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ABSTRACT

A statistical analysis of the ion-exchange data of Orville (1963) for highly disordered
alkali feldspars shows that the Gibbs energy of mixing of these feldspars can be repre-
sented satisfactorily by an asymmetric Margules equation containing only two empirical
parameters at a given temperature and pressure.

The data indicate that at 650°C and 2 kbar the excess Gibbs energy of mixing for
monoclinic alkali feldspar is very nearly:

Gex=4.20 No:N24,+2.95 N a,N%, kcal mole™

The temperature range of the data is too limited to permit satisfactory determination of
the temperature dependence of the mixing parameters.

The isothermal-isobaric exchange curves appear to have a break in slope in the high-Na
region suggesting a second or higher order transition in the feldspars. The positions of
these breaks correspond closely to the rapidly reversible (displacive) monoclinic-triclinic
symmetry change observed by MacKenzie (1952).

INTRODUCTION

A knowledge of the thermodynamic mixing properties of alkali
feldspar crystalline solutions is essential to a thorough understanding of
the phase equilibria in many common rocks. The system Na(AlSi;Os)-
K (AlSi;Os) forms an essential part of certain model systems of con-
siderable interest in theoretical petrology such as the “granite system”
of Tuttle and Bowen (1958), as well as model systems useful in the con-
sideration of metamorphic facies (Thompson, 1961), or of weathering,
wall rock alteration, and related phenomena (Garrels and Howard,
1959).

For many such purposes it is desirable that the thermodynamic mixing
properties be expressed in analytic form, both as an aid in smoothing,
evaluating, and comparing the data, and for the extrapolation of exist-
ing data to phase equilibria under conditions that are difficult of access
or for other reasons not yet explored. Such calculations may be made on
data from a wide variety of sources. Volumes of mixing may be obtained
either from direct density determinations or by careful measurement of
unit cell parameters (Donnay and Donnay, 1952; Orville, 1967). En-

1 Published under the auspices of the Committee on Experimental Geology and
Geophysics of Harvard University. Preliminary results of this study were reported by
Thompson and Waldbaum (1967).
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thalpies of mixing may be measured by solution calorimetry (Kracek
and Neuvonen, 1952; Waldbaum, 1966; Waldbaum and Robie, 1967),
and entropies of mixing, at least in part, by heat capacity measurements.
All of the above mixing properties and also the total Gibbs energy of
mixing may be calculated from data such as that of Bowen and Tuttle
(1950), Yoder, Stewart, and Smith (1957), Orville (1963), and Luth
and Tuttle (1966) on the compositions of alkali feldspars coexisting at a
variety of temperatures and pressures. Calculations on all of the avail-
able two-phase data have in fact been made by us, and will be presented
in Part ITT of this series.

The calculations below are based on Orville’s ion-exchange experi-
ments between an aqueous Na-K chloride solution and alkali feldspars
of the sanidine-high albite series, and do not take into account his two-
feldspar assemblages as such. From the exchange data it is possible to
calculate the Gibbs energy of mixing of sanidine at several temperatures;
and from the temperature dependence of Gnix the enthalpy and entropy
of mixing of these feldspars at two kilobars can be derived. This coupled
with Orville’s (1967) cell-volume measurements (Part II, Waldbaum
and Thompson, 1968) makes possible a preliminary estimate of the in-
ternal energy of mixing and leads to a tentative polythermal-polybaric
equation of state from which phase diagrams may be calculated.

Allmann and Hellner (1962) gave a brief preliminary analysis of
Orville’s data based, as is ours, on the condition for exchange equi-
librium, but gave no numerical values for the mixing properties other
than those implied graphically in their Figures 2 and 3. Perchuk (1965)
also presented a brief analysis making some use of Orville’s data and
assuming a Margules-type formula, but again gave no numerical values
for the mixing properties of alkali feldspar other than those implied
graphically by his Figure 1a. A later paper by Perchuk and Ryabchikov
(1968) presents a more extended treatment (p. 126-130) based on
Orville’s data. Here a different approach is used, not dependent on a
Margules expansion for the excess functions as in Perchuk’s earlier
paper, but based on graphical methods and also making use in part of
coexisting feldspar compositions. Here again, no analytic expression is
given for the mixing properties, although these may be inferred from
their Figures 1 and 3. Because our aim in this and subsequent papers of
this series is to obtain the thermodynamic mixing properties of the
alkali feldspars in analytic form, we shall be concerned below with
problems in the selection and statistical analysis of the data. Such
matters as the possibility of partial or incomplete equilibrium hetween
pairs of feldspars occurring in Orville’s experiments, and of Al-Si order-
ing and related symmetry changes, must also be considered insofar as
possible in order to separate their effects from those of K-Na mixing.
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THERMODYNAMIC RELATIONS

In each of Orville’s (1963) experiments an Na-K feldspar was per-
mitted to react with an aqueous Na-K chloride solution. The aqueous
chloride solution has three independently variable components: NaCl,
KCl, and H;O; and the feldspar has two: NaAlSi;Os or “45”, and
KAISizOs or “Or”. With but one fluid phase present, however, the ratio
of H,0O to NaCl+XKCl in the fluid is constant in any given experiment
inasmuch as the only possible variations in the composition of the fluid
are by alkali exchange with the feldspar crystals present. For equilibrium
at a given temperature and pressure between a feldspar and such a
solution in a sealed capsule, the Gibbs function must be at a minimum
for the contents of the capsule, or!

0=dG = deSp + deluid

= ,U'Or,fspanr,fsp + /J'Ab,fspdnAb,fsp
(1)
+ pkctlia@fke),tluid T UNaCl,(luidd7NaC, f1uid
+ ﬂHgO,fluidd”Hgo,fluid

Under the experimental conditions, however, the quantities dn are
not independent, but are constrained as follows:

d"HgO,fluid =0 1
Anoe tsp T AManisp = 0 (2)
dnxct feia T EMNaCLfluia = 0[
and either
dnxcl fwid + @nor,tsp = 0 (3)
or
dnxacy,taid T dnap,sp = 0 4)

since (3) and (4) are not independent. With (2) we may rewrite (1)

0 = dG = (uor.tsp — MAb,tsp)@NOr, g5
(1a)
4 (ugcy,fluia — UNaC1iluid) AWKCL, fluid
and, again, with (3) it becomes
0= dG = [(#Or,fsp - ”Ab,fsp) - (#KCl,fluid - MNaCl.f]uid)]anr,fsp (1b)

emphasizing that under the experimental conditions only one of the
quantities dn may be taken as independent. At equilibrium then, so

! The notation used in this paper is summarized in Appendix D.
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(@)
Na K Na K

F1e. 1. Isothermal, isobaric equilibrium conditions for ion-exchange between fluid (f)
and feldspar (a,b) phases. Lines G.’, Gv’, and Gt denote the slopes of the tangents to the
Gibbs surfaces for the feldspar and fluid phases, respectively; these correspond to the
left- and right-hand sides of Eq. (5). a) equilibrium between (supercritical) fluid and
supercritical feldspar (Gf'=G,’). b) complete equilibrium between fluid and two sub-
critical feldspars (Ga,p' =GY'). ¢) exchange equilibrium only (partial equilibrium) between
two feldspars (G’ =Gy =Gy').

