum stable hydronium substitution should be as indicated
(schematically) in Figure 10. (Figure 10 is a section through the system
K,0-Aly05-Si0:-H:O that includes the plane of Figure 9.) Figure 10a
shows that the saturation value at low temperatures should occur with
muscovite, quartz, and fluid. Figure 10b shows that the saturating as-
semblage at high temperatures should be sillimanite (or mullite), quartz,
and fluid. If the fluid were diluted by extraneous components, the satura-
tion value of Nus sp, whatever it may be, should decrease (move toward
the Or composition). It is probably also lowered by a decrease in tempera-
ture. All considered, we feel that extensive hydrolysis of this kind is, if
real at all, far less likely in a natural petrogenetic environment than in
standard hydrothermal experiments. We are of the opinion, therefore,
that the alkali-buffered (peralkaline) hydrothermal systems should yield
feldspars resembling most closely those occurring naturally and conform-
ing more nearly to the classical feldspar formula.

THE PROBLEM OF POLYMORPHISM

It is quite certain that the feldspar pairs obtained in both the Orville
and Luth-Tuttle experiments are monoclinic at high temperatures (above
about 620°C at 2 kbar), and that at lower temperatures the Na-rich phase
is triclinic, coexisting with a monoclinic K-feldspar. The exact nature of
the transition is debatable but three possibilities are shown in Figure 11.
We believe that Figure 11b is more nearly correct, but the following argu-
ment applies to all three possibilities.
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Fic. 11. Possible relations between the equilibrium alkali feldspar binodal and the
equilibrium symmetry change (corresponding to curve E in Figure 6 of Waldbaum and
Thompson, 1968). Phase boundaries are shown as solid lines where they are stable and
dashed lines where metastable. Rectilinear diameters are shown as dotted lines. Phase
relations are schematic, but the monoclinic binodal is approximately that shown in
Figure 13.

We have not allowed for polymorphism (as shown by symmetry
changes) in either method of analysis, hence the rectilinear diameters cal-
culated from the parameters in Tables 2 and 4 will not correspond to the
true rectilinear diameters shown as dotted lines in Figure 11. The differ-
ence in the calculated and true rectilinear diameters for Figure 11b is
shown on an expanded scale in terms of In(#2) in Figure 12, where the
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F16. 12. Critical region of Figure 11b showing (schematically) the form of the recti-
linear diameter curve (solid line) obtained by least-squares fit to data which include
monoclinic-monoclinic pairs and triclinic-monoclinic pairs. Dotted line is same as in
Figure 11b for the position of the true rectilinear diameter curve when the symmetry
change is taken into account. T is the temperature at which the equilibrium symmetry-
change curve intersects the Na-rich portion of the two-phase region. (Note: Dotted line
refers to frue coexisting compositions. A similar curve for coexisting feldspars obtained
from compositions determined by physical property measurements at room temperature
will show an additional discontinuity resulting from a displacive symmetry change, as
discussed in Part I1.)

solid line corresponds to the calculated curve and the dotted line again
corresponds to the true relations. It is thus probable that our analysis has
given values of 7, that are slightly less negative than the correct values for
monoclinic alkali feldspars. If, as seems likely, the Na-rich feldspars in
the 5 and 10 kbar runs were all triclinic, the relations in Figures 11b and
12 may also account for the shift to more sodic critical compositions indi-
cated by our analysis (Fig. 7). By the same reasoning our calculated
values of s will tend to converge more rapidly with rising temperature
than they should, thus yielding slightly too low a critical temperature.
We shall therefore attempt, below, to adjust our parameters without
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doing violence to the data, and in such a way that we may take these
factors into account.

It is of interest here, however, to speculate that (Hs;0)*, a large ion,
would probably favor monoclinic symmetry, other things being equal.
Thus the proportion of monoclinic-monoclinic pairs should be greatest in
the peraluminous data, smaller in the one-lo-one data, and least in the
peralkaline data. A consequence of thisshould be a slower convergence of
s with rising temperature, That this is in fact so, whatever the correct
explanation, may be seen by comparing the slopes for the peralkaline,
one-to-one, and peraluminous data, respectively, as plotted in Figure 2.
Figure 2 is thus consistent, at least, with our hydronium-feldspar hy-
pothesis. This would also suggest that investigations of equilibrium order-
ing in alkali feldspars, particularly Na-rich feldspars, should be done un-
der conditions that would minimize hydronium substitution.

