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SLIP SYSTEMS IN QUARTZ:I I .  INTERPRETATION

R. D. BaEr,q.l aso K. H. G. AsnsBB,
H. H. Wi.lls Physics Laboratory, Unitersity of Bristol, En'gland.

Ansrnecr
Estimates have been made using linear anisotropic elasticity theory of both the non-

core energy and the "ease of slip" for several basal and prismatic dislocations in high-

qtJartz.

The influence of the crystal structure on slip is discussed, and the criterion for basal

and/or prismatic slip is considered in relation to some measurements of the critical re-

solved shear stress for slip. It is suggested that the slip direction is more important than the

slip plane in deciding the choice of glide parameters in quartz.

INrnopucrroN

The elastic constants of a crystal are described by the components of a
fourth rank tensor. Consequently, the elastic behaviour is generally an-
isotropic; the degree of anisotropy decreases with increasing degree of
crystal symmetry. High-quartz belongs to the hexagonal trapezohedral
crystal class, for which the matrix of non-vanishing components of the
stiffness constants is
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It is evident, therefore, that the l inear parts of the elastic distortions
around dislocations in quartz need to be formalised in terms of aniso-
t ropic  e last ic i ty  theory.

In the present work, anisotropic elasticity theory is applied to disloca-
tions in the quartz structure, and the criteria for basal and/or prismatic
slip are investigated.

The influence of directional bonding in qttartz on the choice of glide
parameters is also examined, and experiments are reported of some mea-
surements of the critical resolved shear stress for slip.

Drsr-ocerroN ENBncrBs

Foreman (1955) has shown that in an elastically anisotropic crystal,
the non-core elastic energy, per unit length of a long-straight dislocation,
is given by
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E :

where 6 is the magnitude of the Burgers vector, R is the radius of the dis-
Iocation strain field, and ro is the radius of the core of the dislocation. K
is an energy factor, which is a function of the elastic constants of the
crystal and of the orientation of both the Burgers vector and the disloca-
tion line.

In general, the energy lactor K is obtained numerically by finding six
complex parameters, which are the roots of a sextic equation (Eshelby
et al., 1953). However, analytical solutions for K exist for certain disloca-
tion orientations in crystals of high symmetry. For example, in the case of
a hexagonal crystal, the conditions for vanishing interactions of the
separate component energies of a dislocation are satisfied if the latter is
both parallel to a symmetry axis, and perpendicular to a symmetry plane.
The solutions so derived by Foreman (1955) are, for an edge dislocation

( 1 )#(^;)"

K " : ( c r r  '  '  ' l -
f c t 2 ) l

and for a screw dislocation

U I

czz\c tt
(2)

(3)Ku : (c'onc'uu)tlz

where

e11 : (ctrrc'rr)tlz (4)

The C' ;1 in equations (2)-(4) refer to axes defined in a right-handed or-
thogonal co-ordinate system, in which the dislocation l ine is parallel to
the Z-axis, and the slip plane is normal to the l/-axis.

Since the crystal structure of high-quartz is hexagonal, equations (2)
and (3) can be used to calculate the energy factors for dislocations of the
slip systems (0001) < Il20> ; { 1 100 } <1120>, and lhk}l [0001]. Further-
more, since the elastic constants oI qttartz are invariant for rotations
about the C-axis, the energy factor for a mixed dislocation in the basal
plane can also be calculated from the isotropic relation (Foreman 1955)

Kmixed -- Ku sin2 0 I K, cos2 0 (5)

where d is the angle between the slip vector and the dislocation line.
The energy factors K of various straight dislocation l ines lying in the

basal and prismatic planes of high-quartz were calculated using equations
(2) and (3), and are given in Table 1. The values of the elastic constants
of quartz assumed in these calculations are taken from the work of
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Tanr,n 1. Er,asuc PnoprnrtBs ol Drsr,ocertoNs rN Hrcu-qu,lnrz

Slip system
t r. A^,(R / rx)l

K(  X l0 t tdvnes /cm2)  
r " i  ' "d  

,
ergs/cm

(0001)
(1T20)

1 0 0
0 0 1
0  - 1  0

Pure screw 4.34
Pure edge 5.42
Mixed (30o) 4 61

8 . 7 r
10 .87  0 .27
9 .2+  0  23I ' l

l a l

{ lToo}
(1I20)

