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ABSTRACT

If the interaction energy between layers in a mixed-layer crystal depends only on the
nearest neighbors, and if the excess interaction energy between unlike neighbors is a con-
stant'ar, then the mixedJayer crystals can be approximated by the one-dimensional Ising
model. The equilibrium number of neighbor pairs of all three kinds in a binary (two types of
layers) system can be predicted: if the single parameter zu is large and positive, segregation
into discrete crystals results; if u is large and negative, unlike layers tend to alternate,
forrning a regular 1:1 mixed-layer crystal for equal proportion of the two layers. Intermedi-
ate values of zo result in irregular mixed-layer crystals; only if ze,:0 does a truly random
miredJayer crystal ensue.

The Ising model pertains to crystals of infinite length. For crystals of short lengths, the
mathematical approximation of infinite length may be invalid. The correction factor has
been calculated for binary, 50-50 systems, up to a total of 16 layers; for thicker crystals the
correction is less than 25lo.

For many natural and synthetic crystals, the stacking sequences of the layers have been
rvorked out by analysing the X-ray difiraction patterns and intensities For other crystals,
the probabilities fu1 ol layer succession have been determined by means of the MacEwan
method of direct Fourier transform. Using these data, the values ol the interaction energy
and the excess chemical potentials oI mixing are computed. The interaction energies, either
positive or negative, are on the order of a few hundred calories per mole of AB neighbor
pairs; they may be regarded as the interphase interface energies.

To the extent that the Ising model is applicable, mixedJayer crystals should be regarded
as thermody'namically single phases; this conclusion bears on the phase equilibrium study of
mineral assemblages involving such crystais. The disappearance of mixed-layer minerals in
the diagenesis of sediments and young sedimentary rocks should be a good early indicator of
the "metamorphic" grade of the rock.

INrnooucrtoN

The stacking sequences in mixed-layer crystals have been studied by
many investigators. Most of these studies are concerned with pure de-
scription or with the statistics of mixing two or more types of layers in
a sequence (e.g. Lifshitz, 1937; Hendricks and Teller, 1942; M6ring,
1949); the energetics of the interaction between layers was recently con-
sidered briefly by Sato (1965). Although both Hendricks and Teller and
MacEwan, et al (1961) considered the possibil i ty of nonrandom stacking
sequences, the possible source of the non-randomness has not been iden-
tified.

The one-dimensional Ising model helps in the study of stacking se-
quences in mixed layer crystals. The model assumes nearest-neighbor
interaction with a constant excess interaction energy, and predicts the
existence of discrete crystals of the same layer type, regular 1: 1 mixed-
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layer crystals, as well as irregular mixed-layer crystals. For this reason,
the model serves as a first approximation to real mixed-layer crystals,
and provides insight to the causes of development of these various stack-
ing sequences in nature. By producing explicit thermodynamic relations,
the model also allows one to make predictions on the properties of those
mixed-layer crystals for which direct data are lacking.

A g"p exists in conception between: (1) crystallographic parameters
measured by X-ray diffraction, and (2) thermodynamic parameters
dealing with the energy relations and the phase status of mixed-layer
crystals. Because the results of the Ising model can be expressed in terms
of run lengths of layer types, which at least in theory are quantities mea-
surable by X-ray diffraction, the model is a direct connection between
these two sets of parameters. This feature of the model makes it par-

ticularly useful in suggesting directions of further inquiry.
With a few salient exceptions, the statistical-mechanical approach to

one-dimensional crystals has dealt with crystals of infinite thickness.
When the crystal thickness is finite, the infinite-crystal approximation
becomes invalid. A simple method of computing the partition functions
of binary mixed-layer crystals of very short lengths has been devised.
The results contain some interesting features. For instance, the statisti-
cal distribution of the various types of neighbor pairs in a finite chain
may not correspond to random distribution even though the excess in-
teraction energy is zero ("ideal mixture"); this stems from the fact that
the end effects are significant for short chains. For chains of finite length,
therefore, it is necessary to estimate the values not only of the excess
interaction energy, but also of the interaction energies of various types
of neighbor pairs.

