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INTRODUCTION

The Mineralogical Society of America, as stated in its constitution
and implied in the construction of its seal, exists primarily to further
the three related sciences of mineralogy, petrology, and crystallography.
Mineralogy, the only one appearing in the name of the Society, clearly
occupies a central role, and quite properly so, for there is much of
crystallography and of petrology that is not mineralogic, and the Society
has never attempted to cover the nonmineralogical aspects of these
fields. There is, however, little in mineralogy that is not either petrologic
or crystallographic in nature, and in this era of increasing specialization
most of us tend to regard ourselves as either mineralogist-crystal-
lographers or mineralogist-petrologists. We have thus begun to polarize
into two groups that, though both are concerned with minerals, have
tended to go their separate ways; one group, the introverted mineral-
ogists, concentrating on phenomena within the boundaries of a mineral
grain, and the other group, the extroverted mineralogists, looking out-
ward to the interaction of the mineral with other minerals and various
environmental stimuli. Though a petrologist, I hope in this paper to call
attention to recent crystallographic researches that will surely prove to
be of great petrologic significance.

Specifically petrologists have regarded the individual mineral phase
as a more or less static entity, capable of being heated, cooled, or varied
in composition, but otherwise uncomplicated. We must now abandon
this misconception for it is overwhelmingly clear, from the evidence that
has been amassed over the past forty years by crystallographers, that
interesting things actually happen inside minerals. We should not be
surprised by this for we have long been aware of processes taking place
inside liquids and gases, namely that molecules and ions can and do

! Presidential address, Mineralogical Society of America. Delivered at the 49th Annual
Meeting of the Society, November 12, 1968.
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react with each other to form new molecules and ions, the properties
of the phase varying accordingly. In fact much of classical physical
chemistry is primarily concerned with the understanding of just these
homogeneous reactions and homogeneous equilibria, in fluids, whereas
petrologists have focused their attention on heterogeneous, or polyphase,
reactions and equilibria.

Recognition of the fact that the things that happen in crystals are
closely analogous to homogeneous reactions in fluids, has, however, been
surprisingly slow in coming. This is partly because most of the key
discoveries have been made by crystallographers or physicists rather than
by chemists, and partly because terms such as ‘“order”, ‘“disorder”,
“defects”, and ““vacancies” have little apparent kinship to the words by
which we describe homogeneous reactions in fluids. Further confusion
has arisen because differences in theoretical approach have led to dif-
ferences in notation so that results that may be in fact almost identical
can look very different on paper.

There has even been, in the past fifteen or twenty years, a note of
despair that chemical thermodynamics is somehow inadequate to deal
with the phenomena observed in crystalline phases, and this, despite the
fact that early analyses of order-disorder phenomena by Bragg and
Williams (1934, 19335) and by others were thermodynamic to a large
degree. The fact that physical properties of crystals were in part de-
pendent on past history and hence not uniquely defined by pressure,
temperature, and bulk composition was taken as negating the very
concept of an equation of state for such substances. That similar state-
ments could be made about gases and liquids for which the bomogeneous
reactions are sluggish, and do not always proceed to completion, was
unfortunately overlooked by these pessimists.

In the past five to ten years the quantity and quality of information
relating to the processes taking place inside crystals have grown enor-
mously. Detailed distribution of atomic, molecular, or ionic species
among the various crystallographic sites of a crystal can now be obtained
for many substances of interest including some of the major rock-forming
minerals. Al-Si distribution among the tetrahedral sites in feldspars and
other minerals may now be deduced by the method of mean interatomic
distances as developed by Smith and Bailey (1963), and also by the
method of direct site population refinements as developed by Burnham
(Burnham and Radoslovich, 1964) and Fischer (1966). Fe-Mg distribu-
tions in pyroxenes and amphiboles have also been investigated by Ghose
and Hellner (1959), and Ghose (1961, 1962, 1965) through trial and error
refinements and also by direct site population refinements. These dis-
tributions have more recently been investigated by the use of Mssbauer
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spectra as in the work of Ghose and Hafner (1967; also Evans, Ghose and
Hafner, 1967), and of Bancroft and Burns (1967; also Bancroft, Burns
and Maddock, 1967a, 1967b; Bancroft, Burns, and Howie, 1967; and
Bancroft, Burns, Maddock, and Strens, 1966). Important information
bearing on proton distribution associated with hydroxyl groups may be
obtained from infrared spectra as in the work of Bassett (1960), and the
bearing of this on the distribution of other species in some hydrous sili-
cates has been studied successfully by Wilkins (1967), and by Wilkins and
Ito (1967). There are also strong indications that neutron diffraction
studies and investigations of such phenomena as nuclear magnetic
resonance and electron spin resonance may produce further information
of this kind in the near future.

Spurred in part by these developments several papers have appeared in
the last few years that have made encouraging progress in applying the
methods of thermodynamic analysis that have long been successful in
dealing with homogeneous equilibria in fluids, to the related problem of
homogeneous equilibria in mineral crystals. Notable in this regard are re-
cent papers by Mueller (1962); Matsui and Banno (1965); Banno and
Matsui (1966 and 1967) ; Perchuk and Ryabchikov (1968); and by Grover
and Orville (1969).

The purpose of this paper is to derive, in generalized form, the condi-
tions that must be met for equilibrium in a crystal where several homo-
geneous reactions of various kinds may take place simultaneously, and,
at the same time, to demonstrate a method by which departures from
ideality may be taken into account with respect to the substitutions tak-
ing place in real rather than hypothetical crystals. Finally, we shall ex-
amine one or two specific problems concerning homogeneous equilibria in
rock-forming minerals, and make some tentative and preliminary calcu-
lations on the basis of data now at hand.

ConprTioNs FOR HOMOGENEOUS EQUILIBRIUM IN CRYSTALS

Thermodynamic considerations. Although the classic work of Gibbs is
best known for its thorough exposition of heterogeneous equilibria, it also
contains a consideration of homogeneous equilibria that is essentially
complete, at least as far as simple molecular fluids are concerned. Al-
though homogeneous reactions in crystals were not specifically considered
by Gibbs—they scarcely could have been at that time—the essential fea-
tures of his approach should be applicable to any homogeneous phase
whatsoever and will be followed here. There are, however, several options
that may be taken as to specific procedure. For example we might con-
sider a wholly isolated crystal and seek the conditions that maximize its
entropy, or we might consider a crystal of fixed chemical content (a
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closed crystal) and seek the conditions that minimize its Gibbs function at
some specified temperature and pressure. Because these, and other
methods, are mathematically consistent the final results will be un-
affected, hence we shall choose the minimizing of the Gibbs function at
constant pressure and temperature because of its familiarity and sim-
plicity.

We shall suppose further that the numbers, kinds and distributions of
the various atomic, ionic, or molecular species that make up a crystal
uniquely determine the magnitude of any extensive thermodynamic
functions such as G, the Gibbs function. Thus our first problem is how to
relate variations in the numbers, kinds, and distributions of these species
to variations in various thermodynamic functions, and in particular to G.

