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ABSTRACT

Using De Wolff’s (1957) equations two centrosymmetrical reciprocal lattice planes are
found which intersect along a common axis. Assuming the Q-value of a particular lattice
point to be R, planes parallel to the centrosymmetrical planes are constructed. The value
of R is found by considering the differences in the Q-values of a particular row of the
parallel planes. The nature of distribution of equal (-values on the parallel planes exhibit
the symmetry of the crystal.

INTRODUCTION

Runge (1917) and Ito (1949, 1950) presented methods for indexing
powder photographs regardless of symmetry, which were based on the
relationship between the reciprocal lattice vectors and sin%# values.
Based on this approach De Wolff (1957) suggested a more elegant
method to construct directly the reciprocal lattice of a crystal from
Q-values (Q=sin?6X10%). De Wolff has given the following four im-
portant equations, which give the relationship between different recip-
rocal lattice vectors.

QUn + h) + Q(l — hy) = 2Q(h) + 2Q(hs) (1)

n*Q(mh) = m*Q(nh) (2)

QU + xk') — Qlh — 3l = w-[QUh + ') — Ok — )] (3)
QU + he + Is) + Q(hs) — QU + hs) — Qs + hs)

= QU + h) — Q(hy) — Q(h) €))

De Wolff has also given three examples to show how these equations
can be used for different purposes. But his approach gives the impres-
sion that it is necessary to find three reciprocal lattice planes with
Eq. (1), if a powder pattern of a monoclinic or triclinic crystal is to be
indexed. It is found that in some cases it is almost impossible to get
more than two planes. Therefore this method has been suggested which
requires only two intersecting centrosymmetrical planes to start with.
Further an attempt has been made to evolve a systematic procedure to
index powder patterns of unknown symmetry.

First the Q-values are tested for cubic, tetragonal and hexagonal
symmetries according to the methods described by Azaroff and Buerger
(1958). After eliminating these three possibilities, the procedure of De
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Wolff is followed to find two intersecting planes using Eq. (1). In a
systematic procedure it is not advisable to use Eq. (3) to find a parallel
plane as done by De Wolff for his example 1 because of the following
reasons: (1) If the first plane found by Eq. (1) is an orthogonal array,
there will be success only if the crystal is orthorhombic and only when
the orthogonal plane contains two of the three principal axes a*, b*
and ¢*. (2) If the first plane is not an orthogonal array, it is possible to
find a parallel plane with Eq. (3) only if the crystal is monoclinic and
only when the first plane contains the axes ¢* and c*.

It may be noted that if four Q-values satisfy Eq. (3) and if they give
a periodicity equal to one of the Q-values, say Qa, of the first plane
found by Eq. (1), the same data can be used to construct a second plane
intersecting the first one along the vector giving the value Qa.

After finding four Q-values with Eq. (1) and forming a plane, the
other Q-values of it can be found with Egs. (2) and (3) as suggested by
De Wolff. Then the two planes must be tested for the following:
(1) Whether any one of them show pairs of equal Q-values and if so,
whether it can be reduced to an orthogonal array. (2) Assuming that
the two planes intersect along the Ay-axis and one has #; and /4 as trans-
lation directions and the other 4; and A, it must be checked whether
Q(hy), Q(hs) and Q(ks) are really the “unit”™ Q-values in the respective
directions and do not correspond to higher orders (probably second
order). De Wolff formed the first plane of his example III by considering
the Q-values 936.0 and 166.1. Later it was found that 234.0 and not
936.0 is the fundamental Q-value in that direction. Such cases may
occur especially if the Q-values selected for Eq. (1) occur among the
higher values.

METHOD

The method of constructing the reciprocal lattice after finding two
intersecting planes is described by considering the powder data (Table
1) given by De Wolff for triclinic KBO;-H:0, and orthorhombic
progesterone.

Example I. KBQs- H,0,. De Wolff first found the following two planes.

