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INrnonucrtoN

The Mineralogical Society of America, as stated in its constitution
and implied in the construction of its seal, exists primarily to further
the three related sciences of mineralogy, petrologv, and crystallography.
Mineralogy, the only one appearing in the name of the Society, clearly
occupies a central role, and quite properlv so, for there is much of
crystallography and of petrology that is not mineralogic, and the Society
has never attempted to cover the nonmineralogical aspects of these
fields. There is, however, little in mineralogy that is not either petrologic
or crystallographic in nature, and in this era of increasing specialization
most of us tend to regard ourselves as either mineralogist-crystal-
lographers or mineralogist-petrologists. We have thus begun to polarize
into two groups that, though both are concerned with minerals, have
tended to go their separate ways; one group, the introverted mineral-
ogists, concentrating on phenomena within the boundaries of a mineral
grain, and the other group, the extroverted mineralogists, looking out-
ward to the interaction of the mineral with other minerals and various
environmental stimuli. Though a petrologist, I hope in this paper to call
attention to recent crystallographic researches that will surely prove to
be of great petrologic significance.

Specifically petrologists have regarded the individual mineral phase
as a more or less static entity, capable of being heated, cooled, or varied
in composition, but otherwise uncomplicated. We must now abandon
this misconception for it is overwhelmingly clear, from the evidence that
has been amassed over the past forty years by crystallographers, that
interesting things actually happen inside minerals. We should not be
surprised by this for we have long been aware of processes taking place
inside liquids and gases, namelv that molecules and ions can and do

r Presidential address, Mineralogical Society of America. Delivered at the 49th Annual
Meeting of the Society, November 12,1968.

341



342 JAMES B. T'IIOMPSON, ]R.

react with each other to form new molecules and ions, the properties
of the phase varying accordingly. In fact much of classical physical
chemistry is primarily concerned with the understanding of just these
homogeneous reactions and homogeneous equilibria, in fluids, whereas
petrologists have focused their attention on heterogeneous, or polyphase,
reactions and equilibria.

Recognition of the fact that the things that happen in crystals are
closely analogous to homogeneous reactions in fluids, has, however, been
surprisingly slow in coming. This is partly because most of the key
discoveries have been made by crystallographers or physicists rather than
by chemists, and partly because terms such as "order", "disorder",
"defects", and "vacancies" have litt le apparent kinship to the words by
which we describe homogeneous reactions in fluids. Further confusion
has arisen because differences in theoretical approach have led to dif-
ferences in notation so that results that may be in fact almost identical
can look very different on paper.

There has even been, in the past fifteen or twenty years, a note of
despair that chemical thermodynamics is somehow inadequate to deal
with the phenomena observed in crystalline phases, and this, despite the
fact that early analyses of order-disorder phenomena by Bragg and
Will iams (1934, 1935) and by others were thermodynamic to a large
degree. The fact that physical properties of crystals were in part de-
pendent on past history and hence not uniquely defined by pressure,
temperature, and bulk composition was taken as negating the very
concept of an equation of state for such substances. That similar state-
ments could be made about gases and liquids for which the bomogeneous
reactions are sluggish, and do not always proceed to completion, was
unfortunately overlooked by these pessimists.

In the past five to ten years the quantity and quality of information
relating to the processes taking place inside crystals have grown enor-
mously. Detailed distribution of atomic, molecular, or ionic species
among the various crystallographic sites of a crystal can now be obtained
for many substances of interest including some of the major rock-forming
minerals. Al-Si distribution among the tetrahedral sites in feldspars and
other minerals may now be deduced by the method of mean interatomic
distances as developed by Smith and Bailey (1963), and also by the
method of direct site population refinements as developed by Burnham
(Burnham and Radoslovich, 1964) and Fischer (1966). Fe-Mg distribu-
tions in pyroxenes and amphiboles have also been investigated by Ghose
and Hellner (1959), and Ghose (196t,1962,1965) through trial and error
refinements and also by direct site population refinements. These dis-
tributions have more recently been investigated by the use of Mcissbauer
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spectra as in the work of Ghose and Hafner \1967; also Evans, Ghose and
Hafner, 1967), and of Bancroft and Burns (1967; also Bancroft, Burns
and Maddock, 1967a, 1967b; Bancroft, Burns, and Howie, 1967; and
Bancroft, Burns, Maddock, and Strens, 1966). Important information
bearing on proton distribution associated with hydroxyl groups may be
obtained from infrared spectra as in the work of Bassett (1960), and the
bearing of this on the distribution of other species in some hydrous sili-
cates has been studied successf ully by Wilkins (1967), and by Wilkins and
Ito (1967). There are also strong indications that neutron diffraction
studies and investigations of such phenomena as nuclear magnetic
resonance and electron spin resonance may produce further information
of this kind in the near future.

Spurred in part by these developments several papers have appeared in
the last few years that have made encouraging progress in applving the
methods of thermodynamic analysis that have long been successful in
dealing with homogeneous equilibria in fluids, to the related problem of
homogeneous equilibria in mineral crystals. Notable in this regard are re-
cent papers by Mueller (1962); Matsui and Banno (1965); Banno and
Matsui (1966 and 1967); Perchuk and Ryabchikov (1963); and by Grover
and Orvil le (1969).

The purpose of this paper is to derive, in generalized form, the condi-
tions that must be met for equilibrium in a crystal where several homo-
geneous reactions of various kinds may take place simultaneously, and,
at the same time, to demonstrate a method by which departures from
ideality may be taken into account with respect to the substitutions tak-
ing place in real rather than hypothetical crystals. Finally, we shall ex-
amine one or two specific problems concerning homogeneous equilibria in
rock-forming minerals, and make some tentative and preliminary calcu-
lations on the basis of data now at hand.

ColrorrroNs non HolroccNEous Equrrrnnruu ru Cnysr.q,rs

Thermod.ynamic consid.erations. Although the classic work of Gibbs is
best known for its thorough exposition of heterogeneous equilibria, it also
contains a consideration of homogeneous equilibria that is essentially
complete, at least as far as simple molecular fluids are concerned. Al-
though homogeneous reactions in crystals were not specifically considered
by Gibbs-they scarcely could have been at that time-the essential fea-
tures of his approach should be applicable to any homogeneous phase
whatsoever and will be followed here. There are, however, several options
that may be taken as to specific procedure. For example we might con-
sider a wholly isolated crystal and seek the conditions that maximize its
entropy, or we might consider a crystal of fixed chemical content (a
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closeil crystal) and seek the conditions that minimize its Gibbs function at

some specified temperature and pressure. Because these, and other

methods, are mathematically consistent the final results wil l be un-

affected, hence we shall choose the minimizing of the Gibbs function at

constant pressure and temperature because of its familiarity and sim-
plicity.

We shall suppose further that the numbers, kinds and distributions of
the various atomic, ionic, or molecular species that make up a crystal
uniquely determine the magnitude of any extensive thermodynamic
functions such as G, the Gibbs function. Thus our first problem is how to
relate variations in the numbers, kinds, and distributions of these species
to variations in various thermodynamic functions, and in particular to G.