that dG=0 for minor variations in dsno.,+sp, the bracketed quantity on
the right hand side of (1b) must be zero or

(ﬂOr,fsp - l/:Ab,fsp) = (ﬂKCl,fluid - /J'NaCl,fluid) (5)

Condition (5) may also be written in a rearranged form that is con-
ventional in the treatment of ternary reciprocal equilibria

MOr ,fsp + MNaCl,fluid = MAb,fsp + MKCI,fluid (Sa’)

but there are advantages in keeping it in the form of (5) rather than that
of (5a). The quantities enclosed in parentheses in (5) are properties of
but one phase only, and we may note that

(=) - ) ©
= \MOr,fsp ~— MAb,fs
aArOr.fsp J2o7y ? E



MIXING PROPERTIES OF SANIDINE I. 1969

Similarly if we define the quantities Mxc1 and Myaci in the fluid by

_ NKC1 HNaC)
(1 — Myuc)) = Mge1 = =1—-—="=
Nst Nt

where #=nrc1+#x.01, we may write (see Appendix A)

Gi1uia
— = <#KC1,f1uid - IiNaCI,fluid) (7)
6]M’Kcl,fluid P'T’"Sf’"HZO

and the equilibrium condition (5) may be written in yet another form

< 3Grsp > B < 9Guia > (5b)
INorisp / po1 IMxc1nid/ P17 g npry0

This last form of the equilibrium conditions is shown graphically in
Figure 1a. We have then from (5b) for exchange curves such as in Figures
4-8 of Orville (1963)

9%Gis 02Gi1uia
< = p> ANor fsp = <—2—> dM ke f1uia (8)
ONG, 1/ P IM ke, nuia P, TnggmH,0

where Mxci1,riuia and Nor s are the ordinate and abscissa, respectively,
and the experiments from which the curve has been constructed were
carried out at constant P, T, and total salt molality. Hence

(f’}?(_;[ﬁp)
IM ko1 510 ONGe i/ PuT
([ ‘[t]ild)= ontsp/ P ©)

( 3*Grituid >
2
aMKCl,fluid P, Tongf n,0

The second derivatives in (8) and (9) are positive quantities for phases
stable with respect to unmixing and zero in the limiting case of a phase
of critical mixing. Thus for equilibrium between a noncritical liquid and
a critical feldspar we have

AN o 1an

8°Grep,
( 1 ) =) (10)
6\ '0]': fsp L
iM L ui
(f KC1, 01 d)=n (10a)
"{'\.‘ir.[ﬁjl

It is therefore evident from Orville (1963, Tigs. 7 and 8) that for alkali
feldspars at 2 kilobars the critical temperature is not far from 675°C
and the critical composition not far from 0.35 mol fraction Or.
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Because of the immiscibility in feldspar at low temperatures, many
of Orville’s experiments involved the presence of two feldspars rather
than one. This raises some interesting possibilities for metastable equi-
libria such that both feldspars are in exchange equilibrium with the
fluid but not in full equilibrium with each other. This may be clarified
by an extension of the procedure followed above. We now have

dG = dG; + dG, + dGy
= ui,0 /00H,0,7 T uNacl,s@0Nacly T prCLANKCLY
+ or,a@h0r.6 + 10r p@10r b T MAb.«dRAb . T LabsdRAb b
subject to the constraints
dnpoy =0 )
dnxacry + dugory = 0 ‘
dnor,e + dnav,. + dnory + dnanvy = 0
Anor,e + dnocsy + dngcry = 0

(12)

Proceeding as before we obtain the following result upon eliminating
the interdependence of the dn’s
dG = (uor,a — porp)@M0r,a + (wab,e = pabp)dRAL .
+ [(uxcrs — uxacty) — (wors — manp)]dnkci s (11a)

Hence, at equilibrium

(uors — Mabs) = (More — Habe) = (MKCl; — ENaCls) (13)

and also

HOr,b — IJfOr,a} (14)

MAbb = HAb,a

These equilibrium conditions are shown graphically in Figure 1b. The
metastable or pariial equilibrium may arise when the feldspar grains
are not in direct contact and equilibrate only through the fluid. We may
explore the consequences by introducing either the constraint

dnAb.a + anr.a =0 (15)

or the corresponding one for b (which is not independent). We then
obtain only conditions (13) and not conditions (14). This type of
metastable or partial equilibrium is shown in Figure 1c. It can be shown
(Appendix B) that it is indeed not an unstable equilibrium, though one’s
intuition may at first suggest otherwise. It is, however, metastable with
respect to some more stable state (having a lower value of G) of either
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Fic. 2. Idealized ion-exchange isotherm illustrating possible compositions of two feld-
spars in exchange equilibrium with fluid. The feldspars at m and ' are only in exchange
equilibrium with each other, but those at ¢ and ¢ are in complete equilibrium with each
other. When plotted in reciprocal ternary coordinates, the tie lines corresponding to m
and ' cross the tie lines corresponding to e and ¢’. Dashed portion of curve denotes feld-
spars unstable with respect to diffusion.

the type shown in Figure 1a or that of Figure 1b. For the more stable
states to be realized, however, either a center of phase b must nucleate
in a grain of @, or there must be direct a-b interfaces. In either of these
cases the constraint (15) is inoperative and the reaction may proceed
toward the full set of conditions (13) and (14). Figure 2 shows an
idealized exchange isotherm illustrating the various possibilities.

Inasmuch as the following analysis requires only that exchange
equilibrium be achieved between each feldspar and the fluid, it has been
possible to include certain runs that clearly must correspond to partial
equilibria such as shown by Figures 1c and 2 (m—m'), and in Figure 9
of Orville (1963).

THE FLuib PHASE

For the fluid phase we may write formally (see Denbigh, 1955,
Chaps. 9-10 and especially Eq. 10.35)
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MHKCl1 = UK+ + MC1-

= £+ + ,u%— + RT In(mgemer-yrer®) (16a)
MNaCl = pNat T Be-
= ﬂll\:I‘a+ =+ ,ué:ll, + RT In(mya+mcr-ynwer®) (16b)

Hence

Mg+ YKCiE
(uxo1 — pnac1) = (,ullj<+ — mEa’f) + RT ln< ; > a7

MNat  YNaClt

But
M
MK+ - NKC1 _ KCl1 (18)
MNat NNaCl Mxach
S0
YKCO1E
(ugc1 — pnact) = |:(p.?{+ = Ml\?m-) + RT In — ]
YNaCit
Mxc
+ RT In —— (19)
MNaCl

If 2 molal KCI and 2 molal NaCl aqueous solutions mix ideally or
very nearly so (as seems reasonable) then the bracketed quantity in
(19) above is constant, or very nearly so, at any given P and T (Appendix
C). If so, the ratio yrei1t/ynacit for 2 molar K-Na chloride solutions
should be very nearly constant for such solutions at any given P and
T.! There is sufficient data on the values of these coefficients for such
solutions (Robinson, 1961; Stern and Anderson, 1964) to indicate that
the assumption of constant y-ratio is not far off at low temperatures
and one atmosphere. At the conditions of Orville’s experiments the
fluid phase is considerably less dense than one of comparable composi-
tion at 25°C and one atmosphere, hence should mix more ideally owing
to less interaction between K+ and Nat ions. The recent results of
Gammon, Borcsik, and Holland (1967) provide more direct confirma-
tion of this assumption, and the conditions of their hydrothermal ex-
periments are more nearly those of Orville’s. We shall therefore assume,
until proven otherwise, that the bracketed quantity in (19) may be
regarded as constant at any given P, T, and at the total salt molality
of Orville’s experiments.