The possible variations of a crysial. Let us consider a complex crystal and
denote a given species by the subscript s and a given site by the subscript
g. The quantities #,, are then to be understood as indicating the number
of species of a given kind upon a given site. Let us define ¢ as the number
of sites of a given kind, ¢, in a unit quantity of crystal, and let us define
the quantity of crystal n as equal to the number of unit cells multiplied
by the number that is the greatest common divisor of the ranks of the
equipoints of the space group to which the crystal belongs (see Buerger,
1956, Chapter 18). The number of sites ¢ in the crystal as a whole is then
gn, and ¢ must be an integer such that 1<¢g<48.! In certain instances the
numbers ¢ may be identified as the subscripts in the standard chemical
formula of a crvstal or as simple multiples of them. We shall regard the
vacancy as one of the species that may occupy a site, and when we wish
to distinguish it, shall do so by an open square such that the number of
vacancies on a given site would be zo,. Our assumption that variations in
the Gibbs function for a crystal at a given pressure and temperature are
determined by variations in the kinds and distributions of the various
species in the crystal may then be written formally as

6G = f( Z %} 6n3q> (1)

where the summation must be over all species and all sites. Equation (1)
as it stands, however, raises some problems. The number of terms 8%,
in particular, is infinite simply because the number of different kinds of
sites is not finite. Further difficulties arise in that the number of sites of

I The only permissible values of g, as defined, are, in fact: 1, 2, 4, 8, 16, and 3, 6, 12, 24,
and 48. Its maximum value is 2 in triclinic crystals, 4 in monoclinic crystals, 8 in ortho-
rhombic crystals, 16 in tetragonal crystals, 24 in hexagonal crystals, and 48 in cubic crystals.
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two kinds are always in the same ratio neglecting possible minor im-
balances that may arise at the outer boundary of the crystal. Thus for
two sites, @ and b,

an a
— = — = constant
bn b

and we must have a relationship, one for eack site, g, of the form

qn = 3 g (2)
hence

gdn = Zénsq (2a)

We shall refer to equations (2) or (2a) as the site constraints on the vari-
ations of the quantities #,,. An additional constraint on the variations of
the 7,4 is that in most substances there is a valence balance of some sort
that must be considered as well. In an ionic crystal, as in an electrolyte
fluid, this would be a condition of elecironeutrality, but we shall not re-
strict it to this particular case inasmuch as a valence balance may be
operative under other circumstances. If we denote the valence, whatever
its nature, of a given species as Z, we may write the valence condition as

= 0= Z Z Zsgq 3)

hence
0= Zdn, (3a)
s q

and shall refer to (3) or (3a) as the valence constraint on the variations of
the 7.q. We shall take the valence of a vacancy, Zo, to be zero.

Let us now arbitrarily select one species on each site and indicate that
species by the subscript, Q. The quantities #q, for each site ¢ may now be
eliminated from (1) using the site constraints (2a). In so doing, however,
it should be observed that we introduce into (1) the quantity én. It is also
convenient to take the site constraints into account in the valence con-
straint (3a). To do this we multiply each site constraint (2a) by the
appropriate Zg and subtract the result from (3a) obtaining

0= Z ; (2, — @ansq + ( %}chz) 5n (4)
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hence it is apparent from (4) that the valence constraint can eliminate an
additional 7., only if there are sites that contain species of more than one
valence. If not, the quantities in parentheses in (4) must all vanish.

It is also evident that, at the small price of introducing the quantity n,
the site restrictions make it possible to eliminate from further consider-
ation the quantities #,, for sites that contain only one species. Now the
number of sites occupied by species other than vacancies must be finite
even though the total number of sites is not. Each of the quantities #oq
for a site occupied only by vacancies, however, is eliminated by its cor-
responding site restriction, hence we need consider in what follows only a
finite number of sites (only those occupied by species other than the
vacancy), and only a finite number of quantities #sq plus the quantity, n.
The number of such quantities may, in fact, be evaluated in terms of the
following general formula

T=Z(J—1)+1—ﬂ' (5)

aQ

where 7 is the number ofmsl?{hsq or n, that may be varied inde-
pendently; ¢ is the number of different kinds of species occupying a given
site, ¢; and m a number that is unity if (4) has nonzero terms and zero if it
does not. Now the number of independent ways, 7, in which the crystal
can be varied must i#clude the number of independent ways in which its
bulk chemical content may be varied. This latter number, v, is in fact the
number of independently variable components of the crystal, and is a
quantity that is often known in advance. 7 must be equal to or greater
than v and the difference, p, must then be the number of independent in-
lernal variations or internal reactions that can occur in a crystal of fixed
chemical content (a closed crystal). We may then write

pm=r—r=N—D+1-r—7 ©)

There are thus vy constraints of closure. Though their number (y) may
be known in advance, and though a set of independently variable com-
ponents may be already identified, it is not always evident what form
these constraints must have, particularly if the components have com-
plex chemical formulas. We shall therefore outline a systematic procedure
by which a sufficient set of constraints of closure, ¥ in number, may be
obtained. For each chemical element, e, in the crystal there is a relation of
the form

Ho = 2 D Veslaq (7N

where #, is the number of atoms of element e in the crystal, and v is to be
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read as the number of atoms of element e required to make species s
For a closed crystal each dn, must be zero hence

0 = én, = Z Z VosOtlsq (7a)
e q

Equations (7) or equations (7a) are not independent in most crystals
because of the fact that the site and valence constraints commonly pre-
vent independent variations of the contents of the various elements. The
number of elements, ¢, is thus typically greater than the number of com-
ponents, v, although equal to it in some crystals. To obtain a set of inde-
pendent equations from (7) we may take the site and valence constraints
into account as follows:

Let us again select a species, Q, for each site and, using (2), remove all
terms of the form #qq from each equation (7) and from (3). Taking these
results we obtain the following system of equations

e = Z Z (Pes — woq)Way + ( Eqvnq)n
£ q q

t (8)
0=22 (2. — Za)nw + ( > qZQ)HI

The site constraints have all been taken into account in (8). The num-
ber of equations (8) is then e+ (= is again either zero or unity), and the
number of quantities 7y, and n on the right-hand side of the system (7) is
> o(e—1)41. The number of independeni equations in the system (8)
must be v+, hence the rank of the matrix of the quantities in paren-
theses in (8) must also be y+. The row-nullity (Aitken, 1958, Chapter
ITI) of this matrix is then e—1, the number by which the number of ele-
ments exceeds the number of components, and the column-nullity is then
> (o— 1)+1—(y+n), hence equal to p, the number of independent in-
ternal reactions. It is thus clear that we may proceed with our problem if
we know the rank of the above matrix and can obtain a set of indepen-
dent constraints from (8). Fortunately, both of these ends may be ac-
complished by the simple procedure of employing each suitable equation
in (8), successively, to eliminate one #.q (or n) from all of the others. The
process may be continued either until all equations (8) have been so em-
ployed, or until all coefficients on the right-hand side of each remaining
equation have vanished. In the first case the number of elements, ¢, is
equal to the number of components, v, and all of the equations (8) are in-
dependent. In the second case the row-nullity of the above matrix is
equal to the number of remaining equations, and these remaining equa-
tions are a sufficient set to define the constraints preventing independent
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variation of the quantities #.. The other equations are all independent
and are the desired relations among the quantities #7sq and n. There are
(y+=) independent equations, and for a crysial of fixed chemical content
the variation in the left-hand side of each must vanish. Some actual ex-
amples have been worked out in the Appendix in order to clarify the pro-
cedure.!

We have now developed a formal procedure for determining how many
of the quantities #,, and nin a given crystal may be varied independently
in either an open or a closed crystal, and a specific means for identifying
a set of quantities having the form ny or n that is sufficient to describe
these variations in either case. The actual set obtained, however, is not
necessarily a unique one and alternate sets may be obtained with differ-
ent choices of species Q, and a different sequence of operations in the re-
duction of the matrix in (8). The quantities p and v, however, are in-
dependent of the specific procedure followed. We shall refer below to the
set of equations (8), in one of the forms obtainable through reduction by
the procedure outlined above, as the site population equations. Examples
of these for three major types of mineral crystal are given in the Appen-
dix.