Plane A
1044 .4 824.1 936.0 1380.1 (a2)
1313.2 620.4 261.1 234.0 539.1 1176.4 (a1)
0.0 166.1 664 .4 (a0)

1 “Unit” Q-value has been used in the sense that it will be the first Q-value in that
particular direction considered from the origin and all other Q-vahies in that direction will
be higher orders of this value.
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Plane B
702.0 838.1 1306.4 (by)
869.9 356.6 175.5 326.6 809.9 (b1)
iy T
0.0———166.1 664.4 1494.9 (bo)

by

An exariination of the planes 4 and B reveals that they intersect
along the row 0-166.1-664.4. Now the three axes 234.0, 166.1 and
175.5 are assumed to be the axes #;, ks, and A and the plane A4 is imagined
to stand on plane B along the common axis % (i.e. the rows @o and by
coincide) at some angle. Then a plane 4; is constructed along the first
row (b;) of plane B parallel to the plane 4 using Eq. (4)

QU + b + h3) + Q(hs) — QU + hs) — QU + hs)
= QU + k) — Q) — Q(hs)

The positive direction of #; is above the plane of paper. The positive
directions of A and A, are indicated in the table. The value Qi+ 4s)
in this equation is assumed to be some value R and is the Q-value of
the point lying above 175.5. Q(#+h+hs) lies above the point 326.6.
Therefore using Eq. (4) a relationship between R and Q(ki+h+-ks)
can be established.

Oy + hy + hs) + 234.0 — R — 539.1 = 326.6 — 175.5 — 166.1
O + hs + ) = R + 290.1

The point Q(/u— k) which lies below 175.5 (i.e. below the plane of
the paper) is equal to 819.0— R according to the equation

Ol — hs) + R = 2(175.5 + 234.0)

Similarly the point Q(&;+ /. — k3) below 326.6 gets the value 831.1—R.
The Q-values above and below the point 809.9 can be determined by a
similar procedure. Thus the following values of the plane 4, have been
determined.

R R+4290.1 R4912.4
175.5 326.6 809.9
819.0—R 831.1—R 1175.4—R

Now with the help of the Eq. (3) the other values in the plane 4,
are calculated. To find the value of R it is enough if Q-values are cal-
culated for two or three rows parallel to the row R—175.5-(819.0—R)
and for two rows parallel to the row (#). Thus the plane 4, is con-
structed.
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430.942R  195.64+2R
(1147.7)

R +416.4 R +42.1
(773.7)

869.9 356.6

1791.4—R  1139.1—R
(1435.1)

2389.6—2R

K. VISWANATHAN

Plane 4,

292.542R
(1005.5)

R
(356.0)

175.5

819.0—

(463.9)

R

1930.5—2R

(1217.9)

721.6+2R
(1436.8)

R +290.1
(643.9)

326.6

831.1—R
(474.0)

1803.6—2R
(1092.4)

1482.94-2R

R +912.4

809.9

1175.4—R

2008.9—2R

(02)

(1)

(br)
(e1)

(c3)

(Values in parentheses are the corresponding observed Q-values).
If the value of R is found, the other values can be calculated. The best
method of obtaining the value of R is to proceed systematically as

follows:

The lowest Q-values on the plane A; must be lying in the neighbor-
hood of the central point 175.5. Tt can therefore be expected that many
of the low unidentified (Q-values in Table 1 can be from the first rows
which run parallel to the middle row (4;). Hence two tables of differences
are prepared, one between the Q-values of the first upper row (¢;) and
the other between those of the lower row (¢1):

Differences in Q-values (¢;)

R+42.1 870.3 374.3 248.0

R+4290.1 622.3 126.3

R+416.4 496.0

R+912 .4

Differences in Q-values (c1)

819.0—R 972.4 356.4 320.1 12.1
831.1—R 960.3 3443 308.0
1139.1—R 652.3 36.3
1175.4—R 616.0
1791.4—R

The lowest five unidentified Q-values are tabulated and the differ-

ences listed.

Differences in lowest five unidentified Q-values

463.9
474.0
643.9
713.7
1005.5

541.6
331.5
361.6
231.8

309.8
299.7
129.8

180.0
169.9

10.1
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On comparison of these three tabulations it is found that there are
three possible combinations.

1. 129.8 (near to 126.3) relates 643.9(R+290.1) and 773.7(R+4416.4)
giving an average R-value 355.6.

2. 309.8 (near to 308.0) relates 463.9(831.1— R) and 773.7(1139.1—R)
giving an average R-value 366.3.