One might object to the present approach to the study of mixed-layer
crystals, pointing out that the sequence of stacking of layers might be
controlled by kinetic factors of crystal growth rather than by equilibrium
considerations: the stacking sequence might reflect, thus, some periodic
stacking faults, as exhibited in polytypism of biotite (Ross el al t966),
perhaps analogous to screw dislocations (see discussion by Verma and
Krishna, 1966, p. 319) which originated during the initial stages of
crystal growth. Such stacking faults are examples of long-range forces,
outside of the domain of the Ising model; we do not yet know the impor-
tance of stacking faults as control of stacking in mixed-layer minerals.

A particular stacking sequence may be the result of accident of crystal
growth, or inherited from some pre-existing crystal. If the mixed-layer
crystal is not in internal, homogeneous equilibrium, of course, no thermo-
dynamic model, however sophisticated, can be used to describe it; but
if homogeneous equilibrium does prevail, a model such as the present
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one is useful for comparison against the real stacking sequence. This is
true, regardless of whether the equilibrium is stable or metastable, and
regardless of the origin of the stacking sequence. Let it be emphasized
that the Ising model is not necessarily the correct one for a given mixed-
layer crystal; however, it is one step beyond the commonly but tacit ly
held assumptions that the stacking sequence of mixed-layer crystals is
either random or so influenced by unknown factors that it is beyond the
realm of rational study. The former assumption we now know to be
false, and the body of information on the apparent regularity of stacking
of many types of mixed-layer crystals, some of which are cited in this
paper, indicates that the latter view is too pessimistic.

Fonlrer RBrnrroNs

General remarks. In this section of the paper, we examine the formal
problem of mixed-layer crystals in the light of the Ising model and de-
duce some of.its consequences. Only systems containing two recognizable
types of layers, chemically andf or structurally distinct, will be examined;
for simplicity they will be referred to as "binary" systems. Two distinct
categories of mixed layering should be differentiated because they present
different mathematical problems. The first category is mixed layering in
which each of the two types of layers, A and B, retains its identity. If
I[r and /[e denote the numbers of the two types of layers, then the re-
strictive conditions are:

and

l / e * I [ n : ] Y : c o n s t a n t

ItrA : constant

(1a)

(1b)

Among examples of minerals having two types of layers are dolomite and
the mixed-layer clay minerals.

The second category of mixed layering is one in which the two types
of layers are interconvertible, being mutually distinguished only by the
spatial orientation of the successive layers: designating one orientation
as layer type A and the other orientation as layer type B, we allow the
proportions and sequence of the two orientations to vary. The restric-
tive condition then reduces to (1a) alone. The term "polytypism" has
been applied to this type of mixed layering; examples are the various
solid SiC phases and ZnS phases, as well as biotite (Ross, Takeda, and
'Wones, 

1966). In this paper, we consider only the first category.
It might be argued that because layers are two-dimensional objects,

their stacking cannot be regarded as a one-dimensional problem. How-
ever, if the two types of layers cannot interchange material between
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them, and if the layers are sufficiently large so that edge effects can be
ignored, then the crystal can be fully characterized by the sequence of
stacking of the layers in a single dimension. It is, of course, necessary
that the two types of layers have the same overall electric charge, so that
interchanging two unlike layers does not lead to electric repulsion: we
do not, for instance, regard chlorite as a mixed-layer mineral, composed of
the talc-l ike layers (charge- 1) and the brucite-l ike layers (charge*1).

Def.niti,on of symbols used.