Conversion to intensive parameters. The quantities #sq and n are all exten-
sive properties of a homogeneous crystal, hence are quantities such that
the value of each for the whole is the sum of the values for its parts. We
shall now define site occupancy fractions, Neq, according to the convention

Tlsq

Noy = (9)

gn
The ratio of any two extensive properties is necessarily an intensive prop-
erty hence is a property such that the value for the homogeneous whole
is equal to the value for each of its parts. The introduction of the quanti-
ties N¢q could have come earlier in the above discussion but has been de-
layed in the interest of clarity. It should be noted, however, that the key
equations (1), (2), (3), and (7) then take the following forms, respec-
tively, remembering n=0

e =f(n, 353 azvsq) (10)
1= Ny (11)
0= 2 2 qZNsy (12)

1 See Note added in proof on page 373.
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and

! = Z: qu'estq (13)
Bl q

We may also introduce the N,q by substituting directly, using (9), into
the site population equations already obtained. With (9) we have only
one surviving extensive property, namely n, our measure of quantity.
For present purposes it is convenient to define the mole of a crystal as a
quantity of crystal such that n is equal to Avogadro’s number, N.
This will correspond either to the conventional formula unit or to some
simple multiple of it. Any extensive property may then be converted to
the corresponding molar property if we multiply it by Nn-%. The number
of atoms of an element per mole of crystal is thus #,Nn™!, and the num-
ber of gram-atoms per mole of crystal is n.n?, as on the left-hand side of

(13).

Equilibrium in a closed crystal. We may now, from the site population
equations, select a set of quantities, N,q, and possibly n, that may be
varied independently in a closed crystal. Indicating a set that may be so
varied by primes we have, from (10)

G =Y. Z( g )aN;q + (Z—GI) on’ (14)
s q n

G
N,

Variations of n in a closed crystal of fixed chemical content may arise
only through creation or destruction of vacancies and must be taken into
account when this possibility exists. (For the examples in the Appendix,
however, and the possibilities of site occupancy there indicated, n cannot
be varied in a closed crystal, inasmuch as the site population equations
relate it directly to the contents of certain elements, and in particular to
the content of elements such as oxygen and fluorine that form species of
negative valence. Should evidence for significant populations of vacan-
cies on “‘anion’ sites arise, on the other hand, it might be necessary to
consider the possibility that én>40 in such crystals.)

In actual application it is often convenient to introduce new variables,
X, for each reaction 7, such that they are simple linear functions of the
quantities Ny’ (and if necessary n’) and equal to the latter in number.
We may then write for our closed phase

oG
oG = ), (—> 8 X, (14a)
P,T, all other X,

r aXr

When én for a closed phase is zero, as in each of the applications below,
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the number of moles of the closed crystal cannot vary and we may simply
write, for one mole

= oG
G = ), <—> 80X, (14b)
T aXr P, T, all other X,

where the bars indicate a molar property.

At a stable (or metastable) internal equilibrium in a closed crystal, at a
given temperature and pressure, the Gibbs function must be at a mini-
mum with respect to variations of the independent parameters X,. We
must then have for each 7 a condition of the form

oG .
—> =0 (15)
aXr P,T, all other X,

If any one of the conditions (15) were not satisfied, a mechanism would
then exist where, by appropriate variations of the corresponding X,, the
value of G could be lowered. If so, however, G is clearly not at a minimum
and the crystal is not in stable or metastable equilibrium. (Equation 15
must also be satisfied when G is at a maximum, but this is an unstable
equilibrium and need not concern us here.)

The number of reactions, 7, is equal to p as in (6). For a crystal for
which p is zero the variance or number of independent variations in the
sense of Gibbs (1928, p. 96) is y-1. For a crystal that is not necessarily in
internal equilibrium the variance is (y+p)+1 or 7+1, but the variance,
under circumstances where conditions (15) are always met, returns again
to y+1. The quantities vy and 7 thus correspond to the numbers of ‘“ulti-
mate” and “proximate’” components, respectively, as in the treatment by
Gibbs (1928, p. 138) of homogeneous equilibria in fluids. Inasmuch as
conditions (15) are most likely to be met during very slow processes we
may regard r as effectively the number of shori-term components and v as
the number of long-term components of a given crystal, the latter being
the usual sense of the word “component” unless otherwise specified.

FORMULATION OF THE THERMODYNAMIC
PROPERTIES OF A CRYSTAL

Ideal configurational entropy. The distribution of a given species, s, on a
given site, ¢, can almost certainly be regarded as a random distribution
under the special circumstances of extreme dilution (¥,,—0) or of com-
plete occupancy (Ng—1). Under other circumstances (0< N,q<1) we
may anticipate some degree of ‘“short-range ordering’” or departure from
random distribution of the species. In limiting cases where the species
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distribution is random, however, it gives rise to singularities in the vari-
ations of the entropy, S, as related to the V., that must be taken into
account in order to understand the behavior of the entropy and of the
Gibbs function in these limits.

Let us therefore define Siq as the contribution that would be made to
the total entropy, S, if the distribution of species on site ¢ were truly ran-
dom. This may be evaluated from simple statistical considerations.
The number of ways of arranging the various species s on site ¢ is

(gn)!/ T 1 #sq! hence

n)!
Su = k In 3%

H Msq |
S

where k is the Boltzmann constant. For any appreciable quantity of
crystal we may assume In 7! is very nearly equal to # In n—n, hence (16)
becomes

(16)

Sia = —gk 2 Ny In Ng (16a)

and

St = Zsiq = —nk Z ZCINSQ In Nyq (17)
a 8 q

or, for one mole of crystal

—Si = SiNn_‘

— R Z Y gV In Ny (18)
s q

where R is the gas or molar entropy constant.

Other thermodynamic properties. We may now define the quantities S*
and G* by the relations

SEI=LS =8y
G*=G+TSi=H—TS*=E+4+ PV —TS$* (19)
where H, E, and V are enthalpy, internal energy, and volume, respec-

tively. We have then
G=G*—TS;=G*+ RT ) >, qNyln Ny (20)

or

f a*+ZZ Neg In N (20a)
— = Neq In Ny a
RT RT T <?w :
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We shall assume that at any given pressure and temperature the function
E, V, and S* show no singularities in the limits where N.;—0 or where
Ns—1, and that they may be expressed as Taylor expansions about any
given reference state in terms of the composition variables and the re-
action parameters X, that have been selected. If so G*/RT may also be so
expanded and the corresponding expansions for the functions H/R,
E/R, V/R, and 5*/R may be obtained from the temperature and pres-
sure dependence of the coefficients in the expression for G*/RT. This
formulation is entirely consistent with Henry’s Law and Raoult’s Law
for crystalline solutions in which there are no internal reactions (see
Thompson, 1967). For the circumstance where only the first degree terms
of the expansion are necessary it describes an ideal solution, nonideality
being accounted for by terms of higher degree. We shall therefore proceed
on the assumption that such a formulation is valid, until proven other-
wise, and investigate some problems relating to homogeneous reactions in
some common rock-forming minerals. The processes considered will all
be related to the exchange of pairs of real (nonvacancy) species between
pairs of sites (long-range ordering). Other types of internal reaction, how-
ever, are equally amenable to the treatment outlined above. These would
include oxidation-reduction equilibria among species, as well as general-
ized problems involving vacancies and interstitial species.