3. 10.1 (near to 12.1) relates 463.9(819.0— R) and 474.0(831.1—R)
giving an average R-value 355.7.

It is clear that observations (1) and (3) agree with each other and
(2) is not compatible with either (1) or (3). If the other Q-values are
calculated with R=355.7, many of them are found to agree with the
observed values which are given in parentheses on plane 4;. Therefore
the advantage of this method as compared with that of De Wolff is
that there is no necessity of finding the third plane and later orienting
it.

If a plane 4; has been drawn through the first row of the plane B
parallel to plane 4, it is comparatively easy to draw a plane B; through
the first row (a1) of 4 parallel to B. There is no necessity to construct
the plane B, if the value of R could be obtained from the first rows (¢;)
or (c1) of plane A; and if the symmetry of the crystal could be un-
equivocally ascertained from the same. For the example under con-
sideration plane B is constructed to check whether it shows any sym-
metry because the plane A4; does not give any useful information re-
garding the symmetry.

It must be expected that, as the two parallel planes 4; and By are
drawn through the first rows of B and 4 respectively, they will intersect
along the first row above the respective central lines (rows b; and ay)
and their first rows below the respective central lines will be centro-
symmetrical. This will become clear if the planes 4, and B; are com-
pared.

Plane B,
2R+563.4 2R+174.1 2R+117.0 2R+-392 .1 2R+999.4 (d2)
(1277.0) (1103.3)
R+416.4 R+42.1 R R+290.1 R+912.4 (dy)
620.4 261.1 234.0 539.1 1176.4 (@)
1175.4—R 831.1—R 819.0—R 1139.1—R 1791.4—R (d1)
2081.4—2R 1752.1—2R 1755.0—2R 2090.1—2R (da)

(1367.1)

(Values in parentheses are corresponding observed Q-values).
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Tt is seen that row (dy) is identical to (¢1) because it is the row along
which the two parallel planes intersect each other and the row (di) is
centrosymmetrical to the row (¢1). Q-values of (ds) and (ds) of plane By
can be calculated within minutes with Eq. (3) and we get three more
(Q-values which agree with those given in Table 1.

It may also be noted that the plane B; also gives a row (d») of lattice
points with Q-values in terms of 2R+. .. Therefore if the value of R
could not be found from the first rows (¢ or ¢i), then the second rows
(¢2) and (d») can be considered, which give ten Q-values ranging between
2R+117 and 2R-+1482.9. Omitting the two high Q-values, the re-

TABLE 1. OBSERVED Q-VALUES (DE WOLFF, 1957)

I II. I II.

Line No. KBO;.H:0, | Progesterone I Tiiviey Rlioe KBO;.H>0: | Progesterone
1 165.9 69.3 I‘ 17 935.8 373.1
2 176.1 87.3 18 | 1005.5 384.8
3 261.2 93.5 | 19 1045.2 393.2
4 356.0 124.3 20 | 1092.4 402.6
5 463.9 150.1 21 1103.3 430.4
6 474.0 162.0 ‘ 22 1147.7 486. 1
7 539.0 179.5 23 1178.2 496.5
8 620.6 205.9 | 24 1217.9 500.3
9 643.9 217.2 25 1277.0 518.5
10 665.5 221.7 26 1312.1 530.2
11 701.9 237 .4 || 27 1367.1 539.0
12 7713.7 252.2 28 | 1380.6 5529
13 823.4 274.5 ‘| 29 1436.8 567.0
4 | 8354 290.4 30 ‘ 1479.9 591.4
15 869.5 329.8 | 31 1497.0 o
16 899.2 | 346.2

maining eight have accounted for five of the observed Q-values. Con-
versely, if the differences between these eight Q-values had been com-
pared, the five observed Q-values could have been identified, thereby
obtaining the value of R.

