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ABSTRACT

Phase diagrams involving alkali feldspars in the mode] system SiO-NaAlO»-KAlO:-Al;O;
have been calcuiated using a preliminary formulation of the mixing properties of sanidine
crystalline solutions presented in Part III of this series. The mixing properties so obtained
permit calculation of the two-feldspar coexistence surface as a function of pressure and
temperature in the sub-system NaAlSi;Os-KAlSi;Os.

Provisional values of the mixing parameters for NaAlSi;Os-KAIS;05 liquids at one
atmosphere may then be calculated from the minimum melting temperature and composi-
tion given by Schairer (1950). From these in turn we obtain preliminary estimates of the
solidus for Na-rich compositions and the (metastable) solidus and liquidus in the composi-
tion range where alkali feldspar melts to leucite and a liquid displaced toward SiO; from the
feldspar join.

The effect of the component KAlSi;Os on equilibria between alkali feldspars, jadeite,
and quartz has also been calculated tentatively for temperatures up to 1300° C and 32 kbar.
The calculated four-phase equilibrium between quartz, jadeite, and two alkali feldspars
intersects the line of critical solution at about 26 kbar, and terminates there at a critical
end-point.

INTRODUCTION

In the preceding papers of this series (Thompson and Waldbaum, 1968,
1969; Waldbaum and Thompson, 1968) we have been concerned with the
derivation of thermodynamic mixing properties of high-temperature al-
kali feldspars from various kinds of experimental data and have obtained
therefrom some tentative analytic formulations, summarized in Part II1
(Thompson and Waldbaum, 1969, Table 6), for the various thermody-
namic excess functions. It is our purpose here to demonstrate how such
analytic formulations may be used to calculate phase diagrams of several
different kinds for several different types of equilibria involving sanidine
crystalline solutions and other phases. The calculated diagrams are of
course based on experimental data, some of which is in the form of phase
diagrams, hence we may regard the calculated diagrams below as a
smoothing of pre-existing data in such a way that it must be internally
consistent, and in a way that provides a reasonable extrapolation to con-
ditions which are difficult or impractical to explore in the laboratory.

It is not at all our intention to suggest that experimental studies can

1 Published under the auspices of the Committee on Experimental Geology and Geo-
physics of Harvard University, Preliminary results of this study reported by Waldbaum
(1966), Thompson and Waldbaum (1967), and Waldbaum (1969).
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now be abandoned in favor of calculated phase diagrams, inasmuch as
further empirical studies are needed to obtain improved equations of
state and to test the validity of subsequent extrapolations outside the
range of the original data. However, the task of studying phase equilibria
in mineral systems at different temperatures and pressures can be greatly
simplified by utilizing a few carefully chosen sets of experimental data
rather than determining phase diagrams directly for all temperatures and
pressures of possible interest. The use of an analytic formulation that
obeys the constraints of an equation of state to obtain smoothed phase
diagrams also assures the correct geometrical relations between stable
and metastable phase boundaries. To the extent that such a formulation
approximates the true equation of state, it provides a quantitative basis
for evaluating a mineral assemblage as an equilibrium (whether it be par-
tial or complete equilibrium) or non-equilibrium assemblage under a
given set of conditions.

The calculations below are based on a tentative formulation of the ex-
cess thermodynamic properties of sanidine crystalline solutions as ob-
tained in Part IIT from two-phase data for high-temperature alkali
feldspars synthesized from peralkaline starting materials. As discussed in
Part ITI (p. 000), from comparison with data from exchange experiments,
the excess Gibbs energy of mixing for high-temperature, monoclinic alkali
feldspars is probably somewhat greater than is indicated by the formula-
tion based only on two-phase data. Although other formulations would
serve as well for the illustrative calculations and diagrams below, the one
selected has the advantage of simplicity, and is consistent with the data
of greatest geologic interest.

We shall then write for the molar excess Gibbs energy:?

Gex(P, T) = (6326.7 + 0.0925P — 4.6321T) NN

+ (7671.8 4 0.1121P — 3.8565T)N2Ni W)
where T is temperature (°K), P denotes pressure (bars) and N, and Ns are
the mole fractions of the components NaAlSi;Os and KAISi;Os3, respec-
tively. The numerical coefficients (Margules parameters) are based on
data ranging from 500 to 700°C and from 2 to 10 kbar. Computations
within this temperature and pressure range are subject to the restriction
that the Margules parameters are no more reliable than the data used to
obtain them, and are essentially a partly statistical and partly inter-
pretative smoothing of these data (see detailed discussion in Part ITT).