A, B:Labels identifying two chemicaliy andf or structurally dis-
tinct types of layers in an Ising crystal

F, Fa,Fs: Equil ibrium number of runs of A or B
rK(l/):The quasi-chemical "equil ibrium constant" relating /y'u,

ly'ee and lfre as a function of lY
Z.q.:The length of a run in A
Ze:The average equil ibrium length of runs in ,4
1/:The total number of layers of all kinds

ly'a,Nn:The number of Iayers of A and B
/[,;:The equilibrium number of neighbor pairs between i. and j

for  g iven l f  ( i , . i :A,B)
/[,,r0:The number of iy'1, at the limiting condition of total segrega-

tion of layers

Q: The partit ion function

Qs:The configurational partit ion function for an ideal system
R:The gas constant
?:The absolute temperature

W:The excess interaction energy between the AB type of layers,
per mole of neighbor pairs

i,7:Dummy indices for A and B
fr : The Boltzmann constant
m:The number of AA type of neighbor pairs in a particular

configuration of I[ef I[s layers
n:The number of AB type of neighbor pairs in a particular con-

figuration of l[e*ly's layers

fu:The probabil ity coefficient of an ith layer being followed in
a specified direction by a 7th Iayer (i, j : A,B)

ar:The excess interaction energy between the A-type and the
B-type of layers per neighbor pair

w,i:The interaction energy between the ath and the 7th type of
Iayers (ay:  A,3)

:re:The mole fraction of the A-type laver
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z:The number of nearest neighbors for a given particle or layer
in the lattice

0:An abbreviation; see equation (4)
p'e:The excess chemical potential of mixing for the A-type layer

4 : e - w A B / k T

4 : 9 - w n a / k T

? :  e - * B B / k r

Staching sequences in mired-layer crystals. Mixed-layer crystals can be

classified according to the stacking sequences of the layer units. When

two types of layers, A and B, form separate crystals of A and B, a me-

chanical mixture of two phases results; when A and B form regular 1:1

mixed layeringl, such as in ideal dolomite, the resulting crystal is pre-

sumably a single thermodynamic phase. Between these extremes are

crystals in which the A and B layers may show (1) a tendency to segre-
gate, (2) completely random mixing, or (3) a tendency to alternate.
These categories are, collectively, referred to by clay mineralogists as
ttrandom mixed-layer" minerals. The term t'random", however, is inap-
propriate except for situation (2) above; for this reason we wil l use the

term "irregular mixed-layer" minerals.
The various types of stacking can grade into each other; they have

been characterized by MacEwan (1956a, p. 97) using the parameter

fo i  ( i ,  j :A,B) ,  and by Hendr icks and Tel ler  (1942,p.156) by the pa-

rameter A(t, and an auxil iary parameter A; both fei and 4t;r) give the
probability that an i-type layer is followed in a specified direction along

the lattice by a 7-type layer. As wil l be seen later, these descriptive pa-

rameters can be related directly to a quantity w, the nonideal or excess

interaction energy between A and B layers, as given by the theory of the

Ising model. These various terminological equivalences are collected in

Table 1.

The one d,imensional Ising model. The Ising model was proposed (Ising,

1925) to explain the behavior of one-dimensional ferromagnets. The two

entit ies are the two orientations of the atomic magnetic spin, as such they

are interconvertible and only the total number of atomic magnets remains

constant. Rushbrooke subsequently solved the problem of the one-

dimensional Ising lattice by means of the grand partit ion function (see

1 The case of ABAB . . . is, for our purposes, indistinguishable from ABBABB ' ' '

because the double layer BB can be regarded as a single layer. The same redefinition is

possible whenever the same number of layers of each kind is involved in a repeated se-

quence.
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Fowler and Guggenheim, 1952, p. 359-366 for a summary discussion);
this solution is therefore applicablel to the case where the condition (1b)
as well as (1a) is obeyed.

The properties that may be used to characterize the one-dimensional
Ising model are as follows:

1. There exist the quantit ies tea$,tsl.nr and zoas (:zrr"o), which are
the interaction energies respectively between the AA, BB, and AB pairs
of particles or layers. These quantities are assumed to be constants, not
only independent of T, p, the mole fractiorr ta:1["/(1/a*1/s), and the
Iocation of the pair in the lattice, but also independent of the nature of