HoMoGENEOUS EQUILIBRIA IN FELDSPARS

Monoclinic alkali feldspar. From the site population equations (A2) in the
Appendix and (9) we may obtain the following independent equations

NNa = 2nNNn(M)
(nna + #x) = AnNarycry + 4nNaicre) (21)
(nna + nx) = 2n )

We may eliminate all extensive quantities from the right-hand sides of
the first two if we divide each by the third, obtaining thereby

NNa 2
————— = Nnaon) = Nawp
iNa T Nk

|
{
1 =2Naymy + ZNAI(TEJ[
J

(nna + nx) = 2n

(22)

The identity in the first equation of (22) indicates that the standard
alkali feldspar components Or and 4, are here identifiable with the site
occupancy fractions for the M-site. For a closed crystal

O = 86Nap = 6n = 6Narcry) + 0Navcr) (23)
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We might therefore choose either of the N a1 or, with (11) either of the
corresponding Nsgiq) as our measure of internal reaction. Algebraic sym-
metry is gained, however, by defining a new quantity, Z, a long-range or- -
dering parameter, by the relation

Z = 2(Narcry — Narern) (24)

From (24), (11), and the second equation of (22) we may write

1+Z 1-2

Nayry = T 5 Naversy = —'—4
) 25)

3—7Z S=1=L

Nsicryy = — 5 Nsicray = 2

We also have then

G G* Si z
o == = — T = Zs: zq:qqu In Ny = 2Zartanh Z + 272 artanh?
+In(1—-2009—-2%)"—161In2
4 2Nap In Nab + 2(1 — Nap) In (1 — Nap) (26)
and
G*

RT = go+ gnNav + g2Z + gnnNav? + gnzNavZ + gzzZ? - - - (27)

where the quantities g are dimensionless Taylor expansion coefficients as
indicated. Terms of higher than the second degree are probably needed,
atleast in N4y, (see Thompson and Waldbaum, 1968), but the form of the

continued expansion is clear from (27). With (26), (27) and (15) we may
now obtain our equilibrium condition:

[5G,

47
2 artanh (3

ZZ

) + gz + gnzNVay

+ 2gg2Z - - -
= 0 (at equilibrium) (28)
The resemblance of (28) to certain conditions for homogeneous equilibria

in fluids is not apparent but may readily be made so. Let us define a
quantity Kz’ such that

NaveryVsior
Kyt = Al{T1) (T2) (29)

NsicronNaers
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K7’ thus has the form of an apparent equilibrium constant. With (25) we
may write

%4 47
In K’ = 2 artanh Z + 2 artanh <~> = 2 artanh < > (30)
3 R

If, for a feldspar of fixed composition, we define G as G when Z=1,
and define G;° as G when Z= —1 we find that

—0
1

:R_]" = ZZVAb In NAb+2(1 —NAb) ln (1 —NAb) _411’1 2

+ go+ enNav + gz + gxwNay + gxaNav 4+ g2z - -+ (31)
and
Gr
o7 = 2VanIn Nap+2(1 = V) In (1~ Naw) = 41n 2
+ g0+ gxNaw — gz + gxwNan — gnaNav + gzz - - - (32)
hence
£§°E G?—_E; = 2gz + 2gnzNan - - - (33)
RT RT
and therefore
In Ky = — G-@ _ Wzl - - ¢ (34)
2RT

The analogy to a simple reciprocal equilibrium among four species in a
fluid, or to a simple exchange equilibrium between two phases is thus
complete. Tt is also clear that where only first degree terms are required
for the expansion of G*/RT the situation is analogous to equilibrium in
an ideal or ideally dilute fluid, or to exchange equilibrium between two
simple ideal solutions, and that nonideality must be taken care of by
higher order terms in the expansion (27). It should be emphasized, how-
ever, that in obtaining (34) we have not, as have some authors, appealed
Lo inherently unmeasurable quantities such as the chemical potential or
the activity coefficient of a single species on a given site.

Some tentative calculations. Preliminary site occupancies have been ob-
tained by Colville and Ribbe (1968) for an adularia (Spencer B) and for
an orthoclase (Spencer C). The calculated value of Z for the adularia is
0.56 and that for the orthoclase is 0.40, giving values of In Kz’ of 1.643
and 1.116, respectively. Ribbe (1963) has refined the structure of a sani-



CHEMICAL REACTIONS IN CRYSTALS 353

dine prepared by heating Spencer C at 1075°C. Site populations calcu-
lated by Waldbaum (1966) from Ribbe’s data yield a value of 0.08 for Z
and a value of 0.214 for In Kz’. If we assume that the first-degree terms
in (27) are sufficient, in the absence of evidence to the contrary, and also
assume that the Spencer C sanidine actually equilibrated at 1075°C, we
may make some tentative calculations. For this idealized case we may
write

T

-G HA-E/1y Gi-5
Cn Ky = 1 _1=( 1 1)< >_(1 _1_) (35)
2RT 2R 2R

We shall also neglect any possible temperature dependence of AH® and
AS°, and shall neglect the fact that Spencer B (the adularia) does not
have the same composition as Spencer C. A further assumption that
might be made is that AS® is zero. This is consistent with the suggestion
that In Kz’ and Z will approach zero (complete Al-Si disorder) at very
high temperatures. If so, we may calculate tentative temperatures of
equilibration for the orthoclase and the adularia using (35). The results
so obtained, however, are unreasonable (—15°C for the orthoclase and
—98°C for the adularia!) hence it appears that this assumption is not
good. Another approach is to estimate a temperature of equilibration for
the orthoclase, calculate AZI° and AS®, and then test the results on the
adularia. Orthoclase Spencer C, unfortunately, is a stream cobble from
Burma, but its chemical analysis is such that from comparison with the
alkali feldspar solvus as determined by Orville (1963) and by Luth and
Tuttle (1966; see also Thompson and Waldbaum, 1969), we may assume
fairly safely that its temperature of crystallization was at least 500°C.
Assuming equilibration at 500°C we obtain —3.97 cal/deg for AS® and
—6.49 kcal for AH®. The temperature of equilibration for the adularia
would then be 340°C which is not unreasonable. The negative value of
AS° would suggest that In Kz’ and Z itself may become negative at
higher temperature. There are, however, so many assumptions involved
in these calculations that they must be regarded as highly speculative.

Figure 1 shows the form that the curve showing G as a function of Z
would have in the ideal case. The equilibrium value of Z indicated is
about that of Spencer B adularia. For the nonideal case the form of this
curve may be more complicated as shown in Figure 2, indicating that
there might, in the nonideal case, be an actual discontinuity in the equi-
librium value of Z at some particular temperature. Because intensive
physical properties (such as the optic angle, for example) are almost
certainly continuous functions of Z, a discontinuity should also appear in
molar volume and molar enthalpy if there is one in Z. A discontinuity in
Z would thus correspond, thermodynamically, to a first order transition
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Z —>

F16. 1. General form of curve showing molar Gibbs function, G, as a function of an
ordering parameter, Z, for a crystal of fixed chemical content at some arbitrary temperature
and pressure. The curve shown is for the ideal case (first-degree terms only in the Taylor
expansion of G*/RT), and the value shown for the equilibrium value of Z (Ze,) is approxi-
mately that for the adularia (Spencer B) discussed in the text. The ordering here is non-
convergent (G,°#Gr"), hence G as plotted, is nof symmetric about Z=0. Values of G* are
given by the line joining G7° and G;° in this ideal (linear) case.