? Enough significant figures in the coefficients are given in order to avoid roundoff
error in computations, and their number is in no way an index of the precision or accuracy
of the values (see Part I1I).
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Computations outside this range must thus be regarded as a consistent
extrapolation of these data, and of our interpretation of them. The nu-
merical values in (1) are likely to change as new data are obtained (in-
ternal Al-Si ordering, for example, is not yet taken into account), but the
results given here must be qualitatively like the correct ones and quan-
titatively not far off the mark.

Equation (1), as discussed in Part III of this series, has values selected
(within the uncertainty of the data and its interpretation) so that the
critical phases lie on a straight line in P-7-N space, and have a constant
composition. For this special case all isobaric sections of the calculated
binodal and spinodal surfaces are identical in terms of 7/T, and NV (Table
1, and Figure 13 of Part III).

Even if the values of the coefficients in (1) and (2) could be regarded as
substantially correct for sanidine, the equilibria calculated below must in
part be metastable with respect to equilibria involving triclinic feldspars
or monoclinic feldspars with a higher degree of ordering between the T
and T, tetrahedral sites than is found in sanidine (see Thompson, 1969,
p. 352-363).

Mi1XING PROPERTIES

The molar internal energy (E), volume (V), and entropy (S) of mixing
of sanidine solutions as implied by (1) are

Fnix = Eox = 6326.7N:N3 + 7671.8N,N1 cal mole (22)
Vonie = Vex = 0.0925N1N; 4 0.1121N,N; cal bar  mole (2b)
Snix = Sex + Sideas = 4.6321N: N5 + 3.8565N.N;

— R(N:1n Ny + Ny ln Ny) cal deg  mole (2¢)
Swest = — R(N11n Ny + Ny ln Vo) cal deg  mole ™ (2d)

where R is the gas constant (1.98726 cal deg—! mole™). Mixing properties
calculated from (2a, b, ¢) are plotted in Figure 1 for 650°C and 10 kbar as
light solid lines. The entropy of mixing at the equimolar composition
given by (2c) is approximately twice that for an ideal solution (dashed
line). The summation of these three mixing properties, as given by (1)
is shown as a heavy solid line, which has regions of both positive and
negative curvature indicating that a two-phase region must be present in
the phase diagram at this temperature and pressure. The points of
double-tangency to the curve (binodal points) are at N;=0.0856 and
N.,=0.7104, and the points of inflection (spinodal points) are at N,
=0.1773 and N5=0.5571. Although the excess functions given by (2) do
not appear to be markedly asymmetric, their sum in Figure 1 leads to a
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Fic. 1. Mixing properties of sanidine solutions at 650°C and 10 kbar. Heavy solid line
indicates summation of PVex, T(Sideal+Sex), and Eex. Dashed line represents T Sigeal-
Reference state is mechanical mixture of pure end-member phases at 650°C and 10 kbar.

highly asymmetric curve in Guiz. The asymmetry in the excess properties
is better illustrated by the trace of the rectilinear diameter (r.d.), that is,
the mean composition of the coexisting phases as shown in Figure 2; and
in the relative activities of NaAlSi;Os and KAlSi;Os as plotted in Figure 3.

It is apparent from Figure 1 that the contribution of the excess volume
of mixing to the Gibbs energy is not negligible, as suggested by Perchuk
and Ryabchikov (1968, p. 137-138)L. The Ve of (2b), furthermore,
though based on Part IIT calculations, must be quantitatively nearly cor-
rect inasmuch as it is consistent, within the limits of uncertainty, with the
direct volume data discussed in Part IT. Comparisons of Figures 1 and 2
also indicates the effect of pressure on phase equilibria of alkali feldspars.
At 10 kbar and 650°C the difference in composition of the coexisting

See note added in proof.
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F16. 2. Isobaric-polythermal projection of Gibbs energy of mixing surface of sanidine
solutions at 1 bar. Trace of binodal curve on the surface is shown by a light solid line.
Spinodal curve (dashed line) passes through points of inflection on the isothermal sections
of the surface. All compositions between binodal and spinodal curves are metastable with
respect to diffusion. Reference state is mechanical mixture of pure end-member phases at
the stated temperature and 1 bar.

feldspars is 62.5 mole percent, whereas at 650°C and 1 bar, no two-phase
region exists.