The possible rariations oJ o crystal. Let us consider a complex crystal and
denote a given species by the subscript s and a given site by the subscript
g. The quantities nsq are then to be understood as indicating the number
of species of a given kind upon a given site. Let us define q as the number
of sites of a given kind, q, in a unit quantity of crystal, and let us define
the quantity of crystal n as equal to the number of unit cells multiplied
by the number that is the greatest common divisor of the ranks of the

equipoints of the space group to which the crystal belongs (see Btterger,
1956, Chapter 18). The number of sites g in the crystal as a whole is then
qn, and q must be an integer such that t I q(48.r In certain instances the
numbers q may be identified as the subscripts in the standard chemical
formula of a crystal or as simple multiples of them. We shall regard the
vacancy as one of the species that may occupy a site, and when we wish
to distinguish it, shall do so by an open square such that the number of

vacancies on a given site would be nar. Our assumption that variations in
the Gibbs function for a crystal at a given pressure and temperature are
determined by variations in the kinds and distributions of the various
species in the crystal may then be written formally as

where the summation must be over all species and all sites. Equation (1)

as it stands, however, raises some problems. The number of terms 6zun,
in particular, is infinite simply because the number of difierent kinds of
sites is not finite. Further difficulties arise in that the number of sites of

I The only permissible values of g, as defined, are, in fact: t,2,4,8, 16, and 3, 6' 12' 24,

and ztS. Its maximum value is 2 in triclinic crystals, 4 in monoclinic crystals, 8 in ortho-

rhombic crystals, 16 in tetragonal crystals, 24 in hexagonal crystals, and 48 in cubic crystals.

u"-/(??'-) (1 )
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two kinds are always in the same ratio neglecting possible minor im-
balances that may arise at the outer boundary of the crystal. Thus for
two sites, a and. b,

a n a

b^: b 
: constant

and we must have a relationship, one f.or each site, q, of the form

s1
Qn : 2- n"q

s

hence

q}n: 
Prr'* 

(2a)

We shall refer to equations (2) or (2a) as the site cotcslraints on the vari-
ations of the quantit ies a"o. An additional constraint on the variations of
then"o is that in most substances there is a valence balance of some sort
that must be considered as well. fn an ionic crystal, as in an electrolyte
fluid, this would be a condition oI eleclroneutralily, but we shall not re-
strict it to this particular case inasmuch as a valence balance may be
operative under other circumstances. If we denote the valence, whatever
its nature, of a given species as Zu we may write the valence condition as

(2)

hence

.. o: P?"."-

0:  I  Ez"6n,n

and shall refer to (3) or (3a) as the valence constraint on the variations of
the zuo. We shall take the valence of a vacancy, Za,tobezero.

Let us now arbitrari ly select one species on each site and indicate that
species by the subscript, Q. The quantities nsrfor each site q may now be
eliminated from (1) using the siteconstraints (2a). fn so doing, however,
it should be observed that we introduce into (1) the quantity Dn. It is also
convenient to take the site constraints into account in the valence con-
straint (3a). To do this we multiply each site constraint (2a) by the
appropriate Zq and subtract the result from (3a) obtaining

(3)

(3a)

o :  I  Te,-  
Z€l6n"n+ ( laz")m (4)
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hence it is apparent from (4) that the valence constraint can eliminate an
additional n"o only if there are sites that contain species of more than one
valence. If not, the quantities in parentheses in (4) must all vanish.

It is also evident that, at the small price of introducing the quantity n,
the site restrictions make it possible to eliminate from further consider-
irtion the quantities m,, Ior sites that contain only one species. Now the
number of sites occupied by species other than vacancies must be finite
even though the total number of sites is not. Each of the quantities nE.l
for a site occupied only b.v vacancies, however, is eliminated by its cor-
respond.ing site restriction, hence we need consider in what follows only a
finite number of sites (only those occupied by species other than the

vacancy), and only a finite number of quantities rrsq plus the quantity, n.
The number of such quantities may, in fact, be evaluated in terms of the
following general f ormula

' :E ( " -1 )+1-o  (s )

where z is the numb 
", 

d.1ffiI&Afrr"o o, n, that may be varied inde-
pendentlyl c-is the number of different kinds of species occupying a given

site, g; and zr a number that is unity if (4) has nonzero terms and zero iI it
does not. Now the number of independent ways, z, in which the crystal
can be varied rnttst includ.e the number of independent ways in which its
bulk chemical content may be varied. This latter number, 7, is in fact the
number of independently variable components of the crystal, and is a
quantity that is often known in advance. r must be equal to or greater

t.han 7 and the difference, p, must then be the number of. independ'ent in-

ternal aariations or internal reactions that can occur in a crystal of fixed

chemical content (a closed crystal). We may then write

p : r -  
" :  f ( o -  

1 ) + 1  -  . ' r - . y  ( 6 )
q

There are thus 7 constraints of closure. Though their number (7) may
be known in advance, and though a set of independently variable com-
ponents may be already identified, it is not always evident what form

these constraints must have, particularly if the components have com-
plex chemical formulas. We shall therefore outline a systematic procedure

by which a sufficient set of constraints of closure, 7 in number, may be

obtained. For each chemical element, e. in the crystal there is a relation of

the form

(7)? ?,*"*
where n. is the number of atoms of element e in the crystal, and z* is to be
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read as the number of atorns of element e required to urake species s
For a closed crystal each 62" must be zero hence

0 : 6 r " : I l r u " d r " , ,  ( i o )

Equations (7) or equations (7a) are not independent in most crystals
because of the fact that the site and valence constraints commonlv pre-
vent independent variations of the contents of the various elements. The
number of elements, e, is thus typically greater than the number of com-
ponents, 7, although equal to it in some crystals. To obtain a set of inde-
pendent equations from (7) we may take the site and valence constraints
into account as follows:

Let us again select a species, Q, for each site and, using (2), remove all
terms of the form aqo from each equation (7) and from (3). Taking these
results we obtain the following system of equations

n" :Z I ( r " " -

The site constraints have all been taken into account in (S). The num-
ber of equations (8) is then elr (tr is again either zero or unity), and the
number of quantities nun and n on the right-hand side of the system (7) is
En("-1)f 1. The number ol ind.epenieal equations in the system (8)
must be "yf zr, hence the rank of the matrix of the quantit ies in paren-
theses in (8) mLrst also be l*zr. The row-null ity (Aitken, 1958, Chapter
III) of this matrix is then e -7, the number by which the number of ele-
ments exceeds the number of components, and the column-nullity is then
E ("-1)+t-(r*zr), hence equal to p, the number of independent in-
ternal reactions. ft is thus clear that we may proceed with our problem if
we know the rank of the above matrix and can obtain a set of indepen-
dent constraints from (8). Fortunately, both of these ends mav be ac-
complished by the simple procedure of employing each suitable equation
in (8), successively, to eliminate one r?sq (or n) from all of the others. The
process may be continued either until all equations (8) have been so em-
ployed, or until all coefficients on the right-hand side of each remaining
equation have vanished. In the first case the number of elements, e, is
equal to the number of components, 7, and all of the equations (8) are in-
dependent. fn the second case the row-nullity of the above matrix is
equal to the number of remaining equations, and these remaining equa-
tions are a suffi.cient set to define the constraints preventing independent

(8)

o: tE(2.-
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variation of the quantities n". The other equations are all independent
and are the desired relations among the quantities ?a"n and n. There are
(ry*n) independent equations, and for a crystal of f ixed chemical content
the variation in the left-hand side of each must vanish. Some actual ex-

amples have been worked out in the Appendix in order to clarify the pro-

cedure.r
We have now developed a formal procedure for determining how many

of the quantities z"n and n in a given crystal may be varied independently
in either an open or a closed crystal, and a specific means for identifying
a set of quantities having the form nBq or n that is sufficient to describe
these variations in either case. The actual set obtained, however, is not
necessarily a unique one and alternate sets may be obtained with differ-
ent choices of species Q, and a different sequence of operations in the re-

duction of the matrix in (8). The quantities p and 7, however, are in-

dependent of the specific procedure followed. We shall refer below to the

set of equations (8), in one of the forms obtainable through reduction by
the procedure outlined above, as the site population equolions. Examples
of these for three major types of mineral crystal are given in the Appen-
dix.

Cowersi.on to intensi.ae parameters. The quantities z"o and n are all exten-
sive properties of a homogeneous crystal, hence are quantities such that

the value of each for the whole is the sum of the valnes for its parts. We

shall now d,efrie site occupancy fraclions, l["n, according to the convention

t :  
?n'"n

O : ! EeZ.N,o

I See Note added in proof on page 373.