(Fig. 3b). Even further possibilities may arise. Specifically, it is quite
conceivable that the magnitude of AZ could decrease along the Yvariant
curve for the transition, and that such a curve could actually terminate
at a critical point as in Figure 3c. These speculations, however, are only a
part of the problem of phase transitions in alkali feldspars, for we have
not yet considered feldspars having structures of the microcline or low
albite type.

Triclinic alkali feldspar. From equations (A4) in the Appendix we may
write, allowing for a calcium component, An

ng |
—————— = Nxony = No: |
nx + nna + 5ee

NCa
———————— = Ncaom) = Nan
ng + #na + #ca (36)

ng + #xa + %ca = 2n

nay nKg + #Na + 20ca

nx + #na + fica  Bx T N T Bea
= Nawrioy + Naircrimy + Narcr2o) + Vaicrem
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From the second and the last equation of (36) we obtain further
1 + NAn = NAl(TlO) + NAI(Tlm) + NAl(TZO) + NA](TZm) (37)

Here, for a closed crystal, any three of the four Naiq may be varied in-
dependently. It is more convenient, however, to define three new long-
range ordering parameters, X, ¥, and Z according to the relations

X = Naicr2o) — NAa1(T2m) |
Y = Naireoy — Nai(rim) s' (38)
Z = Naicrioy + Narermy — (Varcreo) + Narcram) J

From these, (37) above, and (11) we obtain

14+ Nan+ 2427 14 Nan+2Z -2V
Naiery = 1 3 Narerm) = 3 |

A WD ANt IV == 7 e T |
Nairaoy = —‘——4 3 Naieram) = 4

(39)

3—Npgn—2-2Y 3~-Nan— 2427
Ngicrio) = i 5 Ngi(rim) = 1

3— Nan+Z—2X 3— Nant+2+2X
Nsgicreo) = 1 5 Nsi(rom) = P

from which the terms N,, In N, may be evaluated. The expansion of
G*/RT here takes the form

G* 5
R—T = gﬁ-—l— gxNor + geNan + g2Z + grrNor + grcNorVan

+ gxzNowZ + gocNan

+ geaNanZ + gxx X + gxx XV + gvy ¥V + gazZ’ - - - (40)

The omission of all terms for which the sum of the powers of X and ¥
is odd from the expansion (40) may be surprising but is necessary be-
cause G and like properties should be symmetrical about the Z-axis
(X=0, Y=0). The reason for this may be appreciated by consideration
of Figure 4, a sketch of the feldspar structure projected onto (201) that
shows the essential features of the tetrahedral framework. Neglecting
site occupancy (itself a form of labeling) the sites labeled Ty and T, are
topologically identical even though they are crystallographically distinct
in a triclinic feldspar. Rotation of the crystal about its b-axis, in fact,
reverses the labeling. An alkali feldspar with all of its Alin Ty would ob-
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F'16. 2. Possible behavior of G as a function of Z in the nonideal case. Diagrams show
possible relationships at three successive temperatures, Ty, Ty, T4, at a constant pressure,
Py. The discontinuity in Zeq at T, implies similar discontinuities in properties such as
density and molar enthalpy that are also continuous functions of Z. Such a transition is
thus a first order transition, in the thermodynamic sense, and is possible only in the nonideal
case. Here G* mustbe anonlinear function of Z, hence the lines joining G;°and Gi°are dashed.

viously distort oppositely in all ways to one with all of its Al in Tyy. Be-
cause of certain conventions in crystallographic orientation, however, it
would immediately be ‘‘turned over” and described as a Ti,-ordered
feldspar. It is therefore evident that any feldspar, for which either X or ¥
is not zero, may be assigned two sets of values of X and ¥: the conven-
tional one and an unconventional one with the signs of X and ¥ reversed.
Because of this thermodynamic functions such as 7, S, H, or G should be
symmetrical about the Z-axis which is thus an axis of two-fold symmetry
for these functions. If the origin for the Taylor expansion is about any
point on the Z-axis, symmetry then requires that all coefficients must
vanish for terms containing X*¥™ where #-+m is odd. This is in fact our
principal reason for using the coordinates X, ¥, and Z rather than the
N1 directly.

A second reason for the choice of coordinates is that feldspars for which
X and V are both zero have met a necessary condition for monoclinic
symmetry. In this sense the monoclinic alkali feldspars may be regarded
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F16. 3. Possible pressure-temperature diagrams for monoclinic K-feldspar: (a) shows a
continuous change in phase possible in either the ideal or the non-ideal case; (b) shows a
first-order phase discontinuity, possible only in the non-ideal case; and (c) shows a first
order discontinuity terminating at a critical point. Ty, Ty, and T in (c) are consistent with
the diagrams in Figure 2. The possible appearance of a triclinic form such as microcline or a
“triclinic adularia’ has, for simplicity, not been included.

as a special case of the triclinic ones inasmuch as the triclinic crystals
may differ from monoclinic ones in ways that are, quantitatively, vanish-
ingly small. It should be made clear, however, that though the vanishing
of X and Y is a necessary condition for monoclinic symmetry it is not a
sufficient one. Specifically, certain feldspars studied by MacKenzie
(1952) show a readily reversible symmetry change that is almost cer-
tainly not related to redistribution of Al and Si, hence not related to
changesin X, ¥, or Z. Such feldspars, even when triclinic, must therefore
have zero values of X and Y. If, however, a feldspar grew or equilibrated
as a triclinic crystal, it is likely that with a real, though perhaps small,
difference between a pair of sites there should also be a real, though per-
haps small, difference in their Al-Si occupancy. We shall therefore as-
sume, until there is evidence to the contrary, that feldspars for which X
and ¥ are both zero either grew or at some time equilibrated as mono-
clinic crystals.



360 JAMES B. THOMPSON, JR.

Fic. 4. Schematic view of the feldspar structure as sectioned on (201). The notation for
the sites is modified after that of Megaw (1956).

The physically accessible region in X-Y-Z space is bounded by planes
for which the equations may be obtained by setting the various N, at
zero in equations (39). These define a polyhedron that for pure alkali
(N4, =0) feldspars is the tetrahedron shown in Figure 5. The existence of
this tetrahedron was also deduced by Barth (1965), but was represented
by him in terms of the barycentric coordinates Nayq rather than the co-
ordinates X, ¥, and Z as presented here. With increasing N, this tetra-
hedron (or tetragonal disphenoid), bounded by the planes Naiq)=0,
expands and is truncated at the corners by another tetrahedron bounded
by the planes Ngjqy=0. For a pure Ca-feldspar (Na,=1), though none is
known that has this structure, the polyhedron would be an octahedron (or
tetragonal dipyramid) bounded by the planes 2+Z+2X=0 and
24+ 7Z+2V =0, and having vertices at the coordinates (0, 0, +2) and
(£1, +1, 0). The vertices of these polyhedra can correspond to perfectly
ordered crystals only when Na,=0 or Na,=1. No perfectly ordered
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Z

F1c. 5. Physically accessible regions for an alkali feldspar in terms of the ordering
parameters X, ¥, and Z as defined in the text. The corners of the tetrahedron correspond to
perfectly ordered crystals having all their aluminum in the sites indicated. Monoclinic
crystals must have X =Y =0. If a calcium (An) component is present, the tetrahedron is
expanded to larger values of + X, £ ¥, +Z, but truncated at its corners as explained in the
text.