ADJUSTMENT OF PARAMETERS FOR HIGH-
TEMPERATURE, MONOCLINIC ALKALI FELDSPARS

In view of the interpretations discussed above, we shall now confine our
attention to the feldspars formed from peralkaline starting materials as
best representing natural alkali feldspars. We shall use the combined
peralkaline data of Orville and of Luth and Tuttle, rather than attempt
to choose between them, and assume that the critical line calculated by
our second method (a straight line) has the correct P-T slope (Fig. 5), but
that it lies at slightly too low temperatures. We shall also assume that the
calculated critical compositions at 2 kbar are slightly too K-rich, but that
the calculated Wg’s and N’s at 650°C and 2 kbar as given in Table 5 are
correct. The last assumption is fairly safe in that the temperature and
pressure are near the center of gravity of the data and well within the
monoclinic-monoclinic range.

Two points on the critical line and one pair of coexisting phases (at
650°C and 2 kbar) on the binodal surface are sufficient to calculate an
equation having the simple asymmetric Margules form (Thompson,
1967), with the quantities Wy, Wys, Wg1, Wes, Wi, and W, assumed
constant. Under these restrictions, the hypothesis that the critical line is
straight in P-T projection (and we really do not know which way it
curves, if at all) is special and requires that the critical composition be
constant (Appendix B). As we have discussed above, the apparent shift
to more sodic critical compositions at high pressures may be due only to
the preponderance of triclinic-monoclinic pairs in the high-pressure data.

In Table 6 we show the effects, using the above assumptions, of minor
readjustments of the critical temperature and composition at 2 kbar upon
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T16. 13. Comparison of calculated binodal and observed peralkaline two-phase data at
2 kbar. Critical temperature is 675°C, critical r is exactly —% (Table 6). The ordinate on
the right side reduces this figure to a diagram of corresponding states for all pressures,
provided the critical line is linear in P-7-XN space. Numerical values for this smoothed
binodal curve are to be tabulated in Part IV of this series.

the calculated Margules parameters. We also show for comparative pur-
poses values of some tentative excess parameters obtained by other
means for different alkali feldspar series and from our analysis of the two-
phase region kalite-sylvite (Thompson and Waldbaum, 1969). It is clear
that variations in T, and ¥, that are well within the uncertainty of the
data produce significant variations in the Margules parameters. Selecting
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Frc. 14. Calculated isothermal binodal at 650°C compared with observed peralkaline
two-phase data. The binodal was calcalulated from the same Margules parameters used
for Figure 13.

a critical temperature of 675°C (at 2 kbar) and a critical composition of
precisely 1/3, however, vields values quite consistent with those obtained
by other means—note particularly the comparison of the Wy’s with those
from cell-volume measurements at room temperature. The calorimetric
data of Kracek and Neuvonen (1952) for natural sanidine—high albite
solutions also are in excellent agreement with the Wg's.

Although the excess mixing properties are tentative, a binodal curve
consistent with two-phase data in the monoclinic region may be con-
structed using the formula

G.. = (6327 + 0.093P — 4.632T) NN’
+ (7672 + 0.112P — 3.85TT)N,N 2

where G is in cal mole=! and P is in bars. A 2-kilobar binodal calculated
from the above is shown in Figure 13 and a 650°C isothermal binodal
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TaBLE 6. CriTiCAL CONSTANTS AND MARGULES PARAMETERS FROM COMBINED
PERALKALINE DATA AND FROM RELATED STUDIES ON ALKALI FELDSPARS
AND THE SysTeEM NaC1-KC1

- T, Wi Wae | Wi WV2 Wsi W
‘ (°C) (keal) (cal bar—l) (cal deg™)
Combined |
Peralkaline Data
S i | — |
Critical line (v, s) and —.32 669.6 | 3.72 9.77 | .055 .144 | 6.19
650°C 7, s values.
rc adjusted —.33 669.6 | 8.03 9.73 | .118 143 | 6.53 6.16
T, adjusted —.32 680.0 | 2,47 6.45| .036 .094 | 0.33 2.49
T, r. adjusted —.33 680.0 | 5.30 6.43 | .077 .003 | 3.49 2.47
Preferred peralkaline ‘ —1/3 675.0 | 6.33 7.67 | .093 112 | 4.63 3.86
parameters based on avail-
able experimental data.
| 3
Related Studies | :
Sanidine molar volumes — — — — 090 090 | — —
at 25°C (Part II) [
Microcline—low albite — - | 6.24 8.43 | 110 110 — —
enthalpies of solution ‘ :
in HF and 25°C volumes |
(Waldbaum, 1966) ‘
Halite-sylvite —.30 492.1 | 53,79 899 | — — | 5.05 7.28

2-phase data (Thompson [
and Waldbaum, 1969)

curve in Figure 14. The data points in Figure 13 have the expected dis-
tribution relative to the calculated binodal curve, and the distribution
compares favorably with Figure 11b. A useful property of the simplified
equation yielding a straight critical line is that one isobaric section
through the binodal surface is identical to all others if the temperature is
expressed as T/T, (Fig. 13).
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APPENDIX A. THERMODYNAMIC RELATIONS