! As the total salt molality approaches zero, the ratio Yo+ /Ynaciy must also approach
unity.
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TuE FELDSPAR PHASE

Both hydrothermal syntheses (Orville, 1963; Luth and Tuttle, 1966)
and natural occurrences (Barth, 1951) of coexisting alkali feldspars
show that the miscibility gap is decidedly asymmetric in any given
series and such that the compositions of critical mixing must be at ap-
proximately No.=1/3. This alone shows that a symmetrical formula
(Thompson, 1967, p. 348) based on a Margules expansion, can not give
an adequate representation of the excess Gibbs function. We must
therefore include at least the third order terms in the formulas for the
excess Gibbs function. If the third order terms are sufficient, we may
write (Thompson, 1967, Eq. 70a)

Eex,fsp = ]VOrA7Ab(WGorNAb + WGAb]VOl‘) (20)
From this we may derive the relation (see Thompson, 1967, Eq. 75)

o o ]\‘TOr
(ror — mav) = (uor — pab) + RTIn

Ab

+ WaoNan(l — 3Nor) — WeaNo:(1 — 3Nap)  (21)

for Na-K substitutions in only one crystallographic site (= 1). Equa-
tion (21) can be rearranged in a power series in No,

NOr

(sor — mav) = [(uor — wan) + Weor] + RT In

1Y Ab

+ 2(Wers — 2Wao) Nor + 3(Weo: — Wen) Nox  (22)

Should terms of higher than third order be necessary to describe the
excess function adequately, the resulting formulas for Ge would be
similar in form to (22) but with extra terms added in higher powers of
No;. The bracketed quantity in (22) is constant at any given P and 7.

Before proceeding, however, we must discuss briefly some problems
in dealing with high-temperature alkali feldspars that complicate the
interpretation of the mixing properties. These have to do with the
ordering of Al and Si among the tetrahedral sites, and with the mono-
clinic-triclinic symmetry change that takes place in Na-rich alkali
ieldspars.

No alkali feldspars are yet known that do not have at least a center
of symmetry. The conventional C-centered cell contains 4 alkali sites
and sixteen tetrahedral sites, but the primitive cell or repeat unit con-
tains only half these. In the primitive repeat unit, however, all sites
occur in pairs related by the center of symmetry, hence we need consider
only the formula (Na,K);AlSi;Si;S1;05 to represent all possible limiting
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configurations of centrosymmetric alkali feldspars. In a centrosymmetric
triclinic feldspar the four tetrahedral sites are crystallographically
distinct, hence may have different Al-Si occupancies, but in a centro-
symmetric monoclinic feldspar such as sanidine, T1(0) must be identical
to Ty(m), and T»(0) must be identical to Ta(m). To be crystallographi-
cally identical a pair of sites must have identical occupancy, hence we
shall speak of monoclinic alkali feldspars [or triclinic feldspars that can
invert to monoclinic by means of a rapid hence presumably displacive
(Buerger, 1948) symmetry change] as “m-disordered” feldspars. The
T, and T, sites on the other hand are topologically distinct in the
feldspar framework hence can never be crystallographically identical.
Because of this it is unlikely that their Al-Si populations would ever
be exactly identical, although the observed departures therefrom in
some sanidines and high albites are known to be very small (Ferguson,
Traill, and Taylor, 1958; Ribbe, 1963). By the same reasoning it is
unlikely that any feldspar that formed originally or thoroughly re-
crystallized as a triclinic feldspar would ever be com pletely m-disordered.
This is supported by the structure refinement data of Williams and
Megaw (1964) for a hydrothermally grown high albite. We shall assume,
therefore, that any feldspar that is known to be m-disordered or that
can invert displacively to a monoclinic form, either grew or achieved
its present Al-Si distribution as a monoclinic feldspar.

The feldspars used as starting materials in Orville’s experiments were
synthesized hydrothermally at 700°C and 2 kilobars, ground, then an-
nealed dry for several hours at 1050°C. These were presumably m-
disordered, or if originally triclinic, very nearly m-disordered, and all
presumably also had a high degree of disorder between the T; and T
sites, although more data would clearly be desirable. There is some
evidence (O’Neil and Taylor, 1967; Martin, 1967) that Al-Si ordering
should have proceeded to equilibrium fairly rapidly under the hydro-
thermal conditions of Orville’s experiments, but it is by no means con-
clusive and there is evidence that indicates otherwise (MacKenzie,
1957; Chagnon and Saull, 1966). Because of this there is some un-
certainty in interpreting the exchange data. Some of Orville’s starting
feldspars were grown as monoclinic crystals, others as triclinic crystals,
and they were grown at different compositions hence there was probably
some initial variation in Al-Si distribution. In addition, we are not sure
of the extent of re-equilibration with respect to Al-Si distribution during
the course of the runs. Either initial variations, if frozen in, or erratic
and incomplete equilibration during the runs will produce scatter in the
results derived using the above equations. Furthermore until the Al-Si
distribution in such feldspars is fully known it is not possible in the
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analysis below to separate entirely the effects of simple Na-K substitu-
tion from possibly related variations in Al-Si ordering. We can only
suppose, until we find otherwise, that effects in Orville’s experiments
related to variations in Al-Si distribution are minor and may be ne-
glected.

A monoclinic-triclinic transformation, however, should be considered
more carefully (Waldbaum and Thompson, 1968, Appendix). Whether
the symmetry change is an equilibrium one (hence related to the onset
of ordering between the T(0) and T(m) sites) or the displacive trans-
formation (probably metastable) found in Na-rich, m-disordered feld-
spars, it must be accompanied by a change in the configuration of the
oxygen atoms about the alkali site and should thereby have some effect
on the Na-K mixing properties. There is no clear evidence such as an ob-
served two-phase region that demands a first-order transition associated
with this symmetry change, and it seems likely from the results of Don-
nay and Donnay (1952) that the transition is of second or higher order.
If it is in fact second-order, a plot of volume, V, against composition at
constant P and T (Waldbaum and Thompson, 1968) or of (8G/dNo:) e,
or of (0Gex/dNoy)p,r against composition at constant P and T, should
show a break in slope at the symmetry change. If such a break is well-
marked, a fitted curve that neglected it could lead to serious error on
both sides of the transition. The two sides would then better be fitted
separately. The interpretation of the data when a problem such as this
exists is beset with statistical hazards but must nonetheless be con-
sidered in what follows.