(e)
qn

The ratio of any two extensive properties is necessarily an intensive prop-

erty hence is a property such that the value for the homogeneous whole

is equal to the value for each of its parts. The introduction of the quanti-

ties N"o could have come earlier in the above discussion but has been de-

layed in the interest of clarity. It should be noted, however, that the key

equations (1), (2), (3), and (7) then take the following forms, respec-
tively, remembering n l0

u" :/F,? ?,"") (10)

(1 1)

(r2)



CHEMICAL REACTIONS IN CRYSZALS

and

n€rt - t :  I lqr"" f f "o (13)

We may also introduce the AI"o by substituting directly, using (9), into
the site population equations already obtained. With (9) we have only
one surviving extensive property, namely n, our measure of quantity.
For present purposes it is convenient to define the mole of a crystal as a
quantity of crystal such that n is equal to Avogadro's number, N.
This will correspond either to the conventional formula unit or to some
simple multiple of it. Any extensive property may then be converted to
the corresponding mol,ar property if we multipl,v it by Nn-l. The number
of atoms of an element per mole of crystal is thus nfirt-r, and the num-
ber of gram-aton s per mole of crystal is n"n-r, as on the left-hand side of
(13 ) .

Equilibrium in a ctrosed, crystal. We may now, from the site population
equations, select a. set of quantities, ly'on, and possibly n, that may be
varied independently in a closed crystal. Indicating a set that may be so
varied by primes we have, from (10)

O G :

Variations of n in a closed crystal of lixed chemical content may arise
only through creation or destruction of vacancies and must be ta.ken into
account when this possibility exists. (For the examples in the Appendix,
however, and the possibilities of site occupancy there indicated, n cannot
be varied in a closed crystal, inasmuch as the site population equations
relate it directly to the contents of certain elements, and in particular to
the content of elements such as oxygen and fluorine that form species of
negative valence. Should evidence for significant populations of vacan-
cies on "anion" sites arise, on the other hand, it might be necessary to
consider the possibility that 6nl0 in such crystals.)

In actual application it is often convenient to introduce new variables,
X", for each reaction r, such that they are simple linear functions of the
quantities /y'"n' (and if necessary n') arid equal to the latter in number.
We may then write for our closed phase

6 G : 6& (I4a)

? ?(#t)D\l' + (#)*'

P(# P,r,a, lothcrx"

(14)

When 6n for a closed phase is zero, as in each of the applications below,
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the number of moles of the closed crr-stal cannot varl- and we rnav simpi,r
write, for one mole

O G : 0X" (1 i ib)
P , ' f  ,  r l l  o t h e r  X r

where the bars indicate a molar propert)'.
At a stable (or metastable) internal equil ibrium in a closed crystal, at :t

given temperature and pressure, the Gibbs function must be at a mini-
mum with respect to variations of the independent parameters X.. We
must then have for each r a condition of the form

? (*eq)

(1. t)

If any one of the conditions (15) were not satisfied, a mechanisnr wouid
then exist where, by appropriate variations of the corresponding X", the
value of G could be lowered. If so, however, G is clearly not at a minimum
and the crystal is not in stable or metastable equilibrium. (Equation 15
must also be satisfi.ed when G is at a maximum, but this is an unstable
equil ibrium and need not concern us here.)

The number of reactions, r, is equal to p as in (6). For a crystal for
which p is zero the variance or number of independent variations in the
sense of Gibbs (1928, p. 96) is 7f 1. For a crystal that is not necessarily in
internal equil ibrium the variance is ("y*p)*1 or rf 1, but the variance,
under circumstances where conditions (15) are always met, returns again
to 7f 1. The quantities 7 and r thus correspond to the numbers of "ulti-
mate" and "proximatett components, respectively, as in the treatment by
Gibbs (1928, p. 138) of homogeneous equil ibria in fluids. Inasmuch as
conditions (15) are most l ikely to be met during very slow processes we
mav regard r as efiectively the numb er oI short-term components and 7 as
the number oI iong-terrn components of a given crystal, the latter being
the usual sense of the word "component" unless otherwise specified.

FonuurarroN oF THE TupnuooyNelrrc
PnopBnrrBs oF A CRYSTAL

Id,eal conJigurational entropy. The distribution of a given species, s, on a
given site, E, can almost certainly be regarded as a random distribution
under the special circumstances of extreme dilution (1["o--;0) or of com-
plete occupancy (Aruo---+l). Under other circumstances (0(lr.n(1) we
may anticipate some degree of "short-range ordering" or departure from
random distribution of the species. In limiting cases where the species

(#) 
P,. ' ,a"orher, . ,  

:  o
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distribution is random, however, it gives rise to singularities in the van-
ations of the entropy, S, as related to the N"n, that must be taken into

account in order to understand the behavior of the entropl' and of the

Gibbs function in these limits.
Let us therefore define ,Siq as the contribution that would be made to

the total entropy, S, i/ the distribution of species on site q w ere truly ran-
dom. This may be evaluated from simple statistical considerations.
The number of ways of arranging the various species s on site q is
(qn) !/ fI" n 

"o 
! hence

3.51

where ft is the Boltzmann constant. For any appreciable quantity of

crystal we may assume ln a ! is very nearly equal to n In n- n, hence (16)

becomes

sio : sft P.v",, 
ln -N*o

and

S i  =  E S i n :  r . k E  t q ' \ L . l n , \ r " o

or, for one mole or ..yrlut 

'{ (r

Si : Siryn-r : - R t tq'V"n In l''",,

where R is the gas or molar entropy .o"r,u",.

G --G* -  ZSr :  G* + Rf  t  lqn"o ln , \ ' "n

Gn) l
S r n : f t l n - ; f t

LL n" ' t l

G  G +  ,  s l s a

Rr:  * r+??n, - ln  
\ ' "o

(16)

(16a )

(1  7 )

( 18)

(20)

Olher thermodynamic properties. We may now define the quantities S*
and Gx by the relations

, S + = S - S r

G *  = G * 7 " S i  :  H  _ ? . S * :  E +  P V - r S *  ( 1 9 )

where .fl, E, and tr/ are enthalpy, internal energlr, and volume, respec-
tivelv. We have then

(20a)
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We shall assume that at any given pressure and temperature the f unction
E,V, and 5* sho* no singularities in the limits where N"q+0 or where
Nuq+1, and that they mav be expressed as Taylor expansions about any
given reference state in terms of the composition variables and the re-
action parameters X" that have been selected.If soG* / RT may also be so
expanded and the corresponding expansions for the functions F/R,
E/R,V/R,'and S*/R may be obtained from the temperature and pres-
sure dependence of the coefficients in the expression for G*/R?. This
formulation is entirely consistent with Henry's Law and Raoult's Law
for crystalline solutions in which there are no internal reactions (see
Thompson, 1967). For the circumstance where only the first degree terms
of the expansion are necessary it dcscribes an id,eal solution, nonideality
being accounted for by terms of higher degree. We shall therefore proceed
on the assumption that such a formulation is valid, until proven other-
wise, and investigate some problems relating to homogeneous reactions in
some common rock-forming minerals. The processes considered will all
be related to the exchange of pairs of real (nonvacancy) species between
pairs of sites (long-range ordering). Other types of internal reaction, how-
ever, are equally amenable to the treatment outlined above. These would
include oxidation-reduction equilibria among species, as well as general-
ized problems involving vacancies and interstitial species.