Al-Si distributions other than these ten (of which only six are physically
distinct) are possible for feldspars of this structure type unless one can
occur with a 3- or 4-valent atom in the M-site.

The site occupancies for seven triclinic feldspars as calculated, tenta-
tively, by the method of Smith and Bailey (1963) and normalized to one
Al per four tetrahedra, are given in Table 1 with the values of X, ¥, and
Z calculated therefrom. These results are also shown in X-¥ projection

TABLE 1. OCCUPANCY OF TETRAHEDRAL SITES IN MICROCLINES AND ALBITES

Si
Feldspar NayTi) NayTimy Nawrzo) Nairom) X ¥ Z | (cal/
deg)
Low albite, Ramona, Calif.? 0.86 0.03 0.06 0.05 0.01 0.83 0.77 | 1.43
Low albite, Ramona, Calif.? .78 .065 .09 .065 02 .71 .69 | 2.57
High albite, hydrothermal® .37 .15 .19 .29 — .10 .22 .04 | 4.32
High albite, Amelia, Va.

(1065°C)¢ .29 .22 .23 .26 — .03 .07 .02 |4.45
Microcline, Pellotsalo, Finland® 0.88 0.05 0.03 0.04 —0.01 0.83 0.86 | 1.72
Microcline, Pontiskalk, Switz.* .89 .05 .09 .02 07 .79 .78 | 2.05
Microcling, Spencer UT .65 .27 .05 .03 .02 .38 .84 | 3.13

Values of Na1(q) (here normalized to ZNa1(q) =1) were calculated by D. R. Waldbaum (1966) from data
of:

& Ribbe ef al., (1962); P Williams and Megaw (1964); ¢ Ferguson ¢ al., (1958); d Brown and Bailey (1964);
¢ Finney and Bailey (1964); and f Bailey and Taylor (1955).
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in Figure 6, and in V-Z projection in Figure 7, together with the data for
the three monoclinic feldspars discussed above. The distinction between
K-rich and Na-rich specimens is most marked in Figure 7. It is also clear
from Figure 6 that values of X are consistently small and may well be
zero, considering the uncertainties in the calculations.

Convergent and nonconvergent ordering. When X and ¥ are both near
zero the distinction, not only in occupancy but in other ways as well be-
tween the Tio-sites and the corresponding Tin-sites may become van-
ishingly small. This convergent effect, coupled with the symmetry in
G about the line X=0, V=0, leads to singular behavior in this region.
The approach to this critical region (in our case the Z-axis) is typically
precipitous and, if equilibration is rapid enough, is commonly associated
with a “lambda’” anomaly in the heat capacity of such crystals. Most
long-range ordering phenomena observed in metallic crystals are in fact
of this convergent type. In silicates, on the other hand, both convergent

¥
Tio

Fic. 6. Tetrahedron of Figure 5 as seen in projection onto X — ¥ plane. The solid circles
show the X—V¥ coordinates of Na-rich feldspars, and the open circles show those of K-
rich feldspars. The values plotted are those listed in Table 1. The three monoclinic feldspars
discussed in the text all plot at the origin.



CHEMICAL REACTIONS IN CRYSTALS 363

and nonconvergent ordering are of common occurrence. The Z ordering
in monoclinic alkali feldspars is a good example of the nonconvergent
type. The Ty-sites and Ty-sites are topologically distinct as well as crystal-
lographically distinct and must remain distinct even when their occu-
pancies may be identical. The condition Z=0 is onlv unique numerically
and does not imply singular behavior of any sort. Lambda points and
their associated “superlattices” and symmetry changes are associated
only with ordering of the convergent type.

In summary, then, the intensive properties of an alkali feldspar or
sodic plagioclase are, in general, functions of P, T, No., Nan, and of the
ordering parameters X, ¥, and Z. If in special circumstances, we are
dealing only with fully equilibrated feldspars, then the feldspars are
subject to the equilibrium conditions

(%)
s - =0
0X/p 1 x N, Y

Or
4G |
<—~> =0} (41)
G_Y PN, N, X% |!
G [
i N
oz P TN N, XY

and the intensive properties of these feldspars may be regarded as func-
tions of P, T', Nor and Na,. The first two equilibria in (41) are convergent
in nature and the last is nonconvergent.

HomoGENEOUS EQUILIBRIUM IN HYPERSTHENE

General formulation. We may proceed from the site population equations
given in the Appendix by substantially the same route as that followed
in our analysis of the corresponding phenomena in feldspars. We shall
therefore omit here the intermediate steps and proceed directly to the
choice of compositional and ordering parameters. We have now two
components, hence only one composition parameter is necessary, and
there is but one internal reaction. The familiar composition parameter
for a simple hypersthene, Ny, may now be defined by the relation

M Ee Af e + N e
NFS = F — Fe(M1) F (IIVI.Z) (42)
NFe + nMg 2

We shall find it convenient, however, to center our coordinate system by
defining a composition parameter, 7, such that
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F1c. 7. Tetrahedron of Figure 5 as seen in ¥ — Z projection. The ¥ —Z coordinates for

the triclinic feldspars are given in Table 1, and the Z coordinates of the monoclinic feldspars
are given in the text. Legend same as Fig. 6. Circles have same significance as in Fig. 6.

7= Nreuzy + Npequny — 1 = 2Nw — 1 (43)
and an ordering parameter, s, such that
s = Npemzy — Nreeuy) (44)

The physically accessible region in terms of » and s is then a square with
vertices at (0, 1) and (&1, 0). We have also, from (43) and (44)

14+r—35 1—7r435)
Ny = ———; Nugoun = ——————
2 2
(45)
) I+ ) == §|
Nyouey = —— ] Nyegomzy = =——eE

Z Z |

from which the N,q In N, terms may be recast in terms of  and s. The
expansion for G*/RT here takes the form
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E*
BT & + g + g5 F ger® + grors + goss? - - - (46)

because the ordering is nonconvergent symmetry of the thermodynamic
functions is not required about the line s=0. The condition for internal
equilibrium is then

[i (—G—>:| = 2 artanh (L) + g+ gt + g5 - - -
Is \RT/ lp,1+ 1—7r24 52

= 0 (at internal equilibrium) (47)
If we define KJ by

Nreaua)y Vg

K/ = (48)
NyguyNreqvny
We then, with (45), have
2s
In K/ = 2 artanh <————>
1 — 72 52
= gt — gt (49)

The vertices of the square bounding the physically accessible region cor-
respond to ordered crystals. By successively setting » and s at the co-
ordinates of each of these vertices, and by using (45), (46), and (20a), we
obtain

(50)

1 —0 —0
s = —— (Goy — Gyy) |
£ 2RT( 01 m):

)

where the subscripts indicate values of r and s in that order. Let us now
assume that the second degree terms in (46) are sufficient and insert the
Nsq, from (45), into (46). If we then set any one of the N, at zero (its
complementary N, is then unity) we find that (20) has a form like that
of the expression giving G for a simple symmetrical solution (Thompson,
1967), and that we may then identify two nonideality parameters
analogous to those for symmetrical solutions. One of them, Wy, applies
to nonideality in the substitution of species on the M(1) site and the other,
W s, applies to nonideality in the substitution of species on the M(2) site.
With these we may express the remaining coefficients for the second de-
gree expansion for G*/RT in the form
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e G+ T+ Tt Cor o+ Wanr + W)
So ART 0 10 01 of M1 M2 ‘

1 —_C —_Q —Q - Q
gre = ﬁ (GTo + Gio — Gor — Gy — W — IVMQ) i
(51)

1
s = ZQ_T (Warn — War) |

1 _ _ e |
8es = ART (— Gio — Gio + Gor + Got — Wati — W) |

We shall denote the mean value of Wy and Wape as Wy and assume
that their difference is negligible by comparlson It is also perhaps not
unreasonable to assume that G10+G10~G01+Gm With these some-
what arbitrary assumptions (49) takes the form

Gor — Go) Wi
—In K,/ = (Gl o) A (52)
2RT 2RT

Quantities such as Wy are positive for most if not all silicate crystalline
solutions. No Fe*r-Mg solutions are known to have miscibility gaps, how-
ever, even at room temperature. Critical unmixing at 25°C would require
that W be about 1.2 kecal (Thompson, 1967, Eq. 62), hence it is probable
that 0<Wx <1 kcal. We may now tentatively make some simple cal-
culations.