METHOD OF ANALYSIS OF THE EXCHANGE DATA

Considering equations (13), (19), and (22) we obtain

NorM na
RTIn K’ = RT In —
NavMxc1
o o Ynac1¥
=== [(Mor — uab) — (MKD+ = ,uI\EI‘a‘r) + RT In + WGOr:I
YrC1* (23)

— 2(We,, — 2Weq, )N, — 3(Wes, — We) NG,

If we assume a constant y-ratio as discussed above, the bracketed
quantity in (23) is again a constant in any set of Orville’s (1963) experi-
ments at a given P, T, and total salt molality. The quantities in paren-
theses in (23) are also constant at any given P and T, hence for such a
set of experiments (23) may be put in the form

RTINK = ag+ a:Nop + aslVew (24)
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such that @, and a, depend on P and T, and ao depends on P, T, and
total salt molality. The quantity RT In K’ for each of Orville’s runs has
been calculated and the results are given in Table 1.! Plots of RT In K’
versus Nor for Orville’s data at 2 kb and with 2.0 molal salt solutions
are given in Figures 3-8 for temperatures of 700°, 680°, 670°, 650°,
600°, and 500°C, respectively. The method of obtaining the fitted curves
will be discussed below. For the moment we need note only two con-
spicuous features inherent in the data: namely that any adequately fitted
curve must have negative slope and must have positive curvature.

The positive curvature means that We,,>We,, which indicates that
the feldspar solution is asymmetric and such that the composition of
critical mixing must be at No.<1/2 (see Thompson, 1967, Eq. 73). A
straight line of negative slope would imply a symmetric solution with
W >0, and a straight horizontal line would imply an ideal solution. It
is clear then that the exchange data require at least a simply asymmetric
model for the feldspar phase.

It will be noted that

IGex ts
RT In K’ = (const.) p, 7 nnpo T < Py : p> (25)
No: /p.r

and thus Figures 3-8 may be regarded, except for a scale factor on the
ordinate, as plots of R7'In K’ versus No; at the pressure and temperature
in question. Such plots have been used extensively by other investi-
gators in the study of binary solutions (for example, Herington, 1947;
Ames, 1964). These plots have several interesting properties:

For any binary solution where we have a plot of (8 Gex/dN2)p, 1 versus
N, the area, Z, between the curve and the abscissa is

Ny 10Gex
V4 =f —*> dN, (26)
~y \ON:/p,r

but we also have the situation
0Gex
=[— dN,
ip.T oN./p,1

1 Table 1, containing detailed calculations of all of Orville’s runs, may be ordered as
NAPS Document 00101 from ASIS National Auxiliary Publications Service, ¢/o CCM
Information Sciences, Inc., 22 West 34th St., New York, N. Y. 10001; remitting in advance
$1.00 for microfiche or $3.00 for photocopies.

AGex (27)

P, T

and from Henry’s law:
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=1

-RT In K' {kcal)

1 | |
0 0.1 02 03 04 05 06 07 08 09 1.0
Nkaesi,o, (Crystal phase)

- L L L L

F16. 3. RTInK’ vs. N, ion-exchange curve at 2 kbar and 700°C (data of Orville, 1963,
Table 1). Solid line corresponds to isothermal least squares result (33), and dashed line
corresponds to polythermal equation (39). Solid squares are the data points used to obtain
(39). Arrow indicates run 551 which plots off scale at +6.9 kcal.

_ as N,— 0
Gex — O{

(28)

as Ny—>1

Hence

Z = (G — Gex) (29)
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4 ] T I I ] I 1 I I

680° C

-RT In K’ (kcal)

-8 | 1 1 L 1 1 1 1 1
0 o1 02 03 04 05 06 07T 08 09 10

NKAPSi30° (crysToI ph(]se)

F16. 4. RTInK’ v5. N, ion-exchange curve at 2 kbar and 680°C (data of Orville, 1963,
Table 1). Solid squares are the data points used to obtain equation (39).

and when N,”=1 and Ny=0 we must have
Z=Gu=0Gux=0 (30)

From this it is evident (see Herington, 1947, p. 610) that the two shaded
areas in Figure 9a must be equal. For a plot of (3 Gex/0Ny)p, 1 that obeys
an equation having the form of (24) there are further interesting proper-
ties as shown in Table 2 and Figure 9b. Such a curve is, of course, a
parabola with its axis parallel to the ordinate.
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-RT fn K’ (k cal)

1 1 I I 1 L |
0 o0l 02 03 04 05 06 07T 08 08 10

-6 | |
Ngatsijo, (crystal phase)

F16. 5. RTInK’ vs. N, ion-exchange curve at 2 kbar and 670°C (data of Orville, 1963,
Table 1). Solid squares are the data points used to obtain equation (39).

The form of Eq. (24), or its extension to include higher degree terms
in Nor, is such that the data may be smoothed by a polynomial least-
squares fit. Such a fit provides values for aq, @1, @3, etc.,, and when a
second degree (parabolic) fit is adequate we have

— — 1 — 2
WGAb = I/VGl = — 3 302}

— — 1 1
WGor = I/VG2 = — 341 — 32

(31)
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o o % aciE
[(Mm — Hab) — (,uIELr = ,up?;r) — RT In . ' + WGO,:' =gqa, (32)

YrerE

SELECTION OF DATA

In what follows we shall suppose that second degree expansions for the exchange curves
are adequate even though strict application of the Gauss criterion (Worthing and Gefiner,
1943) suggests that forms of higher degree are justifiable in some instances. There are
several reasons for this supposition:

(a) A second degree expression for the exchange curve (a first derivative property)

4 I I 1 ] T T T !

650° C

-RT InK' (kcat)

L 1 1 1 1 L 1
0 0t 02 03 04 05 06 07T 08 09 10

-6 | |

Nkarsi;o, (crystal phase)

F16. 6. RTInK’ 5. No, ion-exchange curve at 2 kbar and 650°C (data of Orville, 1963,
Table 1). Solid squares are the data points used to obtain equation (39).
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corresponds to a third degree expression for the excess functions as in a simple asymmetric
Margules solution (Thompson, 1967). Waldbaum (1966) has shown that a third degree
fit for his enthalpy data on a low albite-microcline exchange series is all that the data
warrants, and Waldbaum and Thompson (1968) show that much of the volume data on
alkali feldspar can be expressed adequately by a second degree fit and that no feldspar
volume data yet warrants a fit of higher degree than the third.

(b) Each of Orville’s exchange curves represents a series of feldspars in which there
must be a monoclinic-triclinic symmetry change. Use of a more complicated expression for

-RT In K’ (k cal)

L 1 1 | 1 I
0 01 02 03 04 05 06 07T 08 09 10

Nkarsiyo, (Crystal phase)

-8 1 | |

F16. 7. RTInK' vs. No, ion-exchange curve at 2 kbar and 600°C (data of Orville, 1963,
Table 1). Solid squares are the data points used to obtain equation (39). Arrow indicates
runs 259, 432, and 445 which plot off scale at 7.3, 7.1, and 4.7 kcal respectively.
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what may in fact be two curves separated by a first or higher order discontinuity would
thus be fictitious.

(¢c) There are probably systematic errors in Orville’s determinative curves, related in
part at least, to the symmetry problem.

(d) The simpler formula, with but two empirical parameters for each excess function
at a given pressure and temperature, is much easier to manipulate and can be readily
modified should convincing evidence show that it is insufficient.