1 0 0
0 1 0
0 0 1

Pure screw

Pure edge

4 . 3 4

6 . 2 0

8 . 7 1

12.43 0 . s 3  ]  o

{ 1T001
100011

- l

0
0

0 0
- 1  n

0 1

Pure screw

Pure edge

8 8 4

L 2 . M

3 . 7 0

5 . 2 1 0 . 4 1  |  c l

{ 1120}
[0001]

0  0  - 1
- 1  0  0

0 1 0

Pure screw

Pure edge

8 . 8 4

t 2 M

3 7 0

5 . 2 1 0 .23  |  c l

Kammer et al. (1948) and are listed in Table 2. Since these cii were

measured with respect to the crystal axes used in paper I, it was necessary

to transform axes to those used above to define dislocation orientations;
the direction cosines a;i ior the co-ordinate transformation for each slip

system are given in Table 1. In order to make true comparisons of the

dislocation line energies, values for ro in equation (1) must be assumed.

Ilowever, if variations of core radius are ignored, the magnitude of E/ln
(R/r") , tabulated in column 4 of Table 1 , may be used as measures of the

respective energies. The value of I bl used to calculate E were I cl : S.OZA

and lc l  :5 .4s A (Frondel ,  1962).
It is evident from Table 1 that, on any of the slip planes considered'

the non-core elastic strain energy of a stationary dislocation is signifi-

cantly lower for screw than lor edge orientation. Furthermore, the energy

of a mixed basal dislocation with a 30o screw component is less than that

of a pure edge dislocation in the same plane. This no doubt explains the

observation by Mclaren et al. (1967) that basal dislocations in natural

quartz specimens deformed by Christie et al (1964) under hydrostatic

Terle 2. Elasrrc Surlxrss CoxstaNrs ol Hrcu-Qu.tnrz, Mr,tsuxrn .qr 700"C'
(after Kammer et atr. 1948)
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pressure, are invariably of pure screw orientation, or of the particular
mixed character given in Table 1.

Another conclusion to be drawn from Table 1 is that a screw disloca-
tion with Burgers vector c has almost the same non-core energy as a screw
dislocation with Burgers vector c, the difference being only 1.5 percent.
Consequently, screw dislocations with Burgers vectors c and c might be
expected to have equal stabilities in high-quartz. This latter conclusion
brings out the usefulness of the anisotropic formulae, since isotropic
formulae would indicate a difference in energy oI t9.2 percent between
screw dislocations with Bursers vectors c and c.

Cuorcp ol Sr,rp Svsrnlrs

Eshelby (1949) defined a measure of the "width" of an edge dislocation
AS

E : iKs,asd. (6)

where K is the energy factor defi.ned by equation (2), s'66 is the compli-
ance (referred to dislocation axes) and d is the interplanar spacing of the
glide planes. He further suggested that the ratio {f b, where 6 is the modu-
lus of the Burgers vector, would serve as a measure of the t 'ease of
gliding".

Column 5 in Table 1 lists the calculated dislocation "widths" in terms
of the respective Burgers vectors. The values of d and s'66 used in the
calculations are:

(0001)d :  1.83 A; s 'eo :  s++

ttoola :  4.44 A; s/oe :  soo

t t  o ld :  2 .51  A;  s 'so  :  soo

: 26.9 X 10-13 cm2/dyne

: I9.4 X 10-13 cm2f dyne

: 19.4 X 10-13 cm2/dyne

The d values were calculated from the lattice parameters used earlier,
and the s;7 (at 700oC) were taken from Kammer et ol,. (1948).

Using Eshelby's criterion for ease of gliding, E/b, it is evident from
Table 1 (column 5) that the easiest glide system in high-quartz should be

{ tToo } <TTzo>, followed by rhe system { rtoO } [0001]. Thus first order
prismatic slip in both the directions a and c should be preferred over basal
slip. This may explain the observation by Griggs and Blacic (1965) that
above 7000C, slip is predominantly on prism planes. However, it.caLbe
seen that basal slip is preferred over second order prismatic slip 11120 I
[0001] .