HOUOCBNnoUS EQUILIBRIA IN FELDSPARS

Monoclinic alkali feldspar. From the site population equations (A2) in the
Appendix and (9) we may obtain the following independent equations

zN6 : 2n1trNo1r9

(zr" * n*) :4n1y'a1111y * 4n.A/er<rrr

(aw" * n.n') :2n

(2r)

We may eliminate all extensive quantities from the right-hand sides of
the first two if we divide each by the third, obtaining thereby

'lLNa

,  
: ^Y1vo ( r t t l : r \ - . l u

nN" t nR

1 : 2 / y ' e r < r u * 2 l y ' e r < r

(z*u *  nx)  :2n

The identity in the first equation of (22) indicates that the standard
alkali feldspar components Oz and Ab, are here identifiable with the site
occupancy fractions for the M-site. For a closed crystal

O : 61y'eu = 6n : Dtlfurrr, * D1[a11.1'2y (23)
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We might therefore choose either oI the ly'ertqr or, with (11) either of the

corresponding ly'sirqr as our measure of internal reaction. Algebraic sym-
metry is gained, however, by defining a new quantity, Z, along-range or-

d.ering parameter, by the relation

Z = 2(l{x<.n; - I[errrzl)

From (24), (11), and the second equation of (22)

(24)

We also have then

G G * S i

RT RT

r+z
I y 'a r ( r r ) -  

4  
i  / y 'a r<rz l :

3 - Z
I fsi(r l  :  -4 i  / [si<rzl :

I Eqlt"' ln .ly'*n : 2Z artanh
Z

Z + 22 artanh-

2

(1 - I/Eu) Q6)

R

+
+

n f t  -  z t ts  -  Z2)3-  16 ln

2ly'er ln /y'Eu * 2(1 - //ru) ln

and

G*
-: go * gNly',ru t gzZ * gxwly'-r.r'1- gxzNnZ -f gzzZ2 " ' (27)
K I

where the quantities g are dimensionless Taylor expansion coefficients as
indicated. Terms of higher than the second degree are probably needed,

at least in ly'eu (see Thompson and Waldbaum, 1968), but the form of the

continued expansion is clear Irom (27). With (26), (27) and (15) we may

now obtain our equilibrium condition:

tafg\ l  :  2 artanh (:=\t  sz*g*z.ve'
L az\nr/ )p,r,NAb \s + z./

l 2 g z z Z . . '

: 0 (at equilibrium) (28)

The resemblance of (28) to certain conditions for homogeneous equilibria
in fluids is not apparent but may readily be made so. Let us define a
quantity Kz' such that

(2e)



354 JAMES B. THOMPSON, JR.

Kz' thus has the form of an apparent equilibrium constant. With (25) we
may write

tn  K7 '  : 2  a r tanh  Z  +  2a r ranh  (1 \  : 2  a r tanh  ( : : - \  ( Jo )
\3 /  \ s+2 , /

If, for a feldspar of f ixed composition, we define 
-Q 

asG when Z:1,
and define Gro u, G when Z: - 1 we find that 

'

:21[rr ln 1y'4, +2(l - //er) ln (1 - 1/eu) - 41n2

*  go*gN ly ' , l ,  I  g r+g* . i / . i r , *BNzrVe r ,  l gzz . . .  ( 31 )

G r

R T

and

Gi
--- : 2J,c.b ln J.u, * 2(1 - 1rI1,) ln (1 - 1fur,) - 4 ln 2
R T

f go+ gNi[-q.r - Ez* gxNl/in - gxz/y'er, * gzz . .

oq'= 4;6 : 2sz i 2gNzt{ar, .
RT  RT

and therefore

hence

(32)

(34)

(33)

/-no =o(G ,  -  G )
ln Kz '  ^- - -  -  2gzzZ .  .  .

2RT

The analogy to a simple reciprocal equilibrium among four species in a
fluid, or to a simple exchange equilibrium between two phases is thus
complete. It is also clear that where only first degree terms are required
for the expansion oIG*/RT the situation is analogous to equilibrium in
an ideal or ideally dilute fluid, or to exchange equilibrium between two
simple ideal solutions, and that nonideality must be taken care of b).
higher order terms in the expansion (27). ft should be emphasized, how-
ever, that in obtaining (34) we have not, as have some authors, appealed
to inherently unmeasurable quantities such as the chemical potential or
the activity coefficient of a single species on a given site.

Some !,entatiae calcul,ations. Preliminary site occupancies have been ob-
tained by Colvil le and Ribbe (1968) for an adularia (Spencer B) and for-
an orthoclase (Spencer C). The calculated value of Z for the adularia is
0.56 and that for the orthoclase is 0.40, giving values oI ln Kz' of 1.643
and 1.116, respectively'. Ribbe (1963) has refined the structure of a sani-



CHI'MICAL RI 'ACTIONS IN CIIYST' .1L. '  . ]5. ;

dine prepared b1' heating Spencer C at 1075oC. Site populations calcu-
lated br. ' Waldbaum (1966) from Ribbe's data yield a value of 0.08 for Z
irnd a value of 0.214 fdr In Kz'.If we assume that the first-degree terms
in (27) are sufflcient, in the absence of evidence to the contrary, and also
assume that the Spencer C sanidine actually equil ibrated at 1075"C, we
may make some tentative calculations. For this idealized case we ma\-
write

-ln Kz'

We shall also neglect any possible temperature dependence of Allo and
ASo, and shall neglect the fact that Spencer B (the adularia) does not
have the same composition as Spencer C. A further assumption that
might be made is that ASo is zero. This is consistent with the suggestion
that ln Ks' and Z will approach zero (complete AI-Si disorder) at ver1.
high temperatures. ff so, we may calculate tentative temperatures of
equil ibration for the orthoclase and the adularia using (35). The results
so obtained, however, are unreasonable (-15oC for the orthoclase and
-98oC for the adularia!) hence it appears that this assumption is not
good. Another approach is to estimate a temperature of equilibration for
the orthoclase, calculate A,F1-o and ASo, and then test the results on the
adularia. Orthoclase Spencer C, unfortunately, is a stream cobble from
Burma, but its chemical analysis is such that from comparison with the
alkali feldspar solvus as determined by Orville (1963) and by Luth and
'Iuttle (1966; see also Thompson and Waldbaum, 1969), we mav assume
fairly safely that its temperature of crystallization was at least 500oC.
Assuming equilibration at 500oC we obtain -3.97 cal/deg for ASo and
-6.49 kcal for A-Ho. The temperature of equilibration for the adularia
would then be 340oC which is not unreasonable. The negative value of
AS" would suggest that ln Kz' and Z itself may become negative at
higher temperature. There are, however, so many assumptions involved
in these calculations that they must be regarded as highly speculative.

Figure 1 shows the form that the curve showing G as a function of Z
would have in the ideal case. The equilibrium value of Z indicated is
about that of Spencer B adularia. For the nonideal case the form of this
curve may be more complicated as shown in Figure 2, indicating that
there might, in the nonideal case, be an actual discontinuity in the equi-
librium value of Z at sorne particular temperature. Because intensive
physical properties (such as the optic angle, for example) are almost
certainly continuous functions of Z, a discontinuity should also appear in
molar volume and molar enthalpy if there is one in Z. A discontinuity in
Z world thus correspond, thermodynamically, to a first order transition

c?-d @i-Ei t
2R2RT (+) - '{sl;Q (35)
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O Leo +l

Z +

Frc. 1. General form of curve showing molar Gibbs function, d, as a function of an
ordering parameter, Z,tor a crystal of fixed chemical content at some arbitrary temperature
and pressure. The curve shown is for the ideal case (first-degree terms only in the Taylor
expansion oI G* / RT) , and the value shorvn for the equilibrium value of Z (Z.n) is approxi-
mately that for the adularia (Spencer B) discussed in the text. The ordering here is non-
convergent (Cf +Gf), hence G as plotted, is zot symmetric about Z:0. Values of G* are
given by the line joining G1-" and G," in this ideal (linear) case.