4 I ! T I T 1 T T T

500° C

-RT In K’ (kcal)

-6 ! I | ! ! L I I R,
0 01 02 03 04 05 06 07 08 09 10

Nkarsizo, (Crystal phase)

Fic. 8. RTInK’ vs. No, ion-exchange curve at 2 kbar and 500°C (data of Orville, 1963,
Table 1). Solid squares are the data points used to obtain equation (39). Arrow indicates
run 258 which plots off scale at —6.2 kcal.
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The data in Table 1 and the plots of RTInK’ versus Nor show that the short-term runs
have the greatest scatter. To test this we made a series of least-squares fits with short
term runs successively eliminated (Table 3a), and compared their standard deviations,
finding a minimum when runs of less than 48 hours were eliminated. This application of
the Gauss criterion (Wensel and Tuckerman, 1938) suggests- that equilibration was re-
liably achieved only for runs at 700°C and 2 kbar that were of 48 hours or more duration.
This agrees with Orville’s estimate (Orville, 1963, p. 217) of the time required for equilibra-
tion on the K-rich side but is less conservative than his estimate of 144 hours as the time
required on the Na-rich side. We believe, however, that his difficulties on the Na-rich side
may be related at least in part to other causes to be discussed more fully below.

There is also a relatively large scatter in points near the K-rich and Na-rich ends, even
when only the longest term runs are considered. This shows up in Table 3b where a series

TaBLE 2. PropERTIES 0F RT In K’ IoN-ExCHANGE CURVE AS SHOWN
N Ficure 9b

Ny N, | RTIn K’ d(RT In K')/dN
1 0 const.+Ws 2W,—4W,
w
2/3 | 1/3 const.-l—Tl —2W,
Wy—W,
1/2 1/2 const.— 24 2 — (Writ+We)
114
1/3 | 2/3 const. — 72 —2W,
0 1 const.— W1 2Wz—4W1

Wy

Wy

{b)

RT {nK

AT fn K

W

|
|
|
i
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|

I
|
|

-
I
I
|
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|
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Q Ny {CRYSTAL PHASF)

ok %
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Tic. 9. Geometrical properties of RTInK’ ion-exchange curve: a) equal-area
relation; b) properties summarized in Table 2.
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TanLE 3. EFrECT ON EQUATIONS 31-32 0F REMOVING 700°C ToN-EXCHANGE
Data PoiNTs FROM SUCCESSIVE LEAST-SQUARES FrTs®

. ‘ Least-squares
Duration of {VOr'of mo.st No. of Way, Wao, standard —a
shortest run Na-rlcl.l point dz.xta HEviTtion keal

(hours) retained points (kcal) (kcal) |
Table 3a. Removal of Short-term Runs from All Data

15| 0.010 35 | 249 5.30 0.65 3.93
24 .040 31 2.70 4.78 .23 3.28
32 | .040 24 2,68 4.76 .24 3.23
48 ' .040 23 | 271 49 .21 3.28
9 040 18 ‘ 272 4.83 22 3.35
96 .040 17 2.70 4.82 .23 3135}
144 .040 16 2.70 4.82 .24 3.35
168 .160 4 ‘ 0.84 4.4 .03 3.40

Table 3b. Removal of Short-term Runs After First Removing Compositions

2909, Or and <109, Or

1.5 0.100 27 2.71 4.68 0.22 35115
24 .100 24 2.63 4.66 .22 3.17
32 .102 17 2,70 4.53 .20 3.00
48 .102 16 2.72 4.60 .15 3.09
49 .102 13 2.82 4.57 17 3.06
96 1102 12 2.40 4.58 .16 3.16
144 102 11 2.41 4.57 17 3.16

Table 3c. Elimination of Data Corresponding to the Most Na-rich Feldspars®

48 0.059 17 2.75 4.57 0.15 3.05
48 .102 16 2.72 4.60 .15 3.09
48 L1113 15 | 2.81 4.45 .10e 2.91
48 142 14 2.79 4.49 .10 2.95
a8 1160 13 | 2.8 4.38 .08 2.82
48 175 11 2.84 4.32 .08 2.74
48 .309 10 2.91 4.02 .07 2.36
48 314 9 2.92 3.86 .07 2.16
48 .405 8§ | 293 3.49 .07 1.68
48 .490 7 2.92 2.75 .08 0.74
48 .518 6 2.87 2.29 .07 0.14

* Equation defining standard deviation will be given in Thompson and Waldbaum,
(in press, Appendix B). All values weighted equally in least-squares computations.

® Runs held at 700°C for >48 hours (with runs >90 percent Or omitted).

¢ Isothermal fit given in Eq. (33).
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of fits similar to those of Table 3a is shown, but with all runs where No,>0.9 or <0.1
eliminated. The reason for this is that a given small error in either No, or Mxc1 makes a
much greater difference in InK’ near the limiting compositions than it does elsewhere.
This could be handled in principle by an elaborate weighting scheme to favor the runs in
the central portion, but simply eliminating runs outside the limits 0.1 to 0.9 No. cuts the
standard deviation drastically without undue sacrifice of data.

Although a pruning of the data by the relatively straightforward methods outlined
above brings about a marked improvement in the standard deviation, numerous experi-
mental fits were made to see whether any further improvement could be obtained. Several
of Orville’s final feldspar compositions as given in his Table 1 are enclosed in parentheses
with the notation that their (201) peaks were broad or indistinct. This implies either the
presence of zoned grains or that some grains had not fully reacted with the fluid. Most of
these runs are short term and thus already eliminated. The four survivors are runs 564,
756b, 837a, and 905. (It is interesting that run 564 is the inconsistent one in Orville’s
Figure 2 and accompanying discussion.) Two of these, 564 and 837a, were eventually
eliminated for other reasons given below, but elimination of the other two, 756b and 905,
brought no further improvement and they were therefore retained in the data finally
selected. Certain of Orville’s high-Na starting samples (including run 564) appear to have
reacted sluggishly but most of these were eliminated on a time or extreme-composition
basis and the rest are taken care of in what follows.

The most fruitful approach in a final trimming of the data was to eliminate successively
the more Na-rich runs until no significant improvement in standard deviation could be
obtained by continuing the procedure. The results for the 700° data are given in Table 3¢
and for other temperatures in Table 4. The standard deviation can thereby be cut to about
+100 cal, while still retaining some 50 runs for the least-squares analyses for all tem-
peratures. This procedure was adopted when it was observed that the high-Na runs
plotted consistently on the high side of the best fit curves (Figs. 3, 6, and 7). This one-
sided deviation is, in fact, precisely what would be expected if the true exchange curve
had a break (or rapid change) in slope related to a second- (or higher-) order transition in
the high-Na region. It was on this basis that the final selection of data was made. That this
selection is indeed related to the monoclinic-triclinic transformation is strongly suggested
by the results shown in Figure 10. The solid line is a least-squares fit to MacKenzie’s
(1952) data (circles) on the location of a displacive symmetry change, and it also closely
approximates the results obtained by Laves (1952) on natural feldspars. The dashed
isothermal segments are bounded, where appropriate, by two vertical marks: that on the
right is at the composition of the most sodic feldspar retained by the above procedure,
and that on the left is the most potassic one discarded. The numbers by each are the
standard deviations for the corresponding least-squares fits. If the breaks in the data are
related to an equilibrium symmetry change as we have suggested, then the equilibrium
phase boundary and the displacive symmetry change are virtually coincident at these
temperatures as suggested by Laves (1961, p. 65).