Srnucrun,q,r, CoNsroBn,lrroNs

Dislocation theory, based on Frank's energy criterion and the Peierls
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stress criterion, predicts that the shorter of the possible perfect-dislo-
cation Burgers vector should correspond to the slip direction, while the
glide plane should be the plane with the lowest Peierls stress. In dis-
cussing slip in quartz, other structural factors must also be taken into
consideration.

Firstly, the slip direction must be such as to avoid strong electrostatic
repulsion between like charges. Secondly, the slip direction must also be
one which allows the minimum disturbance of the tetrahedrally bonded
SiOa units, i.e. one which results in the breaking of the least number of
bonds.

From the nature of the dislocation cores discussed in paper I, it is evi-

dent that dislocations with Burgers vectors a and c satisfy these condi-
tions. Thus the expected slip directions in quartz are parallel to the
crystallographic c and c axes. It is also worth noting that as shown above,
screw dislocations with either of these two Burgers vectors have equal
stabilities in the high-quartz structure.

Considering the slip planes, equation (6) indicates that for a given Bur-
gers vector, the easiest glide plane is the plane with the largest d-spacing,
i.e. the least Peierls stress. However, where directional bonding is im-
portant, such as in the case ol qttartz, it is possible that the Peierls stress
may be lower for a plane other than that with the largest d-spacing.
This possibility was ignored in estimating the "ease of slip" of the various
dislocations in the last section, simply because in the original Peierls mod-
el used by Eshelby (1949), directional bonding was not considered.

Qualitatively, pairs of SiOa units in quartz share corners with each
other. Consequently, the glide of dislocations through the lattice inevi-
tably involves the breaking and remaking of some of the tetrahedral
Si-O bonds. It is, therefore, intuitively argued that the easiest slip plane
is expected to be that across which the Si-O bond density is least.

Table 3 lists the bond densities (measured as the number per unit area
within the Unit Cell) acrossvarious low index planes containing the lattice
vectors a, c or lalc). The "ease of slip" expected on this basis is in the
order  {1011} ,  { to to}  ,  { to lz} ,  I t tZo] ,  { to ts}  and (0001) ,  for  s l ip  in
the directions c or c. Thus it is confirmed that first order prismatic slip
in either of the directions c or c should be preferred over basal slip in the
direction c. However, contrary to the theoretical prediction in the last
section, second order prismatic slip \tt2Ol [0001] appears to be preferred
over basal slip (0001) <1120> .

For slip in pyramidal planes in pyramidal directions (c*c), the

"ease of slip" is in the order { tot t } , \tt2z} , and { tI7ll .
It is apparent from Table 3 that the easiest slip planes in high-quartz

are expected to be rhombohedral {1011} planes, which have also been
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Terln 3. BoNn DrNsrrrns FoR THE DrrlrnrNr Srrp Svsrnns

SIip plane Slip direction Si-O bonds per A'z

[ 10T1 ]
[1om]
t10121
{ 1oT3}
(0001)
[ 1120]
{rr21l
trr22l

(1210); (IT23)
(1210); [0001]
(I2To)
(1210)
(T210)
[0001]
(r2r3)
(1123)

0. 057
0.073
0.078
0.085
0.092
0.084
0.077
0.063

predicted to be the planes of easiest cleavage (Niggli, 1926 and Fair-
bairn, 1939). Experimental evidence of pref erred rhombohedral cleavage
was reported by Bloss and Gibbs (1963).

Critical Resol,t;ed, Shear Stress for Slip. Table 4 summarizes the mean re-
solved shear stress at the yield point (0.2 percent plastic strain) on the

Taeln 4.