The effect of pressure on the two-phase region is summarized by the
following equations

T,(°K) = 921.23 + 13.4607 P,(kbar) (3a)
47\720 a (3b>

GOl

Combining (3a) with the values in Table 1 leads to binodal and spi-
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F16. 3. Activities of (a) NaAlSizOs and (b) KAlSi;Os in sanidine crystalline solutions at
1 bar. Reference states are the pure end-member phases at the stated temperature and 1
bar. Solid circles denote critical point.

nodal curves at any given pressure. It should be borne in mind when using
Table 1 to calculate the compositions of coexisting phases that the results
can be approximately correct only for highly disordered monoclinic al-
kali feldspars (as emphasized in Parts I and III). Goldsmith and Laves
(1961) and more recently Bachinski and Orville (1968, and Bachinski,
1968, written communication) have shown that the critical temperature
of highly Al-Si-ordered, triclinic feldspars (at 1 atm) may be as much as
200°C higher than that for sanidine. The compositions of internally
equilibrated coexisting feldspars are likely, therefore, to be different from
those given in Table 1 for the lower temperatures of geologic interest.

CHEMICAL POTENTIALS

The chemical potentials may be written

_ oG
— ( ) (ab)
P.T



1280 D. K. WALDBAUM AND J. B. THOMPSON, JR.

where

G=Nwi(P, T) + Nows(P, T) + RT(N1In N1+ N2 In Na) + Gex(P, T) (3)

and the superscript ° indicates a property of a pure end-member phase at the temperature
and pressure under consideration. Equilibrium relations among the chemical potentials are
shown quantitatively in Figure 4 at 500°C and 1 bar using the elements in their standard
states as a reference state (Robie and Waldbaum, 1968), where:

#1 = G173 high-albite) = — 799,578 cal mole ™

42 = Gt.113(sanidine) = — 308,440 cal mole™"

At complete equilibrium between phases o and 8, we must have

Mla = p1p (6a)
B2 = pog (6b)

The compositions of « and g are connected by the horizontal solid lines in Figure 4a.

Figure 4 illustrates the relations among the chemical potentials derived from (1) for
two-phase exchange equilibria as discussed in Part I. The condition for such an exchange
chemical equilibrium (a partial equilibrium) is that

[(31\72 )a':lp T [(61\72) ] = (w2 — p)ar = (p2 — w)y (7

where o’ and 8’ denote phases in exchange equilibrium with each other. The compositions
of two such phases are shown in Figure 4b connected by a horizontal dashed line. In fact,
any horizontal line connecting the compositions of phases having the same value of (us— )
satisfies (7), but the conditions for complete equilibrium (6) are only met by the two
compositions connected by the solid horizontal lines in Figures 4a and 4b. That (6) is not
in general satisfied by compositions that coexist only in exchange equilibrium is shown
clearly by the horizontal dashed lines in Figure 4a which correspond to the single horizontal
dashed line in Figure 4b.

Figure 4b also illustrates another relationship among the chemical potentials that is
satisfied only for coexisting phases in complete equilibrium. We have

— Ga = (uaNsp + p1V18) — (uaN2a + 1V 1)

= (Vg — Noo) (2 — 1) (8)
which may also be written, for a constant temperature and pressure, as
e N 7=NoB ( ) © )
a
= NZ—NQa ON2/ p1
ar as
- - Ny=Nof
—Go= [ = wans (9b)
Ny=Nya

The area between the horizontal line 7 and the abscissa is given by (8). Similarly, from 9),
the area between rstuv and the abscissa must also equal (Gs—G,), hence

ﬁ (u2 — p)prdNy = 0 (10)
rstuvtr

and the two shaded areas in Figure 4b must be equal.
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TaBLE 1. CALCULATED BINODAL AND SPINODAL POINTS IN THE SYSTEM
NaAlSi;0s-KAlSizOs AT 1 ATM. THESE VALUES ALSO APPLY AT HIGHER
PRESSURES FOR THE SAME VALUES oF T/T, (T 1nv °K)

Binodal Spinodal

T/T, e : .

Noo Nog Nio Nog
1.0000 0.3333 0.3333 0.3333 0.3333

0.9999 .324 .343 .328 .339
.999 .305 .363 317 .350
.995 .272 .400 .298 372
.990 .248 .430 .283 .389
.98 .216 .472 .264 .413
.97 .193 .506 .250 .433
.96 174 .535 .238 .450
.95 159 .562 .228 .465
.04 .145 .585 .220 .430
.93 134 .608 .212 .493
.92 123 .628 .204 .506
.90 .105 .667 192 .529
.88 .090 .701 .180 531
.86 .077 .733 170 572
.84 .065 .762 .161 .591
.82 .056 .789 153 .610
.80 .048 .813 145 .628
.78 .040 .836 .138 .645
als .031 .866 128 .670
.70 .020 .908 113 709
.65 .012 .940 .010 715
.60 .0068 .9630 .088 178
.35 .0035 .9790 077 .808
.50 .0016 .9891 .068 .836