A consideration of all (-values of plane B; does not indicate the
presence of a binary axis or a symmetry plane. (A discussion of sym-
metries that can be expected in such reciprocal lattice planes is given
later.) Therefore the crystal is triclinic. A consideration of the Q-values
of planes 4, and B indicates that the three assumed translations 234.0,
166.1 and 175.5 are the shortest and hence the conventional axes. After
finding the true symmetry of the reciprocal lattice and ascertaining
whether the assumed axes are the true axes, indexing can be attempted.
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If we assume the translations 234.0, 166.1 and 175.5 to be the ¢*, b*
and e* axes, the planes 4, B, 4; and B; give all the reflections with
indices (Okl), (hk0), (1kl) and (kk1) respectively. For KBO;-H,0,, all
the observed Q-values given in Table 1 could be indexed only with these
four planes. But if there are still higher Q-values, they can be indexed
by constructing planes parallel either to A4; or B;. While constructing
the second plane 4, parallel to 4,, the Q-values of the rows (d») and (dz)
of B; can be used.

Example I1. Progesterone.

Plane A
538.5 346.0 290.5 372.0 (a2)
889.0 484.5 217.0 86.5 93.0 236.5 517.0 (@)
0.0 68.5 274.0 616.5 (ao)
86.5 217.0 484.5 889.0
Plane B
536.5 496.0 590.5 (b2)
372.0 179.5 124.0 205.5 424.0 779.5 (by)
0 68.5 274.0 616.5 (bo)

De Wolff noted systematic differences in the (Q-values of the two
rows (@) and (1) and suggested an elegant method to determine the
reciprocal lattice. The same powder pattern is considered here to show
that if such differences had not been observed for some reason or other
this method could be used as an alternative. Furthermore this example
shows how the derived parallel planes (41, B;) exhibit the symmetry of
the crystal.

The first parallel plane A; was constructed through the first row (by)
of the plane B and is parallel to plane 4. Four of the first seven un-
identified Q-values were found to be from the first rows, three being
from the lower row (¢1) and one from the upper one (¢1). The R-value
was found to be 161.5.

Plane 4,
868.0 (551.5) (372.0) (329.5) (424.0) (c2)
533.5 279.0 (161.5) 181.0 337.5 (ar)
372.0 179.5 124.0 205.5 424.0 (b
(383.5) (253.0) 259.5 (403.0) (cn)
(568.0) (499.5) (568.0) 773.5 (@)
Plane B,
589.0 (484.5) (517.0) (d»)
533.5 279.0 (161.5) 181.0 337.5 (d)
484.5 217.0 86.5 93.0 236.5 517.0 (a)
(403.0) 259.5 (253.0) (383.5) (dn)

(Q-values in parentheses are observed values.)
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G0

Fic. 1. Portion of the reconstructed reciprocal lattice of progesterone.

q1, G2, 03, 04, 5 and gn represent the lattice points with Q-values 86.5, 93.0, 253.0, 259.5,
68.5 and 124.0 respectively.

¢6g7gsgs Tepresents a plane centrosymmetrical to plane B;. 4 and B are the midpoints
of the sides q1¢4 and ¢»g5 and C is the midpoint of 4 B.

qio represents a lattice point along the lattice row OC above the plane B;.

A consideration of the plane A; shows the emergence of three binary
axes, namely the lattice points having the Q-values 279.0, 337.5 and
499.5. All three points show pairs of equal Q-values on their sides, one
(337.5) along the vertical row, the second (279.0) along the diagonal
row and the third (499.5) along the horizontal row (cz).

The plane B; seems to show apparently only two axes with values
279.0 and 337.5. But a consideration of the differences between the
corresponding (Q-values of the rows (a;) and (d7) indicates the presence
of the third axis as illustrated in Figure 1. In accordance with the
observation

(86.5 — 93.0) = (253.0 — 259.5)

the lengths of the lines Ogi, Og¢s, Ogs and Og, in this figure must be so
assumed that

(0¢2)* — (0g1)* = (0gs)* ~ (Ogs)*
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Rearranging,
(0g2)* + (0g5)* = (0g)* + (Oq)*
Considering the triangle Ogqiqs, we get
(0g)? + (0ga)* = 2[(04)* + (4q)*]

Similarly

(0g2)* + (Ogs)* = 2[(0B)* + (Bg)*]

Therefore

(04)* + (4q1)?
But A¢1=B¢; and hence

(0B)* + (Bg)*

04 = 0B

Therefore OAB is an isosceles triangle and OC is perpendicular to 4B.
Hence OC is perpendicular to Og; of plane B (by construction). There-
fore OC represents the direction of the third axis. As the lines gsqi,
¢sG2, gogs and gqs are parallel to OC, there should be a lattice point g0
along the axis OC at a distance Ogp (equal to gsqi). But gsgi=20C.