Taslr 1. Cr,essrlrcerron on Cr,av MrNrnar-s TnRMrNoLocrcAr, Eourvar,rNcrs

Structure type
Interaction
energy, @

MacEwat, el, al MacEwan parameter

(1961) name lu

Hendricks and
Teller (1942)
parameter, .4

Discrete crystallites

Non-random irregular
mixed layering; segrega-
tion

Random mixed layering

Non-random irregular
mixed layeringl alterna-
tron

Regular 1:1 mixed layering

mechanical mixture of cr5re- 1
tallites

Zonal structure; partially 1/2 <p*<l
random interstratifica-
tion

Random interstratification 1/2

Partially random inter- O <baa<1/2
stratification with ten-
dency to alternation

Alternating regular inter- O
stratification

f o

*  o  ) p ) O

o

O ) p )  -  -

+1/4

+ r / 4 > A > O

o

o > A >  - 1 / 4

- r  /4

the neighbors that adjoin a given pair of layers. This last assumption
implies that only nearest neighbor interaction is considered in the model.

2. The excess energy of interaction between unlike layers is defined
bv the relation

w : w A B - ( * o o J - t a n r ) / 2 (2)

this quantity is also a constant.
3. There exists a one-dimensional lattice along which are located posi-

1 The grand partition function refers to a system in which the components are perfectly
mobile or "boundary value components" (Zen 1963, p.930); the values of the chemical
potentials of the components are externally controlled The grand partition function con-
siders a problem in which the chemical potentials of the components are equilized between
the "system" (a canonical system) of interest and the infinite reservoir of equivalent sys-
tems. The different types of layers can be considered therefore as moving in and out of the
canonical system until the desired relative proportions of the layers specifed in the prob-
lem obtains.
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tions for the layers or particles (Fig. 1). Each position must be occupied by
one and only one particle (a "particle" could be a vacancy, however;
this corresponds to the problem of linear surface adsorption). The posi-
tions are all equivalent, though the actual Iocation of the point may
shift slightly along the lattice to accommodate layers or particles of dif-
ferent sizes. The location of the position, per se, does not impose a bias
on the type of particle or layer that occupies it.

Accepting these simple physical assumptions, the equilibrium config-
uration of the A and B layers can be solved rigorously by means of the
grand partition function, from which all the equilibrium thermodynamic

l l l l l t l l
l l  |  |  |  I  I  Ir r r r r r r r r t l t l l l l

A A A A A A A
B B B

Frc. 1. A schematic representation of the one-dimensional Ising crystal: an infinite chain
of equivalent lattice positions each occupied by one, and only one, particle (or layer). The
forces between particles extend only to the nearest neighbors, of which there are two for

each particle. In the example, there are 16 positions, occupied by 8 layers of Aand 8 layers of
B. There are 4 runs in A, and 4 runs in B;there are 4 AA neighbor pairs,4 BB neighbor
pairs, and 8 AB neighbor pairs, indicated by arrows (because the chain is infinite, the neigh-

bor pair at the left end is not counted).

parameters can be obtained. For instance, the excess chemical potential
of component A, t" ' i ., is (Fowler and Guggenheim, 1952, p.360):

641

A
B

where

(3)

(+)
(note that for zs:0, p'e:0), fromwhich theentropy of mixing can be
obtained by differentiation. As Fowler and Guggenheim pointed out
(1952,p.358), for wl} the entropy of mixing must dif ier from its ideal
value.

The average numbers of AA, BB, and AB neighbor pairs for any- value
of rp is given by (Rushbrooke, t951, p. 300)

K(*) : /y'ee Mss/Iy'rs2

: + exp (2w/kr) (s)

A - l l 2 r a
t - t t ' :  k T  l n '

re,(t I 0)

B : [1 | 4xars(ez- tnt - 11]rtz

where the notations, /y'aa, etc., refer to the equilibrium (i.e. the statis-
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tically most probable) values of ffaa etc. along the chain. Equation (5)
resembles the form of the Mass Action Law for chemical reactions; for
this reason the model is a special case of the so-called "quasi-chemical"
model. The resemblance has a physical basis, for the formation of AB
pairs in an infinite chain can be written as a reaction

2/y'rs : ly'ee * ly'se (6)

with an accompanying change in the energy of the system equal to -2w.