Digital computer procedures have been developed (Waldbaum, 1966) which make use
of the equal-area relation to solve for the compositions of coexisting phases of a solution
whose excess functions have an analytic expression such as (1). The equal-area method is a
considerable improvement over the graphical method used to obtain the points of double-
tangency on the Gibbs surface in that coexisting compositions can be obtained accurately
even in a region of near-zero curvature (7 = Teriticar). However, this method is not readily
adapted to the restricted memory allocations of many time-shared computers and is
economical only if a high-speed machine such as an IBM 7094 is available. We have found,
moreover, that (6a) and (6b) can be solved directly for Na, and N much more rapidly
and efficiently (even on a relatively small and slow computer) by iterative methods. An
iterative procedure written in a JOSS-type interpretive language such as CAL (Scientific
Data Systems, Inc.) requires only 6 statements compared with approximately 110 arith-
metic and logical statements in FORTRAN for the equal-area method. Under some circum-
stances iterative solutions to equations containing transcendental terms may diverge or
may yield physically impossible results unless the initial trial parameters and subsequent
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F1G. 4. a) Chemical potentials of KAlSizOs and NaAlSi;Os at 500°C and 1 bar referred to
the elements in their standard states at the same temperature and pressure. b) Alkali
exchange potential, ux —una(= pa— ), for the same P and T. Binodal and spinodal composi-
tions are shown by dashed vertical lines. Value of g, at point & denotes u.°; value of u at
a denotes u,°.

residuals of iteration are closely controlled during the iteration cycle (this is also especially
true in solving equations 12a and 12b). For this reason, it is advisable to use the equal-area
method if interactive computer facilities are not available. Other useful graphical and
numerical methods for solving for the compositions of coexisting phases have been discussed
by Seltz (1935), Scatchard (1940), and Hala, Pick, Fried, and Vilim (1967). Seltz’s (1933)
method for crystal-liquid or liquid-vapor equilibria would appear to be readily adaptable
to solution by digital computer.

MELTING RELATIONS AT ONE ATMOSPHERE

Treatment of experimental data. The conditions for equilibrium between a
feldspar (F) and a liquid (L) in this binary system at constant tempera-
ture and pressure are

Aur = pi, — par = 0 (11a)
Ape = por — mer = 0 (11b)

Thus,
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NEL[W(;lL'i‘Z(WazL— Wern) Ni] — NiF[WGuv‘f- 2(W gor— W o1v) N1w)

]v
—RTIh—2— Ayl (122)
TIL
LNIL[WG2L+2(WGIL_ WGZL)NQL] —NfF[WG2F+ 2(WG1F_ WG?F)NQF]
N
—RTIn—X —Au) (12b)
2L

It is necessary here to have as auxiliary data the quantities Ap,® and

Aps® and the mixing parameters of the crystalline solutions as functions of
temperature. The quantities Ap;° and Ag,® used in these calculations were
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F16. 5. Solidus and liquidus in the system NaAlSi;0s-KAlSi3O0s at 1 atm. Solid lines
denote stable phase boundaries; dashed lines denote phase boundaries metastable with re-
spect to leucite and SiOy-rich liquids in the system SiO,-NaAlO»-KAlO, Circles denote
congruent melting temperatures of high-albite and sanidine (Waldbaum, 1968) and the in-
congruent melting temperature of sanidine (1150°C; Schairer, 1950). Vertical bars repre-
sent Schairer’s (1950) liquidus data.
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obtained from the high-temperature data of Robie and Waldbaum (1968)
for high-albite and sanidine, and the mixing parameters of the crystals
are given by (1). The melting temperature of high-albite is reasonably
well established at 1118°C. The metastable congruent melting tempera-
ture of sanidine was estimated by Waldbaum (1968) to be 1200+ 40°C.
Both temperatures are internally consistent with the data of Robie and
Waldbaum.

The principal data used in these calculations are the results of Schairer
(1950) for the NaAlSi;Os-KAISi;05 liquidus. Schairer’s results are shown
in Figure 5 as vertical bars indicating the temperature intervals that
bracket theliquidus. Unfortunatelynodataexistfor the compositionsof the
crystals coexisting with these liquids, except at the end members and at
the minimum, where the crystal and liquid must have identical compo-
sitions. Therefore, only the minimum itself yields sufficient data to apply
equations (12). Schairer’s (1950) data give a minimum temperature of
1062.54+ 3°C and a minimum composition of 33.66+3.0 mole percent
KAISi;0s.