This means that the plane B; cuts the third axis OC exactly between
some two lattice points. Now

(Oq10)? = 4(0C)? = 4[(0OB)? — (BC)?]
(4B)*
= 4| (0B)? — 3
= 4(0B)? — (AB)?
But
(0B)* = 1/2[(0g»)* + (0¢5)*] — (Bg)*
Therefore

(0g10)* = 2[(0ge)* + (0g:)*] — (gs¢2)* — (4 B)*
But by construction
AB = 0Og; and ¢q = Ogn
Therefore
(0g10)® = 2[(0g2)* + (0g5)?] — (Ogqu)* — (Ogs)*
Substituting the values

(0g)? = 93, (Ogs)? = 253.0, (0gs)? = 68.5
and (Oqll)2 = 124.0
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We get

(0gi)? = 2(93.0 + 253.0) — 68.5 — 124.0
= 4995

Thus 499.5 is either the unit (-value along the third axis or a higher
(odd) order of it. In this case it happens to be the third Q-value
(9X55.5=499.5). This example shows that such systematic differences
indicate the presence of an axis and that it is possible to calculate tle
length of the axis after finding the value of R.

DiscussioN

For triclinic KBO;- H,O, the assumed axes /4, £, and /; happen to be
the shortest axes and hence the reciprocal lattice is directly obtained.
For the second example, both planes A; and B; indicate the presence
of three binary axes and hence the reciprocal lattice can be easily con-
structed (Fig. 2). By drawing the planes parallel to the principal planes,

4995

A

279.0 1615 181.0 3375

F1c. 2. Reconstruction of the reciprocal lattice if three binary axes are exhibited
by the parallel planes (Example II. progesterone).
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4240 3375 5!.7._0 51-5‘5 899.0
4240
2365 274.0 4BLS
93. 68.5 217.0
865 - 86.5

F1c. 3. Reconstruction of the reciprocal lattice, assuming only one binary
axis has been observed on plane 4, of progesterone.

it is found that the unit Q-values along the three axial directions are
55.5, 37.5 and 31.0. The following method is suggested to reconstruct
the reciprocal lattice, when only one binary axis is observed (e.g. in the
case of a monoclinic crystal).

Taking example II, it is assumed that only the binary axis (with
Q-value 337.5) is found on plane A;. The axis is at right angles to the
vector with Q-value 86.5 (424.0—337.5)—a vector common to plane A
and passing through the origin. Figure 3 shows an orthogonal array
with 337.5 and 86.5 as axes and also a portion of the centrosymmetrical
plane A intersecting the former along the common axis 0-86.5. The
lattice points of 4, are connected to the corresponding points of 4 by
vectors parallel to one with Q-value 124.0. Hence the pairs of points
337.5, 236.5 and 424.0, 274.0 are connected in Figure 3. Plane 4 is in-
clined to the binary axis. The rows 93.0-68.5 and 236.5-274.0 are lower
than the row 337.5-424.0. As there should be a symmetry plane at the
foot of the binary axis, planes drawn parallel to it along the rows
93.0-68.5 and 236.5-274.0 should cut the binary axis at two points below
337.5. Therefore the third Q-value 337.5 should be nine times the unit
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Q-value 37.5. With these data the basal plane can be constructed. But
the situations may not always be identical. It must be borne in mind
that if a binary axis is located on one of the parallel planes, the following
conditions exist to reconstruct the reciprocal lattice.

1. There is a vector lying at right angles to the axis and passing
through the origin and the value of this vector can be obtained by sub-
tracting the Q-value of the axis from one of the two adjacent equal
Q-values.

2. This vector is also common to the centrosymmetrical plane parallel
to which the plane, on which the binary axis is located, has been drawn.

A consideration of the three reciprocal lattices, orthorhombic, mono-
clinic and triclinic, reveals that the distribution of (Q-values in the
parallel planes (4; and B,) will exhibit one of the following symmetries:
(1) two mirror planes at right angles to each other, (2) a single mirror
plane, (3) three binary axes or one binary axis, or (4) absence of all the
above-mentioned symmetries.