MIiIXING PROPERTIES OF SANIDINE AT 2 KBAR

The data after selection as outlined above yields the following results
for those isotherms with sufficient data to warrant a least-squares fit:
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Caxrorec = 445No:Nan + 2.81 NapNox)
Gexsss'c = 440N Nap + 2.455N anNo,
Gex.r0°c = 4.29No:Nay + 2.21 NanNo, (33)
Coxos0°c = 4.21N0:Naw + 3.14 NanNox
Cox s00°c = 3.90No:Nap + 3.02 NanNox)

where Gex is in kcal mole~!. The number of data points used for each
temperature is given in Tables 3 and 4, the equations are plotted as
solid lines in Figures 3 through 7, and the least-squares standard devia-
tions are given in Table 5.

The temperature dependence of Weg or Wee may be obtained by
formulas (Thompson, 1967) of the type

W
(_i‘> = — Ws, (34)
aT J»

TABLE 4. EFFECT ON LEAST SQUARE FITS OF SUCCESSIVELY REMOVING
THE Most Na-Rice DATA POINT FROM THE EXCHANGE DaTa
(EqQuivaLENT T0 700°C RESULTS IN TABLE 3c)

Diffation Nox of Least-squares

&) mosty NG, W Wor stariarh]
Temperature shortest Na-rich of Al o ndar —ay

. (keal) deviation

run point data (kcal)
(hours) retained  points

670°C 288 0.125 7 2.21 4.29 0.102 2.85
288 .163 6 1.80 4.38 11 3.06
288 214 5 2.86 4.05 .06 2.42
288 .249 4 3.21 3.85 .04 2.09
650°C 288 060 10 2.60 4.83 34 3.26
288 L115 9 3.06 4.36 14 2.67
288 .142 8 3.14 4.21 1208 2.49
288 .170 7 3.18 4.06 09 2.30
288 .208 6 3.18 4.09 11 2.33
ahpeC 96 .035 21 2.78 4.71 23 2.94
96 079 20 2.88 4.57 17 2.78
96 .088 19 2,92 4.48 15 2.68
96 .089 18 2.93 4.46 15 2.65
96 .099 17 2.96 4.37 13 2.54
96 110 16 2.96 4 35 13 2,52
96 117 15 2.98 4.28 13 2.43
96 L124 14 2.98 4.28 14 2.43
96 .200 13 3.02 3.90 .og* 1.96
96 .250 12 3.03 4.00 L8 2.09

8 Isothermal fit given in Eq. (33).
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F16. 10. Monoclinic-triclinic transformation in Na-rich feldspars as determined at
1 atm by MacKenzie (1952) (circles) compared with results of statistical analysis of
Orville’s (1963) ion-exchange data (see text). MacKenzie’s feldspars were synthesized
hydrothermally at 800°C and 981 bars. Squares denote compositions at which the sym-
metry change was placed by Donnay and Donnay (1952, low-Or point) and by Orville
(1967) from analvsis of X-ray diffraction data for sanidine—high albite solutions.

or

d(We,/T) B
< a(1/T)—>p = W (9

but, noting that We =Wy —TWg, or W /T=(Wgu/T)—Ws,, the
procedure finally adopted was to obtain a multiple least-squares fit to
the data for the relation



TABLE 5. MARGULES PARAMETERS FOR SANIDINE CRYSTALLINE SOLUTIONS OBTAINED
FrOM 49 SELECTED DaTta PoiNTs oF ORvILLE (1963).2 ENTHALPY AND GIBES ENERGY
PARAMETERS IN KCAL MOLE™}; ENTROPY PARAMETERS IN CAL DEG ! MOLE™L.

|
Polythermal Isothermal
RnK’' (1/T, N) RTInK' (N)
Margules = | ——
parameter 6 b,=0 ca=0 3
constants constants sy (keal)
Eq. (39) Eq. (40) Eq. (41) Eq. (33)
Wi, —0.46 3.51 4.31 = —
+0.41 +0.21 +0.22
Why, 5.68 3.5 3.00 — —
+0.27 +0.20 +0.20
Wsor —5.05 —0.81 +0.04 - -
+0.44 +0.21 +0.22
Ws,y, +2.96 +0.61 +0.04 - —
+0.30 +0.22 +0.22
Way, 4.45 4.31 4.27 4.45 0.10
° +0.05
700G Wa,y, 2.80 2.92 2.96 2.81
\ +0.08
Way, 4.35 4.29 4.27 4.40 0.0
680°C
Waa, 2.86 2.93 2.96 2.455
Wayg, 4.30 4.28 4.27 4.29 0.10
o +0.12
R, Way,, 2.89 2.94 2.96 2.21
L +0.78
Way, 4.20 4.26 4.27 4.21 0.12
o +0.12
SR Way, 2.95 2.95 2.97 3.14
[ +0.21
Wayg, 3.95 4.22 4.27 3.90 0.08
o +0.08
U Wy, 3.10 2.98 2.97 3.02
\ +0.06
Wayg, 3.4 4.14 4.27 -
500°C
Wayy, 3.40 | 3.04 2.97 — -

= These supercede values given by Waldbaum (1966).
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__ - 0O 0 1
RInK' = — |(Hor — Hup) — (Hyr — Hnas) + WHOT] =
lVOr ch)r
i

- 2(I/I/HAb - 2VI/HO]') - 3(WH01‘ - WHAb)

YNaClE

—0o —o =) as O
+ [(SOr = SAb) - (SK+ == SNa+) — Rln + WSOr]

YKCit

2
+ 2(VVsAb = ZWSOr)NOr —+ 3(I/Vsor = WSAb)i /or (36)

ar

2

R1 K/_b<1 +b<"70r +b([VOr +
n = 0;) 1 T> 9 T) Co

+ c1Nos + ¢ Nox (36a)

The desired quantities may then be calculated from the relations

— _ 13 _27
Wiy, = =30 '3’“} (37)
Wi, = — b — 3b.
= Pl 2
WSAb =30+ 362} (38)
WSOr =da+ 3e
From the selected data we thus obtain
Gex = (—463 + 5.052 T)No:N o,
+ (5679 — 2.954 T) N, Noy cal mole (39)

The standard deviation in R In K’ for this result is +0.10 cal deg™!
which compares with the mean standard deviation of +0.11 in R In K’
(not RT In K’) for the above selected isothermal fits. The exchange
curves corresponding to Eq. (39) are those shown as dashed lines in
Figures 3 through 8.