Margules parameters of (Na,K)AlSisOs liguids. At the minimum Nyp
= Nyr, hence to obtain the Margules parameters of the liquid

Weoi = — [A(Ns — 2NoND) — 2BN,Ns| (13a)

West = — [B(INs — 2N1N3) — 24NN, (13b)

Ol O

where

2
A = [WGIF + 2(WG2F = WGlF)Nl]Nz = Au?
= [Weor + 2(We1r — WGzF)Nz]Ni — Aps
D = (Ns — 2N.N3) (Ns — 2N:N2) — 4(N:i Vo'

Using Schairer’s (1950) value of the minimum composition (N;=0.3366),
we obtain the following values for the liquid phase at 1335.65°K

Wen = — 2436 cal mole—l}

14
Wger, = — 1713 cal mole™?! (14)

from which the Gibbs energy of mixing of the liquid may be calculated
(Fig. 6b).

Such liquids are not truly binary solutions (they are actually quater-
nary), but the agreement between the observed and calculated liquidus
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in Figure 5 (discussed below) suggests that the simple approach used
here is not unreasonable for liquids in which the only permitted com-
positional variation is in the ratio of Na to K.

Inasmuch as crystal-liquid equilibrium data for only one temperature
are used to obtain (14), it is not possible to obtain a polythermal equation
of state for the liquids. Hence it is necessary to assume either that the
excess entropies or the excess enthalpies of mixing in the liquid are zero
in order to use the present results at other temperatures. For reasons
discussed below we have assumed that the excess entropies of mixing
are zero, thus

WL = Wei = — 2436 cal mole™! )
(135)

Wion = Weaer, = — 1713 cal mole™!

Calculated phase diagram. With the mixing properties of both crystal and
liquid expressed in tentative numerical form it is now possible to com-
pute the Gibbs energies of mixing of both phases as a function of tem-
perature. Figure 6 shows the results of calculations for 900, 1062.5, 1100,
and 1200°C. The compositions of phases coexisting in equilibrium at
1100°C, shown by vertical dashed lines in Figure 6¢c, are 3.5 and 71.1
mole percent for the solidus, and 9.0 and 56.8 percent for the liquidus.
Schairer’s (1950) data indicated that for a bulk composition of 9.5 per-
cent, the liquidus is between 1095 and 1100°C. No comparable data
exist on the K-rich side of the minimum since above 1080°C K-rich
feldspars melt incongruently to two-phase mixtures containing leucite
and a liquid displaced toward SiO, from the feldspar join.

The solidus and liquidus may be computed directly from (12), but it
1s necessary to use iterative methods because of the transcendental and
cubic terms in the equations. The results obtained by solving for Ny
and Nop at a given temperature are summarized in Table 2 and in Figure
5. The liquidus is in good agreement with the remainder of Schairer’s
data; the solidus is also reasonable, but there are no available data with
which to compare it.

Similar computations were carried out by assuming the enthalpy of
mixing to be zero, and that the excess Gibbs energy is due entirely to the
excess entropy of mixing. The excess Gibbs energy of the liquids is, in
fact, probably some combination of both, but the assumption of zero
excess entropy vields a liquidus which is in better agreement with that
of Schairer.

The above assumption can be tested in a number of ways—the most
obvious being a determination of the compositions of feldspars coexisting
with liquids in experiments such as Schairer’s (1950). This would permit
study of the temperature variation of the excess parameters over a
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TABLE 2. CALCULATED SOLIDUS AND L1QUIDUS 1IN THE SvstEM NaAlSi;0s-KAlSi:Os
aT 1 ATa. Bota Soripus AND L1Quipus ON THE K-SIDE OF THE MINIMUM
ARE METASTABLE WITH RESPECT TO LEUCITE AND A Sirica-Ricw LiQuip

ABovE 1080°C (ScHAIRER, 1950).

Liquidus Solidus

T = _ RN S P

N, Nuy, Nap Naup
1200 0.000 0.000 .
1190 047 978
1180 .898 954
1170 .833 .930
1160 810 .904
1150 7€8 877
1140 727 .849
1130 .687 819 =
1120 .648 787 —
1110 .608 0.041 751 0.014
1100 .568 .090 711 035
1090 526 139 .664 062
1085 .504 164 .634 .080
1080 .490 .190 604 .101
1075 455 217 ; .567 129
1070 426 .248 518 167
1065 .386 .287 444 .232
1063 .358 315 .385 .288