(Fig. 3b). Even further possibilities may arise. Specifically, it. is quite
conceivable that the magnitude of AZ could decrease along the"#ariant
curve for the transition, and that such a curve could actuallv terminate
at a crit ical point as in Figure 3c. These speculations, however, are only a
part of the problem of phase transitions in alkali feldspars, for we have
not yet considered feldspars having structures of the microcline or low
albite type.

Triclinic alkali feldspar. From equations (Aa) in the Appendix we may
write, allowing for a calcium component, ,4rt

: ly'rrur -- Iy'o.
n x ] - n N ^ l n c u

?Lca
: ly'cu(u) : /y'eo

n y i ! n N u l n o , (36)

nx I  mNu *  nsu  :2 ,

n x l  n x u l  2 n c "

nx * nwn * ncu nx I n1o -f nco

: Iy'r.r(rro) * iy'arrrr^t * /y'rrrrzo> * ny'errtr-r

I
I

G

nK

lLtl
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From the second and the last equation of (36) we obtain further

1 * 1[e" : Iy'er(tro) * ffer<rr*l * ly'errtrol * ly'ertr:z-l G7)

Here, for a closed crystal, anv three of the four Na11qy ma/ be varied in-

dependently. It is more convenient, however, to define three new long-

range ordering parameters, X, Z, and Z accordir.g to the relations

X= ly ' e r ( r zo ) - t r y ' e r (m- )

Z = 1y'er(rzo) - ny'er(rr-)

Z :- Nxr:lr l * Iy'e,r1tr*l - (/y'^rttrol * Ner<rg,^l)

From these, (37) above, and (11) we obtain

1* / y ' e "+Z+2Y 1 * I y ' e " + Z - 2 Y

(38)

N,s.t(Tro) :

il.1,r(rzo) :

Iy 'si(rro) :

ny'sirrzol :

t

1 * / y ' e " - Z + 2 X

+
3 - I y ' e , - Z - 2 Y

4

3 - l y ' e o + Z - 2 X

i /y'er(rr^) :

i  ly 'e t ( rz*) :

i /y'si (rr-) :

i  / [s i  t tz- l  :

4

1 * / y ' . s , " - Z - 2 X

4

3 - I y ' . q . o - Z + 2 Y

4

3 -ny ' e ,+Z+2X

(3e)

from which the terms ly'"o ln ly'"q may be evaluated. The expansion of

G*/RT here takes the form

G*

; 
: g6* g*No" * gcly't I g"Z * g*o1/3. * grc/y'o"Ne'

I gx.zNo,Z * g""I/i,

* gczNxZ * gxxX' * gxvX7 -f g""Y' I g"rZ' ' ' ' (40)

The omission of all terms for which the sum of the powers of X and I

is odd from the expansion (40) may be surprising but is necessary be-
cause G and like properties should be symmetrical about the Z-axis
(X:0, y:0).The reason for this may be appreciated by consideration
of Figure 4, a sketch of the feldspar structure projected onto (201) that
shows the essential featttres of the tetrahedral framework. Neglecting
site occupancy (itself a form of labeling) the sites labeled Tro and Tp" are
topologically identical even though they are crystallographically distinct
in a triclinic feldspar. Rotation of the crystal about its D-axis, in fact,
reverses the labeling. An alkali feldspar with all of its AI in Tro would ob-
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Ge4

Irrc. 2. Possible behavior of G as a function of Z inthe nonideal case. Diagrams shor,v
possible relationships at three successive temperatures, Ty 72, 73, at a constant pressure,
Pr. The discontinuity in Z.n at Ir, implies similar discontinuities in properties such as
density and molar enthalpy that are also continuous functions of Z. Such a transition is
thlus a f,rst ord,er transition, in the thermodynamic sense, and is possible only in the nonideal
case Here G+ mzsi be a nonlinear function of Z, hence the lines joining G1o and G1'are dashed.

viously distort oppositely in all ways to one with all of its Al in Tr*. Be-
cause of certain conventions in crystallographic orientation, however, it
would immediately be "turned over" and described as a Trm-ordered
feldspar. It is therefore evident that any feldspar, for which either X or I
is not zero, may be assigned two sets of values of X and Y: the conven-
tional one and an unconventional one with the signs of X and Z reversed.
Because of this thermodynamic functions such as T ,5,8, or G should be
symmetrical about the Z-axis which is thus an axis of two-fold symmetry
for these functions. If the origin for the Taylor expansion is about any
point on the Z-axis, symmetry then requires that all coefficients must
vanish for terms containing X"Z^ where n*m is odd. This is in f act our
principal reason for using the coordinates X, I/, and Z ruther than the
f111n1 directly.

A second reason for the choice of coordinates is that feldspars for which
-Y and Z are both zero have met a necessary condition for monoclinic
symmetrv. In this sense the monoclinic alkali feldspars may be regarded

7ouT

t
G

Ze4

o
I

Ze4

Zeg ,Z  Z "q , t
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,l 1,
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t  t l
I
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Frc. 3. Possible pressure-temperature diagrams for monoclinic K-feldspar: (a) shows a

continuous change in phase possible in either the ideal or the non-ideal case; (b) shows a

first-order phase discontinuity, possible only in the non-ideal casel and (c) shows a first

order discontinuity terminating at a critical point. 21, Tz, and Tz in (c) are consistent with

the diagrams in Figure 2. The possible appearance of a triclinic form such as microcline or a

"triclinic adularia" has, for simplicity, not been included.

as a special case of the triclinic ones inasmuch as the triclinic crystals
may difier from monoclinic ones in ways that are, quantitatively, vanish-
ingly small. It should be made clear, however, that though the vanishing
of X and Y is a necessary condition for monoclinic symmetry it is not a
sufficient one. Specifically, certain feldspars studied by MacKenzie
(1952) show a readily reversible symmetry change that is almost cer-
tainly not related to redistribution of Al and Si, hence not related to
changes in X, Y, or Z. Such feldspars, even when triclinic, must therefore
have zero values of X and 7. If, however, a feldspar grew or equilibrated
as a triclinic crystal, it is Iikely that with a real, though perhaps small,
difference between a pair of sites there should also be a real, though per-
haps small, difference in their Al-Si occupancy. We shall therefore as
sume, until there is evidence to the contrarv, that feldspars for which X
and I are both zero either srew or at some time equil ibrated as mono-
clinic crvstals.
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Ar A1

Frc. 4. Schematic view of the feldspar structure as sectioned on (201). The notation for
the sites is modified after that of Megaw (1956).

The physically accessible region in X-Y-Z space is bounded by planes
for which the equations may be obtained bv setting the various /y'"o at
zero in equations (39). These define a polyhedron that for pure alkali
(Arr":0) feldspars is the tetrahedron shown in Ii igure 5. The existence of
this tetrahedron was also deduced bir Barth (1965), but was represented
by him in terms of the bar_r'centric coordinates lfa11oy rather than the co-
ordinates X, Y, and. Z as presented here. With increasing /y'an this tetra-
hedron (or tetragonal disphenoid), bounded by the planes ffer(qr:0,
expands and is truncated at the corners by another tetrahedron bounded
by the p lanes Nsi rn l :0 .For  a pure Ca-fe ldspar (No":1) ,  though none is
known that has this structure, the polyhedron would be an octahedron (or
tetragonal dipyramid) bounded by the planes 2+Z+2X:O and
2+Z+2Y:0,  and having ver t ices at  the coordinates (0,  0,  +2)  and
( + 1, + 1, 0) . The vertices of these polyhedra can correspond to perf ectly
ordered crystals only when 1[.q.:0 or 1[a.:1. No perfectly ordered

(:)

(y)

@
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Fro. 5. Physically accessible regions for an alkali feldspar in terms of the ordering

parameters X, V , and Z as d,efined in the text. The corners of the tetrahedron correspond to

perfectly ordered crystals having all their aluminum in the sites indicated. Monoclinic

crystals must have X:Y:0.If a calcium (An) component is present, the tetrahedron is

expanded to larger values of * X, * Y , * Z,but truncated at its corners as explained in the

text.