A hypersthene from Greenland. Ghose and Hafner (1967) have investi-
gated the ordering in some natural and heat-treated hypersthene by
analysis of their Mossbauer spectra. These results for one such specimen
vield the following values:

Specimen 37218 7 s In K
Original sample 0.064 0.75 3.97
Heated at 1000°C .004 .49 2.16
Heated at 1100°C .064 .45 1.95

from these values we may calculate the following using (52) and assuming
that the heat treatment produced equilibration

HWu=0 If WM = 1 kcal

(Soi — 5% — 1.38 cal/deg —0.98 cal/deg
(Hor — Hot) — 7.23 keal —6.23 kcal
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The calculated temperature of formation or equilibration of the original
sample (a metamorphic hypersthene from the pyroxene granulite facies)
would then be 500°C with the ideal assumption (Wy=0) and 513°C
assuming maximum probable departure from ideality (W =1 kcal). The
negative AS® would also imply that at higher temperatures (above
6000°C!) this hypersthene might become anti-ordered (negative s). This
last inference cannot be confirmed, however, because it would assuredly
melt first.

Of more significance is the strong ordering found in these pyroxenes,
even at high temperatures, and the magnitude of the energy effect
(AG®) that this implies. It is clear that Fe*-Mg fractionation between
the M(1) and M(2) sites in hypersthene is as strong as that between sepa-
rate ferromagnesian minerals. The effects of such ordering on heterogene-
ous Fe**+-Mg exchange equilibria may be considerable as has been
emphasized by Grover and Orville (1969).

Comparison with ordering in dolomite. The similarity between the chemical
formula of an ordered hypersthene which may be written FeMg(SiO;)s,
and that of an ordered dolomite, CaMg(CO;), suggests that the same
general analysis may be applied to the Ca-Mg carbonates. It can in fact,
up to a point, but there are some important differences. In particular, the
distinction between ordered (s=1) and anti-ordered (s= —1) dolomite is
an accident of labeling and the two are actually physically identical.
Ordered and anti-ordered hypersthene, on the other hand, are distinctly
different and the M1 and M2 sites are always distinct even where their
occupancies might be identical. The ordering in dolomite is thus con-
vergent in contrast to that in hypersthene which is nonconvergent. This
means that the Gibbs function for dolomite must be symmetrical about
the line s=0, and that all coefficients g for terms containing odd powers
of s in the expansion of G*/RT must vanish. The value of g for both of
the metal sites in dolomite is 2, as in hypersthene, hence, if we let Ca
take the role played by Fe* in hypersthene, we have the following equi-
librium condition

—In K./

2s
— 2 artanh (— >
1 — 724 s

= s (53)

The simpler form obtained here, however, is due to the vanishing of
8s; &5, grrs, and other coefficients with an odd index in s. It is of interest to
consider the idealized one-to-one composition CaMg(COs),. For this
composition 7 is zero and, with second degree terms only, (53) may be
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written

1 2s artanh Zss
— artanh ) = = —— (54)
2s 1 4+ 2 s 4

This last equation has the same form as one derived by Bragg and
Williams (1934, 1935) for the convergent ordering equilibrium in §-
brass. From symmetry we must here have

—=0

Go = Go = G
01 15 } (55)
Wyr = Wue = Wn
hence
G =G =G = 2
gss . (__,- 10 10) }\/I (56)

4RT

The treatment of Bragg and Williams here differs from ours in that
they deal only with the quantity in parentheses in (56) thereby assuming
tacitly that Wy is zero. If so, however, there could not be a two-phase
region calcite-dolomite. For such a two-phase region to exist there must
be a positive Wy. Third or higher degree terms in the series expansion
for G*/RT must also be necessary to account for the observed asymmetry
about =0 in the phase diagram of Goldsmith and Heard (1961, Fig. 4)
for the system CaCO;-MgCOs. Similarly, for hypersthenes, there can
be no miscibility gap unless Wy is positive. A positive W in (52) would
imply, at low temperatures, two binodal curves symmetrically disposed
about the one-to-one composition (r=0).

CORRELATION OF PHYSICAL PROPERTIES
WitH ORDERING PARAMETERS

As we observed in the discussion of monoclinic alkali feldspars certain
easily measurable physical properties such as, in that case, the optic
angle, appear to be sensitive to variations in the ordering parameters.
Colville and Ribbe (1968) and Stewart and Ribbe (in press) have in-
vestigated optic properties and X-ray diffraction data with respect to
site populations (hence to ordering parameters) in the alkali feldspars
with some success, and Winchell (1963) has considered the dependence
of various physical properties on ordering in pyroxenes.

Equation (47) for hypersthenes, in the ideal case (first-degree terms
only), is symmetrical about =0, though it should not be expected to be
so when higher degree terms are included in the expansion of G*/RT. The
equation for the equilibrium path defined by (47) in the ideal case, at a
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given pressure and temperature, may then be written

2s = (1 — »2 4+ 5% tanh (— _g;)
Goi—Ga )

4RT 8L

1 -7+ 5% tanh<

In the square of physical accessibility this defines a hyperbolic segment
that is symmetrical about s=0 and passes through the points (—1, 0)
and (1, 0). If an intensive physical property exists that is sensitive to s
and relatively insensitive to 7 (such that the contoured values are indi-
cated by lines roughly parallel to the r-axis), then the values of that
property, for a series of isothermally (and isobarically) equilibrated
pyroxenes, should, when plotted against Ny, or 7 show a departure from
linearity that is more marked for low temperature occurrences than for
high temperature ones. Precisely this relationship was in fact demon-
strated by Hess (1952, Fig. 2) for the optic angle (2V) of plutonic ortho-
pyroxenes as contrasted with those of volcanic origin. These observations
have been interpreted as due to variations in the content of other com-
ponents but it now appears likely that there may be a more direct cor-
relation with variations in s.