1062.5 .3366 .3366 .3366 .3366

temperature interval of only 70°, but the fact that liquids of feldspar
composition are able to persist as glasses for long periods of time, even
at high temperatures, suggests that metastable exchange equilibria in
this system might be studied to advantage at lower temperatures.
Goldsmith and Laves (1961) have shown, in fact, that mixtures of
crystalline feldspars and glasses exchange alkalis readily between 800
and 1000°C. It should be possible, therefore, to make use of the exchange
equilibrium relations in (7) to determine Margules parameters of the
liquids. (The phases o’ and 8 may be thought of here as crystal and
liquid, respectively.) This can be visualized graphically in Figure 6a by
drawing parallel tangents to the two curves (Part I, Fig. 1a). The com-
positions corresponding to pairs of parallel tangents at 900°C are shown
in Figure 7 (which shows the close analogy to a simple ternary reciprocal
exchange system; see also Mueller, 1964). Experimental studies of this
type can probably be extended to 500 or 600°C where the alkali diffusion
rates are still large enough to achieve equilibrium within a reasonable



1288 D. R. WALDBAUM AND J. B. THOMPSON, JR.

K T T T T T T T T
o8- ]
06 7

n 4
&N I
<
3
—oar 7
=z
o2r 900° C B
Na L | I I | Il 1 i |
Na 0.2 04 06 08 K
Nor (SANIDINE)
Na NZL ( GLASS ) K

TR

L i int

T T
Npr (SANIDINE)

Fie. 7. Calculated ion-exchange (Na—K) equilibrium relations between (Na, K)AlSi;Og
crystalline and glass solutions at 900°C and 1 atm.



SANIDINE CRYSTALLINE SOLUTION. IV. 1289

period of time, and thus yield a substantially greater temperature in-
terval for determining Wgr and Wy, ‘

FELDSPAR-JADEITE-QUARTZ EQUILIBRIA

The calculations above can be extended to systems of more components
provided the equations of state of the other phases are known, and the
feldspars are such that they can be represented adequately by (1). A
simple extension is to the system NaAlO,-KAlO,-SiO, which includes
such additional phases as quartz, coesite, jadeite, nepheline, and leucite.
Although phase equilibria in the binary system Si0.-NaAlO, have been
the subject of numerous experimental studies (Kracek, Neuvonen, and
Burley, 1951; Robertson, Birch, and MacDonald, 1957; Birch and
LeComte, 1960; Bell, 1964; Hlabse and Kleppa, 1968; Boettcher and
Wryllie, 1968; and Newton and Kennedy, 1968), the effect of the KAISj;Os
component on the equilibria between alkali feldspars, jadeite, and quartz
has not yet been investigated in detail. Sufficient thermodynamic data
are now at hand, however, to make preliminary calculations of these
equilibria.

Thermodynamic relations. The equilibrium condition at constant tem-
perature and pressure for the assemblage quariz-alkali feldspar-jadeite
may be obtained by considering the following stoichiometric relation
among the components of the phases

NaAlSi;0s — Si0, — NaAlSi;,04 = 0 (16)
hence let us define
Au1l = pNaA18i;0s, F — M8i0,,Q — MNaAlSi0s,J (17)

which must be zero at equilibrium. Let

o [o] [e] [o]
Aul = p1F — U8i0,,Q — MNaAlSig0g,J (18)

We also have
H1Fmix = H1F — ﬂfF (19a)
— RTIn Ny + WiV + 2(Wer — We)NiNs  (19b)
where the subscripts 1 and 2 denote the feldspar components, as above;
F is feldspar, Q is quartz, and J is jadeite. Combining (17), (18), and

(19a), and because quartz and jadeite are pure substances in this system,
we have

Apy = Aps + p1Fmix = 0 (17a)



1290 D. R WALDBAUM AND J. B. THOMPSON, JR

i
—quartz - jadeite- K-rich feldspar —

-quartz-
jodeite-

(b) alkali feldspar

|
|

NaAlISizOg s

F16. 8. (a) Pressure-temperature relations for quariz-alkali feldspar-jadeite equilibria.
(b) Pressure-composition relations at T=T. Compare Robertson, Birch, and MacDonald
(1957, p. 134). Equilibria shown are isothermal and for bulk compositions along the line
NaAlSiz0s-KAlSi30s. Two-phase quariz-jadeie tie-lines appear as points along the NaAl-
Sig05 edge of the diagram.

When the feldspar is pure NaAlSi;Os we have
Ay = Apt = 0 (17b)

as the equilibrium condition along the curve for the simpler system
Si0,-NaAlO, as determined by Birch and LeComte (1960) and others.