Equat ion (5)  predicts  that  for  w:0,  K(*) :1/4.  For  zo)0,  exp
Qw/kf))1, so that l ike-neighbor pairs are preferred. This is the situa-
tion of "segregation" of layer types; in the extreme case of w--++@,
lfes becomes vanishingly small relative to Aie or ff i, so that discrete
crystals of A and of B result. On the other hand, for ro(0, exp (2w/hT)
( 1, and the AB type of neighbor pairs are preferred. This is the situation
of "alternation"l in the limiting case of w--->- @, exp (2w/kT)---+0 and
either all the A layers are sandwiched individually between the B layers,
or vice versa, depending on which type is more plentiful: if /y'r:I[8, a
regular 1: 1 mixed layer crystal results.

In the special case of Iy'r:I[s, because of the relation (6), equation
(5) may be written as

(ffeelffee) : + exp (u/kT) (5')

We define a "run" as a consecutive sequence of layers of a given type,
terminated at each end by a layer of the other type, or by the end of the
chain. The length of a run in A is denoted by L". The average Iength of
all the Za's in the chain is then qiven bv1

Lo: t ooro(o)/oo
i : t , 2 , 3 , .  .  .

: !{r/Fr (7)

where Fa is the most probable, or equilibrium number of runs in A in the
chain and o; is a weighting factor, proportional to the frequency of oc-
currence of runs of length Ir. For a binary system of equal proportions,
Tt :Tn;  i f  in  addi t ion w:O,Tt :2 according to (5 ' ) .

The problem of one-dimensional lattices of infi.nite length and zi.r:0
has been examined by Chayes (1957, 1958) using a purely statistical
approach. Chayes'results are in accord with those derived from the Ising
model by setting ar:0.

I The quantity 11 is, strictly speaking, a double average, because it refers not only to
average of all the runs in a given configuration, but also the average over all a priori equally
probable confi gurations.
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Ded,ucing thermoilynamic parameters of mi,xing from run length. Let Fa,
as before, be the equilibrium number of runs in A. In a chain of infinite
Iength where the end effects can be ignored, Fs:p":p, and the total
number of runs of both kinds is 2F. Moreover, 2F: N a1'.

The number of AA neighbor pairs in each run of A, of length Za, is
Lr-1.  Therefore,  l fAA-: (Zo-1) 'F,  whereT:Ne/  F.  L ikewise,  we have
Ln/ : I{n/ F, and Zs - l: Nr.l./ F. Substituting these relations into equa-
tion (5), and remembering that Tn/7"--Na/ I{e:ssf *a, we get

and

K(*) :  (Lo -  1)(Z'  -  r)F' / (zF) '
: I exp (zw/kT) (8)

(To - 1)(Zu - 1) :  (Zn - t , ( '^  t^ -  t )

: exp (2w/kT)

Solving the quadratic equation for Ls, we obtain

T^:U+{@l /z*s
:  (1  f  g /2rn (10)

Where B is defined by equation (4). For rzr)0, the positive value of the
square root is to be chosen; for ar:0 it leads toLn:lf xs, a result also
produced by Chayes ( 1958) . For zo ( 0, on the other hand, both roots may
be correct, depending on the value of rc^;IorLl--->- @ the two roots give
the values of 1 and rt /xn,r which are correct for re less than and greater
than 0.5, respectively.

For values oI wl}, either equation (9) or (10) can be used to solve
Ior Lr as a function ot2u/hT for isopleths in re. The relations are most
readily portrayed graphically, and are given in Figure 2 (here we plotted
2W /RT, so that the value of trZ is the excess interaction energy per mole
of neighbor pairs).

We can, moreover, combine equations (3) and (10), to obtain

pt' : hT ln
L t r s J - r t - 7

LfiCNrr^

Formulas (9) and (11) provide direct I inkages between Za, obtainable

1 This relation can also be obtained directly by observing that when y'[aa:0, then

Nla:2Na.

(e)

(1 1)
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o 4 8 l ? t 6 2 0  2 4 ? F -

a^

Fro. 2. The quantity 2W /RT as a function of the average run length in A, Za, for difierent
values of *e.

at least in principle from X-ray difiraction
essential thermodynamic parameters for
cr)5tals.