In using Eq. (36a) as the basis for a least-squares approximation to
determine 6 parameters we are possibly pressing the data beyond its
capabilities. We therefore obtained least-squares equations for the same
data, first with the &, term eliminated and then with the ¢, term elim-
inated. The first must yield a symmetric enthalpy of mixing (Wa1= Wg,)
and the second a symmetric entropy of mixing (W g = W.). The results
for these simplified forms of (36) are:
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Gox = 3514 NorNas
— 7(—0.813 No:Nan + 0.611 NapNoy) cal mole”  (40)
with b, eliminated, and

2

Gex = 4306 NowNap + 3002 NapNog — T(0.041 Ny Noy) cal mole”  (41)

with ¢; eliminated. To eliminate both the & and ¢ terms however,
would yield a wholly symmetrical solution at 2 kbar, and this is not
consistent with known facts. These results are compared in Table 5
along with individual values of W¢ calculated from Egs. (39), (40),
and (41) for 500°, 600°, 650°, 670°, 680°, and 700°C. The standard devia-
tions of (40) and (41) are +0.11 and 3 0.12 cal deg™* respectively, and
are not significantly different from the standard deviation of (39). We
have no reason to believe that either the entropy or enthalpy of mixing
is symmetrical, hence we consider (39) to be the best fitting approxi-
ma tion to Orville’s ion-exchange data.

In comparing these results with other studies, the uncertainties in
the W’s are of greater interest than the values of s, but they cannot
be readily computed from a least-squares solution to (36a). Equation
(36) may be written in a form which combines (19) and (21)

p o = [ s [ YNaClE
Rl K = l:(sSr —33) — Gur — Fwar) + R In == }

YEKC1E
- — _.a -0 1
= [(ng - Hgb) — (Hg+ — Hya +)] ?
: : 6b
+ WSAbx + WSOrZ - W”Ab ? o WHOr ? (3 )

where the variables used in this least-squares solution are

x = 2Nor — 3Nor?
z=1—4No: — 3Nos?

and (1/7), (x/T), and (z/T), from which the Margules parameters of
(39) are obtained directly. Similar expressions can be written to obtain
the Margules parameters of (40) and (41) directly. The precision index
used by the present authors (Thompson and Waldbaum, in press, Ap-
pendix A) for equation of state parameters is the standard thermochemical
uncertainty of Rossini and Deming (1939), and was calculated for each
Margules parameter in Table 5 in the usual way from the diagonal terms
of the inverse normal equations matrix.
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CONCLUSIONS

The results of this analysis show that equation of state parameters
for sanidine solutions can be derived from ion-exchange experimental
data, but it is evident from the results in Table 5 that neither the sign
nor the magnitude of Wg; or Wg; can be obtained with any certainty
from the data now at hand. Because of this a solvus calculated on the
basis of (39) should be accepted as reliable only in the central portion
of the temperature range of Orville’s experiments. Values of W, in this
temperature range are known with much less uncertainty (0.2 kcal)
and are clearly positive.

Waldbaum (1966) showed that calorimetric determination of Wy, for
microcline—low albite solutions yields values on the order of +7 kcal
at 2 kbar with an uncertainty of +0.2 kcal. Similarly, the calorimetric
data of Kracek and Neuvonen (1952) indicate that Wy, for sanidine
solutions must have positive values on the order of several kilocalories.
It is essential to know both the sign and magnitude of Wx; and Ws,, and
to know the values with an accuracy of 1 percent, if these parameters
are to be used in phase equilibrium calculations pertaining to the full
range of crustal temperatures and pressures.

The present treatment of Orville’s (1963) data illustrates the manner
in which a thermodynamic equation of state can be applied to the
analysis of experimental data. This analysis shows that the ion-exchange
experimental method provides considerably more data on a system than
determination of pressure-temperature-composition phase diagrams. It
seems clear, however, that still more experimental work of this kind is
needed on the alkali feldspars—especially in view of the recent work of
Luth and Tuttle (1966) and Martin (1967) and the discontinuities in
the exchange curves suggested by the present interpretation of Orville’s
data. The following suggestions are presented as a guide to future work
of this type:

1. Isothermal ion-exchange curves obtained above the two-phase
region will provide data over a greater range of temperatures and thus
reduce the uncertainties in the Wx, and W, parameters. Obtaining data
above 700°C also reduces possible complications introduced by the
equilibrium monoclinic-triclinic symmetry change inasmuch as a larger
range of compositions will have monoclinic symmetry at the time of
growth. The study of a supercritical ion-exchange curve tends to favor
more reliable results because of the shorter time required for equilibrium,
and the necessity to determine the composition of only a single feldspar.
The appearance of two feldspars under conditions known to be super-
critical (for the feldspar) provides an unambiguous indication of dis-
equilibrium or of difficulties in quenching the run.
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2. As will be shown in Part III, data obtained at different pressures
can be utilized to obtain a polythermal, polybaric equation of state.
Complete isotherms or isobars are not necessary, and data may be ob-
tained anywhere in P-T-N space, provided the number of runs in each
pressure, temperature, and composition range yields a good statistical
distribution of data points. Isothermal, isobaric ion-exchange curves
are more useful, however, in studying the monoclinic-triclinic inversion.

3. In using an aqueous alkali halide fluid phase, the validity of assum-
ing ideal K-Na mixing requires further study. It is necessary that such
a fluid phase be maintained at constant total molality in a given set of
experiments. Other exchange media such as fused alkali halides can be
utilized to maintain a fixed Al-Si distribution in the crystals (Wyart
and Sabatier, 1956), and to work at atmospheric pressure, hence at
higher temperatures.

4. Complications caused by Al-Si ordering in the feldspar framework
in the presence of alkali chloride hydrothermal solutions require that
more than one X-ray parameter be utilized to characterize the feldspars.
It is also essential that the feldspar compositions be determined in-
dependently of the fluid phase as done by Orville (1963), and not by
difference (Iiyama, 1965), in order to make use of the theoretical treat-
ment of ion-exchange data presented here.!

Orville reported “negative” compositions for some Na-rich feldspars
crystallized between 250°-500°C using his (201) determinative curve.
He re-investigated the sanidine-high albite curve (Orville, 1967) used in
his 1963 paper and found no reason to modify it. However, the “nega-
tive” compositions could be readily explained (Part IT) if the Al-Si
distribution in the crystals were more ordered. It would seem desirable
therefore to determine all the lattice parameters of the synthetic feld-
spars by least-squares analysis of X-ray data (Luth and Tuttle, 1966),
and also to determine the compositions independently of determinative
curves based on physical property measurements.
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AprPENDIX A. FORMULATION FOR THE FLUID PHASE

The Gibbs-Duhem equation for the fluid may be written

nu,0dum,0 1 #Naciduxac) + #xddpxcy = VidP — S;dT (A-1)

7 ¥V, S
(—Hi0> dpn,o + Mywordpnacy + Muodpxer = (*f)dP = <—f>dT- (A-2)

st st ik

Similarly
Gf HH,0
Gy = - ( o L + pnaciMwact + prc1Mrc1 (A-3)
of ot

Differentiating (A-3) and combining with (A-2) we obtain, for processes at constant P, T,
#H20, and s
dGy = pxucdM xuct + predMrcl
= (ukcr — pNac)d Mol (A-9)

ar

(G_G/_ = (uKC1 — BNaC1) =

M kel )1’,T,mf,nH20

APPENDIX B. REQUIREMENTS FOR STABILITY IN EXCHANGE EQUILIBRIA

Let us denote the feldspars by g, b, and the fluid by f. We shall consider fully only the
3-phase equilibrium which includes the 2-phase equilibrium (Fig. 1a) as a special case.
We have