Let us now consider the variation of the chemical potential of
NaAlSi3O5 in sanidines with composition at a given pressure, Py, and
temperature, 75, at which quartz, jadeite, and alkali feldspar are in
equilibrium. For any feldspar outside the two-feldspar field, other than
one that is pure NaAlSi;Os, we must have u; <m°, hence pir mix <0 (Fig.
4a). Hence from (17a) it follows that

A,u? >0 (20)

for such alkali feldspars in equilibrium with jadeite and quartz. Since
AS1°>0, T; must be less than the temperature of the quartz-albite-jadeite
curve for the K-free system at P; (Fig. 8a) in order to satisfy (20). This
is also illustrated in Figure 9d for potassium-rich feldspars in equilibrium
with jadeite and quartz, and in Figure 9c where the feldspar in equi-
librium with jadeite and quartz is nearly pure albite. Similarly, since
AV°>0, P, must be greater than the pressure P; of the curve for the
K-free system at 74, as shown schematically in Figures 8a and 8b.
Therefore, to determine points on the quariz-alkali feldspar-jadeite
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equilibrium in P-T-N.r space,we may compute the effect of pressure on
Aus®, at Ty, from

Py s Py —
dAp; = f AV.dP (21)
I

Py 2

Neglecting the thermal expansions and compressibilities of the phases we
may regard AV, as constant and not significantly different from its
value at 1 atmosphere and 298.15°K. Noting from (17b) that Au®at Py
and 7 must be zero, we have at Py and T4,

Aﬂol = AI_/;J(Pl - P?) (22)
The equilibrium condition may then be written

1T mix T AI—/(IJ(PI — Py) =0 (17¢)
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which may be solved directly for P, T, or Nsr given any two of the vari-
ables.

In the computations that follow, 7 was selected as the dependent
variable. Recalling that

We¢=Wg+ PWy — TWy (23)

and assuming that the equilibrium curve for the K-free system is linear
in P-T coordinates above 400°C (although this should not be strictly
true when the effects of compressibility, thermal expansion, heat ca-
pacity, and Al-Si ordering are taken in account), we may then write

Py = Py+ T1(dP/dT)qas (24)
where Py is the (extrapolated) equilibrium pressure at absolute zero.
Combining (17¢), (19b), (23), and (24), we obtain

_ Ne{2Wi W= Wt PiWyi— W) = (Wi PWr)} — (Pr— P)ATS

T] —_—
N2N:(Ws1 — W) — Ws1] — AVdP/dT)%as + R In N,

(25)

Temperature-composition phase relations. From the data of Birch and
LeComte (1960), Bell (1964), and Robie and Waldbaum (1968) we ob-
tain Py= —920 bars; (dP/dT)%uas=20.684 bar deg—!; AV,° =0.40706 cal
bar~ mole™? (at 298°K and 1 atm) for the quartz-albite-jadeite equilib-
rium in the system Si0,-NaAlO,. Using these data with (25) and the
Margules parameters in (1) we may calculate tentative feldspar com-
positions for the quariz-alkali feldspar-jadeite equilibrium at any pressure
sure and temperature where quartz and jadeite are more stable than
pure Na-feldspar. Isobaric temperature-composition diagrams are shown
in Figure 10 for 16, 20, 26.11, and 32 kbar. The isothermal, isobaric
composition diagrams in Figure 9 show (quantitatively) the calculated
ternary relations in the silica-rich part of the system SiO,-KAlQ,-
NaAlO, for four temperatures at 20 kbar.

Seki and Kennedy (1964) studied the behavior of an orthoclase (ap-
proximately 73 mole percent KAISi;Os) in a piston-cylinder apparatus in
the range 700 to 1000°C and 20 to 40 kbar. The orthoclase was converted
to a mixture of jadeite, quartz, and a more K-rich feldspar (92 + 3 mole?,)
at 25 kbar and 730°C. The product feldspar formed in another experiment
on the same starting material at 24 kbar and 600°C had a composition
of 954 3 mole percent KAISi;Os. Equations (1) and (25) give 94.9 mole
percent at 25 kbar and 730°C, and 98.4 mole percent at 24 kbar and
600°C, which are in reasonable agreement with the data of Seki and
Kennedy (bearing in mind that our calculations have tacitly assumed
that the alkali feldspars in this range are highly disordered sanidines,
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which may not be so). A more detailed experimental investigation would
be desirable, and would provide direct data on the quantity (uir—iur®)
which is needed to obtain more accurate estimates of the mixing prop-
erties of the feldspars involved.