Al-Si distributions other than these ten (of which only six are phvsically

distinct) are possible for feldspars of this structure type unless one can

occur with a 3- or 4-valent atom in the M-site.

The site occupancies for seven triclinic feldspars as calculated, tenta-

tively, by the method of Smith and Bailey (1963) and normalized to one

Al per four tetrahedra, are given in Table 1 with the values of X, Z, and

Z calculated therefrom. These results are also shown in X-Y projection

Tasr.n 1. OccupeNcv ol Trtn.q.nronar- Srrrs rN Mrcnocr-rlrns elro Ar-srrns

Feldspar

Si

(cal/

deg)

361

Ner(rro) Nh(tt-) l[Al(Tso) Net(T:*)

Iow albite, Ramona, Calif .3
Low albite, Ramona, Calif.b
Hieh albite, hydrothermalb
Iligh albite, Amelia, Va.

(106soc)c

0 .03  0  06  0 .05
.065 .09  .065
.  1 5  . 1 9  . 2 9

, a

0 .01  0 .E3  0 .77
02  . 7 t  . 69

-  . 10  . 22  . 04

- .03 .o7 .o2

0 . 8 6
. 7 8
. 3 7

. 2 9 . 26

1 . 4 3

4 . 3 2

4 . 4 5

0 . 8 E
. 8 9
. 6 5

0 . 0 5
.uJ
. 2 7

1 . 7 2
2 . O 5
J .  I J

0.03 0.04
.09 .02
.05 .03

-0 .01  0 .83  0 .86
.07  . ?9  . 78
.o2 .38 .E4

Values of 1V111q1 (here normalized to )Ne t r q) :1) were calculated by D' R' Waldbaum (1966) from data

of:
a Ribbe et al., (1962); b Williams and Megaw (1964); c Ferguson eJ aL., (1958);d Brown and Bailev (1964);

e Fiarey and Bailey (1964); and r Bailey and Taylor (1955).
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in Figure 6, and in Y-Z projection in Figure 7, together with the data for
the three monoclinic feldspars discussed above. The distinction between
K-rich and Na-rich specimens is most marked in Figure 7. rt is also clear
from Figure 6 that values of x are consistently small and may well be
zero, considering the uncertainties in the calculations.

conaergent and' nonconaergent orderizg. when x and I are both near
zero the distinction, not only in occupancy but in other ways as well be-
tween the Tro-sites and the corresponding T1^-sites may become van_
ishingly small. This convergent effect, coupled with the symmetry in
G about the Iine X:0, Y:0, Ieads to singirlar behavior in this region.
The approach to this critical region (in our case the Z-axis) is typically
precipitous and, if equilibration is rapid enough, is commonly associated
with a "lambda" anomalv in the heat capacity of such crystals. Most
long-range ordering phenomena observed in metallic crystars are in fact
of this con,ergent type. In silicates, on the other hand, both convergent

Frc. 6. Tetrahedron of l'igure 5 as seen in projection onto x- r plane. The solid circles
show the x- [ coordinates of Na-rich feldspars, and the open circles show those of K-
rich feldspars. The values plotted are those listed in Table 1. The three monoclinic feldsoars
discussed in the text all plot at the origin.
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an(l noncon?ergeil,t ordering are of common occurrence. 'Ihe Z ordering
in monoclinic alkali feldspars is a good example of the nonconvergent
11.pe. The Tr-sites and Te-sites are topologically distinct as well as crystal:
lographicallv distinct and must remain distinct even when their occu-
pancies mav be identical. The condition Z:O is onl-v unique numericallv
and does not implv singular behavior of anv sort. Lambda poir\ts and
their associated "superlattices" and symmetr.,r. changes are associated
only with ordering of the convergent trrpe.

In summarv, then, the intensive properties of an alkali feldspar or
sodic plagioclase are, in general, functions ol P, T, -1T6., .Ar4,, and, ol Lhe
ordering parameters X, Y, and Z.If in special circumstances, we are
dealing only with fully equil ibrated feldspars, then the feldspars are
subject to the equil ibriurn conditions

: U

: 0

: 0

and the intensive properties of these feldspars may be regarded as func-
tions of P, T,l{o" and ly'rn. The first two equilibria in (41) are convergent
in nature and the last is nonconvergent.

HolrocBNBous EqurlrnnruN{ rN HvpBnsrnoNp

General formwlatcon. We may proceed from the site population equations
given in the Appendix by substantially the same route as that follorved
in our analysis of the corresponding phenomena in feldspars. We shall
therefore omit here the intermediate steps and proceed directly to the
choice of compositional and ordering parameters. We have now two
components, hence only one composition parameter is necessary, and
there is but one internal reaction. The familiar composition parameter
for a simple hypersthene, ly'p", rr&! now be defined by the relation

(41)

(#)" 
".r,",NA,'Y'z

(#)" 
,  _"r ,Nrn,x,z

(#)" 
, _"",NAo,x,Y

ll Fc
r r  n s  -

nFe+  nMe

iy'r"(ur) * i[r"<uzt
(42)

We shall find it convenient, however, to center our coordinate system bv
defining a composition parameter, r, such that
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Frc.7. Tetrahedron of Figure 5 as seen in Y-Zprojection.TheY-Z coordinatesfor

the triclinic feldspars are given in Table 1, and the Z coordinates of the monoclinic feldspars

are given in the text. Legend same as Fig. 6. Circles have same significance as in Fig' 6'

r = I[r,e(nag) * iy'r"rrurl - 1 : 2Nr.- |

and an ordering parameter, s, such that

s = r V r " ( l t z ) - J r " t u r r

(43)

(44)

(4s)

The physically accessible region in terms of r and s is then a square witb

vertices at (0, + 1) and (+ 1, 0). We have also, from (a3) and (a )

from which the ly'uo ln ly'"o terms may be recast in terms of z and s. The
expansion f.orG* / RT here takes the form
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G*

fr: 
go* g"r * {,"s I g,,r2 * g".rs * go,st (46)

because the ordering is nonconvergent symmetry of the thermodynamic
functions is not required about the line s:0. The condition for internal
equilibrium is then

f d l c \ l  /  2 s  \
|  _  [ _ _ l l  : 2 a r t a n h ( . . - ) + S " + g . " / * g " " s
Lds  \RUJp, r , "  \1  -  

" ,  a  r r ,
: 0 (at internal equilibrium) (47)

If we define KJ by

K " ' =

We then, with (45), have

1[n"(ur)Iy'u"(r9

Iy'u" (ur)/y'ru (rr r)

l n K " ' : 2 a r t a n h f  "  \
\ l - r 2 1 5 2 1

: - g u - g r s t - 9 " " s .  ( 4 9 )

The vertices of the square bounding the physically accessible region cor-
respond to ordered crystals. By successively setting r and s at the co-
ordinates of each of these vertices, and by using (45), (46), and (20a), we
obtain

where the subscripts indicate values of r and s in that order. Let us now
assume that the second degree terms in (46) are sufficient and insert the
ly'"o, from (45), into (46). If we then set any one of the.ly'"n at zero (its
complementary /y'uo is then unity) we find that (20) Las a form like that
of the expression giving G for a simple svmmetrical solution (Thompson,
1967), and that we may then identify two nonideality parameters
analogous to those for symmetrical solutions. One of them, trVy1, applies
to nonideality in the substitution of species on theM(1) site and the other,
Iy'n', applies to nonideality in the substitution of species on the M(2) site.
with these we may express the remaining coeficients for the second de-
gree expansion for G*/R? in the form