Sometimes, the derived planes may show rows with pairs of equal
Q-values (plane 4;, Example I) which are not symmetrically situated
with reference to a central lattice point. Such rows show equal values
only accidentally and are not due to a symmetry axis. Only when the
point of intersection of the axis is observed as a lattice point, does it
give rise to pairs of equal values on its sides. Plane B; (Example II)
shows this phenomenon. It does not show the presence of the third axis
because the point of intersection is not a lattice point. But it can be
seen that the mid-points between the pairs of Q-values (86.5, 259.5)
and (93.0, 253.0) are equidistant from the origin. (Fig. 1).

It may be noted that the cases (1) and (2) will be met with only if
the centrosymmetrical plane, parallel to which the first plane is con-
structed, is an orthogonal array. In such cases the plane parallel to the
orthogonal array can be drawn very easily on the basis of the following
equations. Applying the Eq. (4) to the lattice points Q{h+ky+%s) and
QU+ he— k), the following Eq. (5) valid for all types of lattices can
be derived.

QUn + b + hs) — QU + hs) — QUhz + hs)
= QU+ by — hs) — QU — hs) — QU2 — hs) )

If it is assumed that the orthogonal plane 4 has the axes #; and /.
and the second centrosymmetrical plane B the axes % and /4 (/ being
the axis of intersection) and if a plane 4; is drawn through the first
row of B parallel to the orthogonal array 4, the Eq. (5) becomes

QU+ ho + k) — QU + 1)
= QU+ h) — Q) = QU+ by — hs) — Q(ly — bs)  (6)
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If the Eq. (6) is generalized to all other lattice points of plane 4,, it
would be found that the differences in Q-values of the horizontal rows
are equal to those between the corresponding Q-values of the first row
of plane B to which they are parallel. Hence it suffices to calculate the
Q-values along the central vertical row in terms of R, assuming Q(/u+/#3)
to be R. Also, the first row containing R is interchangeable with the
lower first row containing Q(k1—#;). The value R can therefore be
assumed to lie on the obtuse-angle side. This assumption means that R
is less than Q(/n—#;). But caution must be exercised while finding the
value of R. By assuming R to lie on the obtuse-angle side the range of
R is set between O and [Q(/n)+Q(%4;)]. But if R happens to be much
smaller than Q(%), then the lattice point Q(#1-+2k;) from the second
upper row may also have a value between the above mentioned range.
As both these rows show the same differences, the group of two or three
Q-values found with the help of their differences may belong to the
first row containing R or the second upper row. Sometimes the difference
between R and Q(hi+2ks) will solve the problem. Otherwise it is ad-
visable to find a second group of Q-values having the expected differ-
ences. These two groups belong to two different rows in the first plane
A4,, thus determining the value of R unequivocally. Similarly if none of
the Q-values from the first upper row occurs in the list of observed
Q-values because of systematic extinctions or other causes, it may be
difficult to distinguish whether the identified row of Q-values belongs
to the second upper row or the first lower row. Theoretically it may
belong to still higher rows; but as the selected Q-values are low such a
possibility is considerably less.

The problem may appear to become more difficult if the axis of inter-
section (/) of the two centrosymmetrical planes happens to be a binary
axis, 1.e. if both planes are orthogonal arrays. On the contrary, in such
cases, there is no necessity to construct the parallel planes at all. Only
the plane (4O#h;) has to be constructed using % and /s as axes and
assuming R[i.e. Q(f+5h;)] to lie on the obtuse-angle side. All other
Q-values in this reflection plane will be in terms of R. As in the previous
cases a table containing the mutual differences between the first three
Q-values along the axis % is prepared. From the list of unidentified
(low) Q-values at least two groups of Q-values can be found with the
expected differences. These two groups will give two Q-values which lie
near the origin on the plane (7,0%;). Using these two values the value
of R can be determined unequivocally.

Before concluding it may be said that what De Wollff stated regarding
the “accuracy of measurements” is also applicable to this method, be-
cause the success depends upon the correctness of the Q-values of the
first two centrosymmetrical planes.
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