The compositions of coexisting feldspars are also shown in Figures 9
and 10. The four-phase equilibrium representing the intersection of the
alkali feldspar binodal surface with the P-7-Nyr surface for alkali feldspar
coexisting with quartz and jadeite, can be calculated by simultaneous
solution of (17) and the additional equilibrium conditions (6), or de-
termined graphically by interpolation (the simplest method). This
four-phase equilibrium is a univariant line in a P-T projection. It
occurs at somewhat higher pressures and lower temperatures than the
three-phase equilibrium for the K-free system as shown in Figure 11,
and becomes practically indistinguishable from the 3-phase equilibrium
for the K-free system at lower pressure and temperature.

At 999.5°C and 26.11 kbar the calculated four-phase equilibrium in-
tersects the line of critical solution and terminates there at a critical end-
point at which the phases present are quartz, a critical feldspar, and
jadeite. At higher pressures the line of critical solution is metastable
(Figures 10 and 11). The critical end-point may be obtained directly
from (3a), (3b), and (25).

Mineral facies. The system Si0,-Al,03-NaAlO,-KAlO,-H,O is a useful
one for considering many of the variations in mineral facies observed in
pelitic schists (Thompson, 1961). The equilibria discussed above, com-
bined with recent experimental results on the polymorphism of the
aluminum silicates, on the phases of silica, and on melting relations in the
sub-system Si0,-NaAlO,-KAIO, enable us now to construct a preliminary
P-T diagram for the equilibria among the anhydrous phases in the silica-
rich portion of this model system.

Key equilibria affecting quartz-bearing phase assemblages in the
system SiO,-Aly03-NaAlO,-KAIO, are shown in Figure 12, For the hy-
drous system these are the equilibria that are observed in the limit where
the activity of H.0 in the fluid phase approaches zero. The diagrams in
Figure 12 show schematically the compositions of phases coexisting
with quartz, as projected through SiO; onto the plane Al;O;-NaAlSi;Os-
KAISi;0s for the various pressure-temperature fields. (Compare with
Figures 7 and 8 of Thompson, 1961.)

It must be borne in mind, however, that the relations shown in Figure
12 are, in most real assemblages, complicated by the presence of other
components in certain of the phases. The fields of stability of jadeitic
pyroxenes containing components such as NaFeSi,Os, CaMgSi,Os, and
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['i6. 11, Tentative pressure temperature diagram for some of the univariant equilibria
in the silica-rich portion of the system Si0- NaAlO-KAlO: Quartz-coesite cquilibrium
after Boyd and England (1960); melting curve of albite (NaAlSi;Os) after Bovd and En-
gland (1963), Bell (1964); melting curve of pure sanidine (KAISi;Oq) after Lindsley (1966).
Critical end-point (guarfz-jadeite-crilical feldspar) is shown as open circle. Dashed vertical
lines correspond to the pressures of the 7'—N diagrams in Figure 10. Invariant points a, b,
and ¢ involve liquid phases; see Bell (1964) and Lindsley (1966) for complete phase rela-
tions.

CaFeSi,0s, and coexisting with quartz and alkali-feldspar, will be some-
what more extensive than shown in Figure 12. The presence of the com-
ponent CaAlSi;Os in a feldspar, however, must force the pertinent equi-
libria the other way unless counterbalanced by a comparable content of
CaAlLSiOs in the jadeitic pyroxene, in which case the net effect is un-
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Fi1c. 12. Stability relations among jadeite, alkali feldspar, quartz, coesite, andalusite
(A), kyanite (K), and sillimanite (S). The andalusite-kyanite-sillimanite invariant point is
shown here as at 5754 15°C and 4.5+ 0.3 kbar based on the data of Newton (1966), Holm
and Kleppa (1966), and Richardson, Bell, and Gilbert (1968). Quariz-tridymite equilibrium
curve and minimum melting temperature (960°C) in the silica-rich portion of the system
S5i02-NaAlQ»-KAlO: at 1 bar after Tuttle and Bowen (1958). Anhydrous minimum melting
curve assumed to have approximately the same slope as melting curve of pure albite (Fig.
11). Schematic isothermal-isobaric sections refer only to quartz-bearing assemblages.
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certain. Tt must also be emphasized that all of the equilibria, experi-
mental or calculated, in Figure 12 are tentative and that they should be
revised as new data appears. One important area in which further data
are needed is on the effect of Al-Si ordering on the equations of state for
alkali feldspars.

Note added in proof : In a more recent paper just received by us, Perchuk
and Andrianova (1968, Thermodynamic equilibria of alkali feldspars
(K, Na)AlSi;0s with aqueous (K, Na)Cl solutions from 500-700°C and
2000-1000 bars pressure. In Experimental and Theoretical Investigations of
Mineral Equilibria, Izd-vo “Nauka,” Moscow, p. 37-172) consider ex-
plicitly the effect of excess volume on the mixing properties of sanidine.
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