(48)

(s0)
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sn : - 1 
(G?.. + G?.'+ Gl,+ Gii * ff '11' f LIl112)

4RT

(., : 
I 

tdn+ Gi, - G; - e;,! - t1",, ly'rr:)
4 R r

1
g," : -2RT (l'lirrr - Itrlrr':)

| ' ;o =rlo + Gi, f Gir - wxn - wwz)8." : -4RT \-L'ro - t'

t \ t  I

We shall denote the mean value of lTur and tr[:,n as Iilr'r and assume

that their difference is negligible pl cLtl lt"iton.,Jt is also perhaps not

unreasonable to assume that Gi"+Gio=G.,+Git' With these some-

lvhat arbitrarl '  assumptions (49) takes the form

rGi,  -  Gir t  I l ' . ,-ln -L"' : ti7], - 
,*s 

(52)

Quantit ies such as Wy are positive for most if not all si l icate crystali ine

solutions. No Fe2+-Mg solutions are known to have miscibility gaps, how-

ever, even at room temperature. Crit ical unmixing at25"C would require

thatW be about 1.2 kcal (Thompson, 1967,Eq.62), hence it is probable

that 0(,lvy1l kcal. we may now tentatively make some simple cal-

culations.

A hypersthene _from GreenlaniJ. Ghose and Halner (1967) have investi-

gated the ordering in some natural and heat-treated hypersthene b1'

analysis of their M<jssbauer spectra. These results for one such specimen

f ield the f ollorving values:

Specimen 37218
Original sample
Heated at 1000'C
I{eated at 1100"C

, ' s
0 .064 0  75

.064 .49

. 064 ..1,i

ln l{"'
s . 9 7
2 . 1 6
1 9 5

from these values we rnaY calculate the following using (52) and assuming

that the heat treatment produced equil ibration

If U/on : g I f  I Z u : 1 k c a l

(S; - S;r) - 1.38 calldeg

(El, - EZ) - 7.23 kcar

-0.98 cal/deg

-6.23 kcal
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The calculated temperature of formation or equilibration of the originar
sample (a metamorphic hypersthene from the pyroxene granulite facies)
would then be 500"C with the ideal assumption (trZy:0) and 513"C
assuming maximum probable departure from ideality (W*:1 kcal). The
negative ASo would also imply that at higher temperatures (above
6000'C!) this hypersthene might become anti-ordered (negative s). This
Iast inference cannot be confirmed, however, because it would assuredly
melt first.

Of more significance is the strong ordering found in these pyroxenes,
even at high temperatures, and the magnitude of the enerqv effect
(aG") that this implies. It is clear that F;2+-Mg fractionation ietween
the M(1) and M(2) sites in hypersthene is as strong as that between sepa-
rate ferromagnesian minerals. The effects of such ordering on heterogene-
ous Fe2++-Mg exchange equilibria may be considerable as has been
emphasized by Grover and Orvil le (1969).

comparison with ord,ering in d.olomite. The similarity between the chemical
formula of an ordered hypersthene which may be written FeMg(SiO)r,
and that of an ordered dolomite, CaMg(COs)z suggests that the same
general analysis may be applied to the Ca-Mg carbonates. It can in fact,
up to a point, but there are some important differences. In particular, the
distinction between ordered (s:1) and anti-ordered (s: - 1) dolomite is
an accident of labeling and the two are actually physically identical.
Ordered and anti-ordered hypersthene, on the other hand, are distinctly
different and the M1 and M2 sites are always distinct even where their
occupancies might be identical. The ordering in dolomite is thus con-
vergent in contrast to that in hypersthene which is nonconvergent. This
means that the Gibbs function for dolomite must be symmetrical about
the l ine s:0, and that all coefficients g for terms containing odd powers
of s in the expansion of G"/Rf must vanish. The value of q for both of
the metal sites in dolomite is 2, as in hypersthene, hence, if we let Ca
take the role played by Fsz+ in hypersthene, we have the following equi-
l ibrium condition

- l n  K " '  :  -  2 a r r a n h  ( - 2 t  \
\1 - r: -l- .s2,/

: g""s (53)

'fhe simpler form obtained here, however, is due to the vanishing of
gs1 9."; grrs2 and other coefficients with an odd index in s. It is of interesr ro
consider the idealized one-to-one composition CaMg(CO)r. For this
composition r is zero anrl, with second degree terms onlv, (53) may be
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writ ten

hence

'fhis last equation has the same form as one derived by Bragg and

Will iams (1934, 1935) for the convergent ordering equil ibrium in B-
brass. From symmetry we must here have

JAMES B. THOMPSON, JR

| / 2s \ artanh 8"ul a r t a n h  {  
- -  

l : - -  ( 5 4 )
2 s  \ 1  * s ' ? l  s  4

Gi' :  Gi t  =G: 
\

W * r t : W v r = W v l

Qc: - c?, - c?.) - 2w*, (s6)

(ss)

4RT

The treatment of tsragg and Williams here differs from ours in that

they deal only with the quantity in parentheses in (56) thereby assuming

tacitly thatW:Nr is zero. If so, however, there could not be a two-phase

region calcite-dolomite. For such a two-phase region to exist there must

be a positive trZr,r. Third or higher degree terms in the series expansion

f.orG* /RT must also be necessary to account for the observed asymmetry

about r:0 in the phase diagram of Goldsmith and Heard (1961' Fig.4)

for the system CaCOs-MgCOa. Similarly, for hypersthenes, there can

be no miscibility gap unless trZr,r is positive. A positive Wur in (52) would

imply, at low temperatures, two binodal curves symmetrically disposed

about the one-to-one composition (t: 0) .

ConnBlarroN ol PHYSTcAL PRoPERTTES
Wrrn OnnenrNc PARAMETERS

As we observed in the discussion of monoclinic alkali feldspars certain

easily measurable physical properties such as' in that case, the optic

angle, appear to be sensitive to variations in the ordering parameters'

Colvil le and Ribbe (1968) and Stewart and Ribbe (in press) have in-

vestigated optic properties and X-ray diffraction data with respect to

site populations (hence to ordering parameters) in the alkali feldspars

with some success, and Winchell (1963) has considered the dependence

of various physical properties on ordering in pyroxenes.

Equation (47) lor hypersthenes, in the ideal case (first-degree terms

only), is symmetrical about r:0, though it should not be expected to be

so when higher degree terms are included in the expansion of G* 1 nf . fA'e

equation for the equilibrium path defined by G7) in the ideal case, at a
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given pressure and temperature, may then be written

2 s : ( l _ r 2  1 - s r )
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'."'(- +)
: (1 - 12 I s2),uno / 

Goi-Gor 
\

\4Rr  /
(s7)

ln the square of physical accessibility this defines a hyperbolic segment
that is symmetrical about s:0 and passes through the points (-1,0)
and (1,0). If an intensive physical property exists that is sensitive to s
and relatively insensitive to r (such that the contoured values are indi-
cated by lines roughly parallel to the r-axis), then the values of that
property, for a series of isothermally (and isobarically) equilibrated
pyroxenes, should, when plotted against /y'ps or r show a departure from
linearity that is more marked for low temperature occurrences than for
high temperature ones. Precisely this relationship was in fact demon-
strated by Hess (1952, Fig. 2) for the optic angle (2V) of plutonic ortho-
pyroxenes as contrasted with those of volcanic origin. These observations
have been interpreted as due to variations in the content of other com-
ponents but it now appears likely that there may be a more direct cor-
relation with variations in s.