Compression

L B

Critical resolved shear stress in kilobars

Slip system

(oool) [1120]
(1120) [00011

0 .93
0 .93

0.  78
0.  78

L A (10T0) F2T0l 0 .83I . tr.t

L m

l z

(1010) [I2T0] 0 . 8 11 . 0 6

(1010) [0001]
(I102) [1T20]
(1T03) [II20]
(1101) |n20l
(1120) [0001]
(0001) [1T20]

(1011) [1210]
(1010r [I2I0]
(0I12) [21T0]
(0001) [IT2o]

0 . 9 7
0 . 9 7
0 . 9 s
0 . 9 1
0 8 3
0.  83

0 . 8 6
0 .  8 6
0.84
0 . 8 1
0 . 7 2
0 . 7 2

0.80
0 . 7 6
0 .67
0.  65

0 .66
0 .62
0 .5s
0 .54

(rt22) lII2sl
(I101) 112131
(1r2r) L2r13l

2 . 3 1
2 . 1 2
1 . 4 3
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various slip systems, using a constant strain-rate of 3.1X10-s sec-l. All
the slip systems listed were observable at the smallest measurable plastic
strains, and in the cases where more than one system of the same"type
were equally stressed and subsequently observed, only one is given in the
table. The orientations of the compression axes are given in paper I.

In specimens compressed Io and Lm, the identical values of yield
stress serve as a cross-check on the crit ical resolved shear stress for slip
on the systems {tOtO} <TZIO>. Ilowever, since for all other orienta-
tions of compression different slip sl.stems were observed simultaneously,
it was not possible to uniquely assign the critical resolved shear stress for
slip on the different systems. The maximum experimental error in the
values of stress given in Table 4 is 0.1 kbar, so it is concluded that the
crit ical resolved shear stress for slip in either of the directions d or c, and
on the low index planes in high-quartz, is more or less the same.

The marginally lower critical resolved shear stress for slip on the
rhombohedrat  { tOt t }<tZtO> systems is  no doubt  a ref lect ion of  the
relatively low Si-O bond density across these planes (Table 3), and of the
relative smoothness of the slip surface. (see paper I).

On the other hand, it is evident in Table 4 that the init ial resolved
shear stress for slip on pyramidal planes and in pyramidal directions is
about three times as much as for slip on the slip systems discussed previ-
ously. This is attributed to the much larger Burgers vectors of disloca-
tions in these slip systems, since the Peierls stress increases with increas-
ing magnitude of the Burgers vector. It is also of interest to note that
slip in directions (c*c) commences only at test temperatures of 750oC
and above (see paper I).

DISCUSSION

The two approaches used here to predict the ease of slip in quartz,
namely Eshelby's criterion and the bond-densities, both suggest that
first order prismatic slip should be easier than basal slip. However, experi-
mental measurements of the critical resolved shear stresses for slip do not
reveal the expected difierence. SIip appears to have occurred with equal
facil i ty on all the low index planes indicated, in either of the directions
( ,o rc .

Griggs and Blacic (1965) have reported that the mechanism of plastic
flow in qrartz tested under hydrostatic pressure changes from predom-
inantly basal to predominantly prismatic slip, when the test temperature
exceeds 700oC. In the present work conducted at atmospheric pressure,
using the slowest strain-rate of 3.1X10-5 sec-l, changes in deformation
behaviour were also observed with changing test temperature. Thus,
bearing in mind the inherent l imitations of the two approaches to the



SLIP SYSTEMS IN QUARTZ, II, 1581

problem of ease of glide used here, and the fact that the development of
the different slip systems also depends on other factors such as disloca-
tions intersections etc., the possible preference of prismatic slip over basal
slip in high-quartz cannot be ruled out.

It was pointed out in paper I that the SiOn tetrahedral units are
strongly bonded together and linked to form a three dimensional net, so
that the quartz structure is roughly uniformly bonded in three-dimen-
sions. This may be why this structure is denied any planes of easy cleav-
age. Correspondingly, one would not expect strong crystallographic con-
trol of slip, and the factor controll ing plasticity could be the abil ity to
nucleate slip dislocations.

The similarit ies between the nature of the cores of dislocations with
Burgers vectors c or c discussed in paper I; the equal stabil it ies of these
two types of dislocations in the high-quartz structure shown here, and
also, the apparently equal facility of slip in these two directions on various
crystallographic planes, all indicate that the important factor in glide
deformation in quartz is the slip direction.

Linear elasticity theory cannot be used to estimate the strain energy
of the grossly distorted material close to a dislocation l ine. Should this
be a significant part of the total strain energy of a dislocation in quartz,
then the structural difference, pointed out in paper I, between the core
distortions of dislocations with Burgers vectors having the same magni-
tude but opposite signs, may also have a strong influence on the glide of
dislocations through the lattice.
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