The equations for two-phase equilibria (Thompson, 1967, p. 354) may be condensed
by recombination and by introducing the following notation:

s=Nog— Now |

A1
r= Nuoy+ Now — 1; (A-1)
and
Bg= %“I
LY
A2
. Wei—Wa | (A-2)
Co=—x |
2RT

where N is mole fraction, 7 is absolute temperature, R is the gas constant, and 3 identifies
the K-rich phase and « the Na-rich phase, and components 1 and 2 are NaAlSi;Os (4b)
and KAISi;0s (Or), respectively. The equations for the two-phase equilibrium may now be
written

Bg — 3rCg)s = 0
(Bg rCe)s 1 % (A-3)
Cgs® — (Bg — 3rCg)rs = 02
where
1 NN iq 2
01 = *2* lﬂ (ﬁwz\]l ) =] artanh (Ti:‘ij)\}
a -7
N N 1 (A-4)
1 NogN1s 2sr I
»=—1In (——»»—) = — artanh (»'7477——
2 NguNlu 1 — 52— 42 J
We then have
6 6> 4
Be = 3r (L‘i—) JEe (A-5a)
3 s
0 [
Co = (’ “;J) (A-5b)
s

The right hand side of either (A-3a) or (A-3b) is a function of composition alone and may be
readily evaluated for the observed two-phase pairs obtained at each temperature. We
shall further define

_ Wxe+ Wi

Wxy — W.
By = _ Vx X1

Cy = — 2~
2R ' x 2R

(A-6)
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where X may be internal energy, F; enthalpy, H; volume, V; or entropy, S. Then, as with
the W’s (Thompson, 1967, p. 349), we may write

— Bs+ By (5) + By (1) |
T T/
P 1y |
- Cs+ Cy (F) + Cxg <?)
where P is pressure,

Of several functions investigated by Thompson and Waldbaum (1969) the plots that
proved to be most nearly linear were In(7?) against 1/7 and (artanh s)/s against 1/7 which
can be expressed analytically as

Bg

(A-7)

Ce

1 P
Ins? = b(} + b1 (F) —'— bg (?) (A-S)
artanhs =2 528 1 P
— = — = — = A9
s X mrD ““L“‘(T)J””(T) )

for polybaric data.

ArpPENDIX B. THE CrITICAL LINE OF A SIMPLE
ASYMMETRIC SOLUTION

Certain of the desired relationships have been derived elsewhere (Thompson, 1967, p.
357-358), but we shall present them here in a slightly more convenient form for our present
purposes, and with different notation. We shall use T (=G/RT) as our thermodynamic
potential; p (=2N,—1) as our composition variable; and the quantitics Bx, Cx (Thomp-
son and Waldbaum, 1969) as Margules parameters, supposing that By, Cr, By, Cv, Bs,
and Cg are constants.

T, like G, must be minimized at equilibrium at a given P and 7, hence for a critical
phase (the subscript identifies the #-th derivative of T with respect to p at constant P and
Tk

1 1
(VIR P S W, 8 5 B-1
S Z(G pcCac) (B-1)
2p, 3
(S N SR ey, B-2
3 (1—p62)2+2 1 (B-2)
1 3pc?
0<I‘4=2M (B-3)
(1 = pc2?

(B-1) and (B-2) are the equations of the critical line along which, therefore:

omin= (s + (D40
O RN ORI

1 V 1 !
— —Br —30Cr); (=) = — = (Bv — 3pC
Z(F Plz) (R)_) 2(V PV)

= (B-6)

3 V)_SC
E; (R 3"2’1/

Also:

N

12

~— N
I

MRS

N

(3]
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We therefore obtain (noting that p.=7.):

(%)

(Be lSCEVc)

O o7 17 (B-7)
1 <BV - 3CV7'C)
i(3)
Tk
P
d ;3 ¢ (?) 3
Te ! ¢
"[d 1>_|= 2 C;'41_)2 !
(TC J <TE
_ 3 (BsCv — BrCr) (B8)
2 (By — 3Cyre)
and from (B-7) and (B-8)
& (L) —3(BxCy — BvCg) [—d”
T B Ly viEg a1/T)
: ( 1 )2 - (By — 3Cyr)?
T,
— ~ 2
- 21.1 d?’c ] (B—g)
(BV = 3CV’C) d(l/Tc)

A straight line in (P/T) and (1/7) must be straight in P and 7" and vice versa. The
quantity (By—3Cyr.) is finite, hence if (d2P./dT2) is zero then the critical composition is
constant and vice versa; and also (from B-8) we must have (BgCy— ByCzg)=0, whence

Pc
()

TC B 4 W 72
N/ Be o Ce Wm | Vm (B-10)
d ( 1 ) By Cy Wy Wy

T