Although the data now available on site populations and on the values
of ordering parameters has been obtained by refinements of X-ray crystal-
Iographic data and by spectral methods, it seems likely that in time these
may be correlated with more easily measurable phvsical properties, and
these in turn with the essential thermodynamic propertiesE,T, and S*.
When this can be done, the investigation of homogeneous equilibria in
crystals will almost certainly be of great value in dealing with problems
of petrogenesis.
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APPENDIX

Srrn OccupRNCy CoNSrRArNrs rN Soun MrNonAL CRysTALS

Feld.spar. Let us consider first a monoclinic alkali feldspar with the space
group C2/m. The conventional unit cell contains four formula units,
(K,Na)AlSiaOa, but the unit of quantity we are using here contains only
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'fanr-r ,'\1. Srrs OccupaNcy FoR A MoNocr-rNrc Ar-xnr-r Frnspet

Tz

U

two. The site occupancy (notation modified from Megaw, 1956) is shown
shown in Table A1. There are five elements and there is at least one site
that has species of more than one valence, hence (4) has nonzero terms
(zr:1). We therefore have six equations (8) as follows

7?Nu : ,rNa (M )

n l t :  , r A l ( T t ) l n l i  < r z )

nK :  -  l?N*(r . r )  + 2n

n s j .  :  - n a r 1 D - 1 7 , y 1 z ) t  8 n

no  I 6n

0  :  - r ? A l ( T t )  - t c i . t O z > l  2 n

(A1)

AII terriS of the form neq ̂ re absent and the simplicity of the coefficients
arises from the fact that (znu-zuq) and (2"-zq) are in practice usually
either -1, or 1, if notzero. Reduction of system (A1) by the procedure
outlined in the text leads immediately to

,?Na : ??Na (1,{ )

' l l t r :  l T A r e D l n 7 . 1 1 z )

( z * ' * n o ) :  2 n

(nor l  rs r )  -  4 (zN,  *  nw)  :  O

l z 6 - S ( z N u + r ? K ) : 0

n A r -  ( n * " * n d : 0

(1'2)

Most mineralogists wil l have anticipated results (A2) in this simpie
example but it serves well enough to i l lustrate the method. The row-nul-
Iity of the coefficient matrix is 3, hence, with 5 elements, there are 2
components. The column-null ityis l,hence there is l internal reaction.
Because the rqn have already been eliminated, the first three equations
of (A2) constitute the valence and closure constraints on the quantit ies

,\r. \ rt'

o5 t

AI
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/rsq and n. The last three equations oI (A2) are the necessar). relation
among the quantit ies ra" [hat. are imposed b,r-the valence and site con-
straints.

For a closed crystal (f ixed chemical content) we obtain the conditions

0 :  6n :  d i l  sor \11 :  d l r1 1,11,  f  d/?4,1r ' : .1 (.{3)

In such a crystal, then, we may select one or the other oI nsy1o1 as our
single independently variable aun.

In a triclinic alkali feldspar or sodic plagioclase having the microcline
or albite structure (space group Cl) the number of atoms in the primi-
tive cell is unchanged, but the Tr, Tr, B, C, and D sites are split into the
distinct pairs T16, Tr,r, Tro, Tr-, Bo, B-, Co, C,,,, and Do, D,., respectivell ' ,
each having sI:2. II we allow for the additional species, Ca, on the NI
site, and assign to Na the role of Q on that site, the systern of equations
corresponding to (A2) takes the form

no-8(nxlnN,izcu):0 
I

nx- (nt*nx") -Zng,":g J

There are here three conponents and three independent internal re-
trctions. For a closed crystal we ma)'choose any three of the four nal(q) as
an independently variable set of ra"n (see Barth, 1965).

In the "body-centered" and "primitive" anorthite structures the
number of atoms per primitive cell is increased relative to the above by
factors of 2 and 4 respectively and there is further splitting of sites.

Hypersthene and Hornblende. Tables A2 and A3 give the site occupancies
for a simple hypersthene and a generalized hornblende respectively

Tnsr,B A2. Srrr Occup;r.Ncy loR A Srupr,n HvpnnsrrrENE

J / t
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Teslr A3. SrrB OccweNcv or e HonNer,tNoo

Site A Mr \42 Mg M4 Tr Ta P Or Ou Oa Or Oa Oo Or

1 2 t 2 4 4 2 4 4 2 4 4 4 2

Species Q K M g M g M g M g Si Si H ooooooo

Other Species
Na

n
Fe2+ Fd+ Fe2+ Fe2+
Fd+ Fe3+ Fe3+ Ca
Al AI Al Na

AI A1 tr F

- 1 ) 2 3 3 3 3 1 1 0 0 1 0 0 0 0

(notations modified from Burnham et al. 1967, and Ghose and Hellner,
1959). For the hypersthene, as given in Table A2, there are no sites con-
taining species of more than one valence. The valence equation (9) then
has no nonzero terms (zr:0) and we may obtain as our final result

'fhis hypersthene thus has two components and one internal reaction.
The final result for the hornblende takes the form

(ns ln * ) : 24n

i (not nr) - n si : n N (rrs * n t;.r z7

(n xI n si) - i(no I n r) : n tt $u) I ner (uz) f za r (ua)

(nn t n*t n* 
") * 2 (nc ̂ * nu g) * 3 (ne r * n r 

") 
-f 4n s i - 2no - n r

: 14 t ez+ (w D I 1'l t 
""+ 

(nt D I nFez+ (M a ) + r, Fez+ (M 4 )

2no I n s - (nsl ns-f nx ) - 2 (nsul nMs,+ n Fu) - 3 n n- 4n si

: f lr 'es+(${r) * nges+$tzl*nFe3+ (MJ)

ll,Ca: l lea(NIA)

E(no-fnr) - (ncu*n***nm*nli '*zasi) : zm'(ur)

(nN,-l ncu* nNr E * w u* n ar * z g 1) - fi (no I n i : /rNa (A )

nF :  nF (og )

#(no tn r ) -nH :nEe)

? (no I n r) - (nx.* nx,* nc *l nw e* n p"* n etl n s i) : na (a)

(A6)
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No further reduction of system (A6) is possible, hence the row-nullity
of the coefficient matrix is zero and the number of components is equal
to the number of elements. This means that the content of each of the
ten elements listed in Table A3 may be varied independently in such an
amphibole, an unusual circumstance in silicates, but one that has been
essentially verified experimentally by Yoder and Tilley (1962) who ob-
tained virtually complete crystallization to amphibole from melts of
basaltic composition. This flexibility is in part due to the vacancies on the
A and P sites. It is evident, in fact, from (A6) that the absence of va-
cancies on either of these sites must reduce the number of components by
one. The column-nullity of the coefficient matrix of (A6) is 8, hence there
are eight independent internal reactions.

It is of interest that the value of n in each of the examples given here
is directly related to either no or no*ns. This is true, as far as we know, of
most silicates, oxides, and oxy-salts. One known exception is mullite
which has vacancies on certain oxygen sites.

Note added inproof: In certain applications it may be necessary to select as species Q, for
one ot more sites, a species that is identical in chemical content and valence to one or more
other species, Q', occupying the same site, but differing from the species Q in some other
way as, for example, in the orimtali.on oI an atom or ion that is asymmetric. When this
occurs the above procedure will result in the elimination of the terms nq'o as well as zqo
from the right-hand sides of the equations in (8), and unless corrected will result in too
small a value of p. To correct for this we may simply add to the system (8), for each such
site, the corresponding equation (2) rearranged so that all non-zero terms are on the right-
hand side. If there are 4 such sites containing species Q', we will then have ef rf4 equa-
tions in system (8). The number of variables on the right-hand side of (8) will be !o(o- 1)

f 1$a, and the number of independent equations in (8) will be-ylrJ,4, the rank of the
matrix of the coefficients on the right-hand side. The row-nullity is then e-.y and the
column-nullity is then !r(o- l)|_l-r--y, or p, as in the special case above when a:0.
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