Although the data now available on site populations and on the values
of ordering parameters has been obtained by refinements of X-ray crystal-
lographic data and by spectral methods, it seems likely that in time these
may be correlated with more easily measurable physical properties, and
these in turn with the essential thermodynamic properties H, 7, and S*.
When this can be done, the investigation of homogeneous equilibria in
crystals will almost certainly be of great value in dealing with problems
of petrogenesis.
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APPENDIX
SiTE OccuraNcy CONSTRAINTS IN SOME MINERAL CRYSTALS

Feldspar. Let us consider first a monoclinic alkali feldspar with the space
group C2/m. The conventional unit cell contains four formula units,
(K,Na)AlSi;Os, but the unit of quantity we are using here contains only



370 JAMES B. THOMPSON, JR.

TasLE Al. SiTE OccupANcY FOR A MONOCLINIC ALKALI FELDSPAR
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Other Species

[e—1)

two. The site occupancy (notation modified from Megaw, 1956) is shown
shown in Table Al. There are five elements and there is at least one site
that has species of more than one valence, hence (4) has nonzero terms
(m=1). We therefore have six equations (8) as follows

NNa = NNa (M) 1

nay = HA1(T1) -+ MNAL(T2)

K = — NANa(M) + 2n (Al)
ng; = — Ratcry — Malry + 871‘

ny = 16n

0 = — narery — Malcrn + 20

All terns of the form ngq are absent and the simplicity of the coefficients
arises from the fact that (vs—veq) and (z,—2q) are in practice usually
either —1, or 1, if not zero. Reduction of system (A1) by the procedure
outlined in the text leads immediately to

INa = MNa (M) 1|
nal = ATy T RAIT2)
(nwa + nx) = 2n
[ (A2)

(nar 4 nsi) — 4(nna + nx) =0
no — S(WNa + ”K)

nar — (nna + nx) = 0 )

Most mineralogists will have anticipated results (A2) in this simple
example but it serves well enough to illustrate the method. The row-nul-
lity of the coefficient matrix is 3, hence, with 5 elements, there are 2
components. The column-nullity is 1, hence there is 1 internal reaction.
Because the ng, have already been eliminated, the first three equations
of (A2) constitute the valence and closure constraints on the quantities
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nsq and n. The last three equations of (A2) are the necessary relation
among the quantities . that are imposed by the valence and site con-
straints.

Tor a closed crystal (fixed chemical content) we obtain the conditions

0=06n="=0nNacar) = 0Ma1(TD + 0741 (T2) (A3)

In such a crystal, then, we may select one or the other of naiy, as our
single independently variable #,,.

In a triclinic alkali feldspar or sodic plagioclase having the microcline
or albite structure (space group C1) the number of atoms in the primi-
tive cell is unchanged, but the Ty, Ts, B, C, and D sites are split into the
distinct pairs Tio, Tim, T20, Tom, Bo, Bm, Co, Cm, and D, Dy, respectively,
each having g=2. If we allow for the additional species, Ca, on the M
site, and assign to Na the role of Q on that site, the system of equations
corresponding to (A2) takes the form

ME=NH M)
R = HeaiM )
nAl= A r1u>—Hf_a|['rlun'f—u_uf."r'zup+J£_.\|:j'r-z,..1
(g Tnxy+ae) = 2n (A4)
lrar#a) — s tnsFaue,) =0

no —8(nx+nxatnc,) =0
na1— (mx+nxa) — 2ne, =0

There are here three components and three independent internal re-
actions. For a closed crystal we may choose any three of the four n#ai as
an independently variable set of #., (see Barth, 1965).

In the “body-centered” and “primitive” anorthite structures the
number of atoms per primitive cell is increased relative to the above by
factors of 2 and 4 respectively and there is further splitting of sites.

Hypersthene and Hornblende. Tables A2 and A3 give the site occupancies
for a simple hypersthene and a generalized hornblende respectively

TasLE A2. Site OcCcUPANCY FOR A SIMPLE HYPERSTHENE

Site ‘ | My M, | Ta Ta Oy Oy Oy Oug Osa Oun
—
g 2 2|2 2 ‘ 2 2 2 2 2 2
Species Q Mg Mg| S S| © o 0 0 0 0

| - -

Other Species || Fer™ Fe*t |
|

a—1) 11 0O 0| o 0 0 0 0 0
| _ )
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TasLE A3. SiTE OccuPaNcY OF A HORNBLENDE

Site | A M, M, M, M, |T, T;|P|0; 00 Oy O5 05 O;

q [ 1 2 2 1 2 4 4 1214 4 2 4 4 4 2
Species Q K Mg Mg Mg Mg (Si Si H/IOOOOOOO
Na Fe?* TFe2t Fert Fet [ Al Al |[] F

Other Species [0 Fe#t Fett Fett Ca
Al Al Al Na

lr—1) 2 3 3 3 3 1t 11|00 10000

(notations modified from Burnham ef al. 1967, and Ghose and Hellner,
1959). For the hypersthene, as given in Table A2, there are no sites con-
taining species of more than one valence. The valence equation (9) then
has no nonzero terms (#=0) and we may obtain as our final result

Npe = MFtt(M1) T+ HE(M2)
in

(npe + nore) (A3)

- (ﬂ[re -+ HMg) =0
0

Isi

Il

no — 3(npe + nme)

This hypersthene thus has two components and one internal reaction.
The final result for the hornblende takes the form

(no+n¥r)=24n

$(notnr) —nsi=naicryy+raicre

(nartnsi) —3(no+nr) =naron+nraione +naroms)

(nat+ng+nx.) +2(cat+1me) +3(Rart-re) +4nsi— 200 — 1
=gt M1) T HFett (M2) T HF+(M3) T HF (e

2no+ny— (ma+ 1k +nN.) — 2(Hoa T Hmg T 1Ee) — 3na1— dns; '
=N+ (M1) T 7 FH (M2) T HFedt (M3) r (A6)

ACa = NCa(M4)

§(motnr) — (ncatnugtnretnartns:) = .y

(mnatncatnmgt-nrtnart+ns; —%(no-i—nF) =#NNa(A)

HF=MNF@O3)

s (no+nr) —na=nacp)

2(no+nr) — (nr+nnat noat+rmgtRretnar+ns:) =n00)
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No further reduction of system (A6) is possible, hence the row-nullity
of the coefficient matrix is zero and the number of components is equal
to the number of elements. This means that the content of each of the
ten elements listed in Table A3 may be varied independently in such an
amphibole, an unusual circumstance in silicates, but one that has been
essentially verified experimentally by Yoder and Tilley (1962) who ob-
tained virtually complete crystallization to amphibole from melts of
basaltic composition. This flexibility is in part due to the vacancies on the
A and P sites. It is evident, in fact, from (A6) that the absence of va-
cancies on either of these sites must reduce the number of components by
one. The column-nullity of the coefficient matrix of (A6) is 8, hence there
are eight independent internal reactions.

It is of interest that the value of n in each of the examples given here
is directly related to either %, or #,+#y. This is true, as far as we know, of
most silicates, oxides, and oxy-salts. One known exception is mullite
which has vacancies on certain oxygen sites.

Note added in proof: In certain applications it may be necessary to select as species Q, for
one or more sites, a species that is identical in chemical content and valence to one or more
other species, Q’, occupying the same site, but differing from the species Q in some other
way as, for example, in the orienfation of an atom or ion that is asymmetric. When this
occurs the above procedure will result in the elimination of the terms #¢-q as well as #g,
from the right-hand sides of the equations in (8), and unless corrected will result in too
small a value of p. To correct for this we may simply add to the system (8), for each such
site, the corresponding equation (2) rearranged so that all non-zero terms are on the right-
hand side. If there are 5 such sites containing species (', we will then have e-+»+7 equa-
tions in system (8). The number of variables on the right-hand side of (8) will be Zq(a— 1)
-+1+9, and the number of independent equations in (8) will be v+, the rank of the
matrix of the coefficients on the right-hand side. The row-nullity is then e—v and the
column-nullity is then }_4(c—1)41—m—7, or p, as in the special case above when =0.
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