G |
(ux.s — BNws) = ( ! ) = Lg |
P

aMK,f
Gy > .
b=y = (=) =B (B-1)
(s =eteat) (BNK,b P Kl
3G,
a aa) = VT = A
G ) (aNK.a)PI =

where the subscript X denotes the components Or or KCI, and Na denotes Ab or NaCl.
Let

N = NK.a T WNaa} Ny = Kb + #Nab; and  ms = #KCLs T ANaCLs
Where the only process is alkali exchange:

0 = dne = dny = dna (B-2)
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also

dng,. = N dNK.o |
|

dng.» = mpdNK.» (B-3)
dnk,y = — dnk.a — dNK.p |
hence we may rewrite Eq. (11) in the text as follows
dG = (mBx — mLk)dNk,s + (madx — nalx)dNx.a (B-4)
This emphasizes that under the specified conditions G ={(Nk,s, Nk,b), hence
oG
(61\7 ) = (mBx — mpLx)
Kb (B-5)
( 3G ) o e [
e = nﬂ . na
ONK.a * . J

5 < 3Gy > 4 ( 3G, ) d i ( 926Gy )
= 0 = ;oan =i ==
= N’/ pr’ e N0/ pr o IM2xs/ pr

we have

(0w ni (i) |
=n, —n
aNZK,b VOKK /KK ONK,;, NK’a

|
%G BNK,:,> (E)MK.y)
— )= - mL
(aNK,baNK,) bBKK(aNK.a I O

Kb b
OMx,
= — npLrx NKf)
5] K.a NK,b { (B-6)
%G ONK.q oMx,
(—) =ﬂaAKK( = ) _"aLKK("‘J
INK,.0Nk.3 Nk Mg ONK.» Mg
oMk,
= — WaLKK< j)
ONK/ Ny,
( %G ) A 2 (3MK,]>
— ) =, — N
IN%K .o = B INK,a N

Relations (B-6) may be further simplified. We may write
dnk,; = nadMx.s

hence, using (B-3), we have

0 = ndNx.a + mdNx.s + #sdMx s (B-7)
hence
(:‘-L-h'h_;) _ |
INwa/ v Hai. | (B-8)

(f}.!-}r}(.‘r) = Ha |
ANK . Ny, Mt |
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and equations (B-6) become

%G np
( ) e (nssBrx + mpLgi)
sf

N
92G G a
G2 2 el ©
ONK.10NK.q INK..0NK.» Nst I
(55 = G + o) |
N'ms _nsf NstAKK + Malxk J

Now for an equilibrium to be stable or metastable (as opposed to unstable or conditional)
the matrix of the second derivatives of G must be positive definite (Gibbs, 1876; 1928,
p- 112; Prigogine and Defay, 1954, p. 224), hence

%G 23
= — (nyB: L >0 B-10
(6N2K.b> = (niBxx + meLlkx) ( )

|G )]
ANk INK 1ONK.a

G G
INK.«ONK 1 INk.a + LxxBxxng) > 0

But we know that Agk, Brx, Lxx are all greater than zero if the phases are internaliy
stable with respect to diffusion, hence the equilibrium is either stable or metastable, the
left hand sides of (B-10) and (B-11) being positive unless critical or internally unstable
phases are present. To obtain the corresponding relations with only one feldspar present,
say b, we may repeat the process with all terms involving @ eliminated. We then obtain
only condition (B-10) which is sufficient.

These conclusions may also be justified graphically using Figure 1 by making use of the
lever law and remembering that the quantitative proportions of the two kinds of feldspar
remain unaltered in the simple exchange process considered.

= 2 (nssBrxxAxk + Lxrnmedrx  (B-11)
Rsf

5

ArPENDIX C. MIXING OF n-Morar KCI axp NaCl SoLUTIONS

Let us consider a quantity of solution such that the total number of moles of salt is
unity (i.e.: nxci+nNaci=1=n; nH,0=const.; nko1=Mxc1; #nac1=Mnac1). We then have
(see Appendix A, Eq. A-3)

¥ Gy = nmeoprno + pxerMwer + Nt Nac1 (Cc-1)
an

4B, = pio + RT In Nu,0vm,0 (C-2)
HNaCl = MEH + ,ug{— + RT In mya+mcr—yNaciz )

0 ] 9
uxCl = uk+ + wol- + RT In mgimor—ykort JI

Combining, we obtain
Gr = Mxo[nmoutio + ubl- + 425 + RT(ns0 In Nuo + Inmer-)]

+ Myocilnmouing + p&- 4 whs + RT (n3,0 In Nu,0 + Inmcio))

+ RT(Mge1In Mxe1 + Mxao1 In Myact)

+ RT(nH,0 In vi,0 + Mic1In yKer® + Myaor In yxaci®) (C-4)
The bracketed quantities in the first two terms of (C-4) are constant for the mixing process
here considered. Now if the liquids are to be said to mix ideally, the last term of (C-4)

must either be zero or a linear function of Mxc at a given P and T. If a linear function of
Mxc this last term may be written in the form
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Mxegx + MNacigNa (C-5)

where gx and gna are constants at any given P and T, and added to the first two terms,
thus preserving the form of the equation of an ideal binary solution. This is possible if
In ym,0 and In vNaor™ vary linearly with Mxci and if In(yrert/yxac1E) is constant. This
becomes apparent if we write the Jast term of (C-4) in the form

YKCIE

RTI:”}IZO(IU i) + (n yvacit) + (MKCI In—— ):I (C-6)

YNaC1E

and bear in mind that the terms in parentheses can contain no powers of Mxcy higher than
the first.

AprpPENDIX D. NOTATION

Special symbols used to denote variables, functions, constants, and
abbreviations will be defined as they are introduced in the text. However,
the following symbols are generally valid in Parts I and I of this series:

q Subscript denoting a phase rich in component 1.
b Subscript denoting a phase rich in component 2.
ai, bi, ¢i Polynomial coefficients.

Cp Heat capacity.

cal Calorie (4.1840 absolute joules).

E Molar internal energy.

= Subscript denoting excess mixing property.

fsp Subscript denoting feldspar phase.

G Molar Gibbs energy.

a Molar enthalpy.

In Logarithm to the base e=2.71828 ...

M; See text following Eq. (6).

m; Molality of j-th species.

mix Subscript denoting mixing property.

7 Number of moles of j-th component.

N; Mole fraction of j-th component.

No: Mole fraction KAISizOs.

P Total pressure on system.

R Molar gas constant (1.98726+0.00008 cal deg—! mol~1).
S Molar entropy.

Sy Standard deviation of least-squares fit.

T Absolute temperature.

v Molar volume.

W; 1

Wi, ij} Excess function parameters.

Wi, Wai

¥; Activity coefficient of j-th component.

Ki Chemical potential of j-th component.
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I Molar Gibbs energy of pure substance at the same pres-
sure and temperature as that of the solution under
discussion.

pe Chemical potential of j-th species in a hypothetical solu-

tion of specified molality at the same pressure and
temperature as the solution under discussion.




