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ABSTRACT

Determination of the cell dimension by divergent beam X-ray diffraction was tested on
kamacite from six meteorites.

Kamacite grains in enstatite chondrites were studied to test the feasi-
bility of using divergent beam X-ray diffraction (Kossel technique) for
determination of lattice parameters of micron-sized grains in ordinary
polished sections. In this method, the electron-excited volume acts as a
point source of divergent characteristic X rays corresponding to elements
present in the sample. Because of low nickel content of kamacite, only
FeK,, (\=1.93604 A) and FeK,, (A=1.93998 A) were of sufficient inten-
sity to be recorded on film in our experiments. For X rays satisfying the
Bragg relation, diffraction of divergent X rays from any lattice plane re-
sults in enhancement of X-ray intensity in the diffraction direction
(ABC in Fig. 1), and in depletion in the transmission direction (ABD in
Fig. 1) (for a detailed discussion, see Lonsdale, 1947). Diffraction and
deficiency cones, with apices at the point source, are generated, and can
be recorded as conic intersections on flat film placed below (transmission
mode) or above (back reflection mode) the section. Back reflection conics
are recorded as conic intersections (Kossel lines) on flat film positioned
above the sample (Fig. 2). Transmission conics were not recorded in the
present study due to thickness of the polished section.

Kossel patterns were obtained with an Applied Research Laboratories
back reflection camera fitted to an electron microprobe X-ray analyzer.
The electron beam, at an accelerating potential of 30 keV, was focused to
a one-micron spot on the sample surface. Sample current was 0.31 uA and
exposure time approximately five minutes. Lattice parameters obtained
are for kamacite grains 50 to 300um in diameter. Diffraction is, however,
actually derived from a much smaller volume within the grain, thus
allowing several patterns to be obtained from different areas on an in-
dividual micron-sized grain (excited volume in case of kamacite is in the
order of 10% um?).

Kossel patterns were indexed by comparison with a computer-drawn
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ELECTRON BEAM

SAMPLE

Fic. 1. Schematic representation of divergent beam X-ray diffraction using a focused
electron beam to provide a “point” source (A) of divergent characteristic X-rays, wherehy
the sample itself serves as the X-ray source. Diffraction oceurs when Bragg’s equation is
fulfilled for a given characteristic X-ray line, resulting in enhancement of X-ray intensity in
the diffraction direction (ABC) and in depletion in the transmission direction (ABD). Dif-
fraction and deficiency cones, with apices at the “point™ source, are generated, and can be
recorded as conic intersections on fat film placed below (tranzmission mode) or ahove (back
reflection mode) the section.

stereographic projection of the pattern of kamacite (Frazer and Arrhe-
nius, 1967). Patterns were measured and lattice parameters deduced by
methods described in the Appendix. For each conic section on film,
the coordinates of many points on the conic were measured in terms of
an orthogonal coordinate system. The equation for the intersection of a
diffraction conic with the film plane is uniquely determined by the lattice
parameters of the crystal, by its orientation, and by the X-ray source-to-
film distance (Morris, 1967; for details on the mathematics, see Appen-
dix). By measuring several conics we produce a highly over-delermined set
of equations for these parameters, which are then solved by a computer
routine. Thus it is unnecessary in our method to measure either the
sample orientation or the source-to-film distance; the equations of the
conic sections delermine these quantities along with the lattice param-
eters. Moreover, the method provides a statistical estimate of errors
from standard statistical techniques based on the degree of inconsistency
of the over-determined equations. Range in errors reflects variations in
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F1c. 2. Kossel pattern (negative) from a micron-sized area on a kamacite grain in a polished
section of the Jajh deh Kot Lalu enstatite chondrite.

orientation of grains and in quality of patterns obtained. Kamacite com-
positions given are average values from electron microprobe analyses of
10-53 grains in each section. Lattice parameters can be calculated from
these compositions using data of Owen and Burns (1939) on lattice param-
cters of kamacite of known nickel content, and of Farquar et al. (1945)
on pure iron-silicon alloys. To make the calculation it is necessary to as-
sume that relative contraction of the lattice due to presence of silicon is
unaffected by presence of up to seven weight percent nickel. Agreement
between calculated and measured values is considered satisfactory, as
microprobe analyses were not made on the specific grains studied by
divergent beam X-ray diffraction.

With cubic minerals such as kamacite it is relatively easy to obtain
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TABLE 1. LATTICE PARAMETERS (a) oF KaMACITE 1IN ENSTATITE CHONDRITES

Composition,
in wt. 9,

Meteorite Measured a (A) Error (&) Calculated o (&) (Average)

Ni Si

Hvittis 2.86756 0.00061 2.8669 6.1 1.1
Khairpur 2.86759 0.00015 2.8670 6.8 1.2
Atlanta 2.86803 0.00080 2.8667 6.1 1.2
Jajh deh Kot Lalu 2.86717 0.00017 2.8666 6.2 1.3
Jajh deh Kot Lalu 2.86627 0.00036 2.8666 6.2 1.3
Indarch 2.86322 0.00071 2.8637 7l 3.5
Indarch 2.86334 0.00045 2.8637 71 345
St. Marks 2.8614 0.0015 2.8632 6.0 3.6

useful Kossel patterns: indexing and measuring of films, and computer-
ized data reduction to deduce lattice parameters can be done rapidly yet
give results with adequate precision for most purposes (between about
0.0002-0.002 A). For example, measuring a single pattern took about one
hour and lattice parameter calculation involved about 25 seconds of
computer time. Attempts are presently being made to apply the method
to noncubic minerals and to define its limitations.
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A ppendix:
INTERPRETATION OF KOSSEL PATTERNS

The first step in the method, calculating the interplanar spacing for each conic, was de-
veloped by Morris (1968). Using this approach we set up a coordinate system with the
origin at the X-ray source and the z axis normal to the plane of the film. If £ is the film-to-
source distance and (x, ¥) a point on a conic section, then the equation of the conic section
on the film is of the form

) R —
L1x+L2y+Lal=ﬁ\/x2+y2+t2 (1)

where L1, L» and L; are the direction cosines of the cone axis. The equation can be written

By El— Va2 + =0 (2)

where £,=2dL;/\. For n points (x;, 3,) on a given conic there are # simultaneous equations,
and if %> 3 the set of equations is overdetermined. A least-squares solution is sought for the
#'s, minimizing the quantity

=2 f‘f (3)
1=-1
where

Ei= g+ Eayi + &t — VAL H Y i (4)

Differentiating with respect to &1, £, and & the conditions for a minimum are
3 A
> Hpke = n; (3
k=1

where
Hu =ZJC3 Hiz = Ho = Za:y:
Hoo = Eyf- Hay = Hyo = 12y,
Hay = ni? I3 = Hy = 12x,

()
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The computer solves for the £'s and calculates the direction cosines and interplanar spac-
ings for each conic section by formulae

A 3
d= —4/ 28 )
2 =1

E )
Li=% / 1/ 2 & (®)
i=1

Morris’ treatment can be extended by calculating the error in d for each conic section by
the standard statistical formula (see, for example, Orear, 1958).
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A weight is then assigned to each conic on the basis
1
Weem———— e
(Ad)2 (R + kB2 + 17
For cubic crystals each conic section gives a value of the lattice parameter @ from the
formula a?=d?/(J2+k2+1%).
‘The computer then determines ¢ by a search routine which minimizes the variance in

the values of ¢ found from each conic section. The weighted average of these a values is the
most probable value of e, and their standard deviation is the error in a.
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