F
E

=
ol

data (see Apprrc.ttroxs), and
one-dimensional mixed-layer

Efect of f.ni.te crystal, size. The statistical mechanics of the one-dimen-
sional Ising model discussed so far assumes the existence of an infinitely
long chain. This assumption is fundamental to the mathematical pro-
cedure used to compute the partition functions. Chayes' purely statistical
run theory for ideal mixtures of particles or layers, Iikewise, assumes in-
finitely large samples.

X l = . 8
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In a real situation, especially for the clay minerals, the validity of the
"infinite crystal" assumption is questionable. The "thickness" of clay
minerals in the c* direction is commonly on the order of 0.1 micron or
Iess; this corresponds to approximately 100 layers. Indeed MacEwan
(1958) and MacEwan, et al (1961, p. 401 ff) computed the X-ra)' dif-
fraction patterns for 3, 4, 5, and 10 layer clays and found these patterns

useful for comparison with real samples I How much error is introduced in
using the "infinite crystal" approximation for these crystals?1

A useful way to measure the error is to calculate K(.f/) : Nraly'ss/
ltro"', *hi.h is equation (5) generalized for finite values of 1[. Let us

suppose for the moment that w is zero, i.e., the system is thermody-
namically ideal. According to equation (6), K(a):I/a.

The number of distinct ways in which /y'e layers of A and /y'e layers of

B can be arranged in a line is given by the combinatorial formula,

0o: (1/e * ffe)!/1/AlltrBl {J2)

For w:0, this number is exactly the configurational partit ion function

for the system. Our task amounts to counting, for a given Iy'a and /y'n,

the total number of neighbor pairs of each kind for all configurations,
assuming, as is customary, that each configuration of the A and B units

along the chain is a priori equally probable. We can then obtain ly'er

etc. readily, because /y'eo.: I{gf Qo, etc.
For a chain of finite length, the total average number of neighbor pairs

of all kinds no longer equals the total number of layers' Instead we have

iy'u f lfen * -Aree : I/e * lVs - 1

and also the condition at complete segregation,

(13a)

l i r ^ " t :  n l r  -  1 ,  lV r ro : I y ' n  -  1 ,  f " r o :  t (13b)

Unfortunately, we have not solved the general problem of counting 1fae,

etc. as a function of N and of trA, even for the special case of x,+:l/22.

Nonetheless, by actually enumerating these quantities Naa' .lfss, and

1 Norn eoorn lu pnoor: Since the rn'riting of the paper, the following references, pertinent

to the discussion, have come to my attention: R. W. Rex (1966) Authigenic kaolinite and

mica as evidence for phase equilibria at low temperatures, Clays Clay Miner , Proc. Nat.

Conf .13,95-104; Emerson, W. W. (1962) The swelling of Ca-montmorillonite due to water

absorption. I. Water uptake in the vapour phase. "I. Soil Sci 13' 31-39.
2 Aside from the fact that the ends of the chain can no longer be ignored, the problem is

further complicated by the fact that the location of a layer at a given position afiects the

probability of occupancy of the next position by a particular type of layer, because the

value of ra is changed by each successive assignment of layers to positions.
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/y 'en for  such symmetr ica l  cases,  for  Iy ' :2 ,  +,6,8, . . . . . . .16,  the values of
K(1/) are found to follow the relation:

K(10 : ly'e-c. ltrna/Iy'es2: (+- +)':+(Y)',
The factor

/ N - 2 \ ' ,

\ - "  /

is the correction for the finite chain length; it approaches unity as /y'-->
* oo. The fractional correction is

(14)

(16a)

(16b)

(r7)

(18)

K(.o) - K(1/)
aK(1/)

K ( - )
: 4(1r - r)/N' (1 s)

The values of K(I/) for unequal numbers of ntre and /y'n have also
been computed for even /y', up to 1[:16. The results, together with
those for the symmetrical cases, are presented in Figure 3. It is obvious
from the figure that the family of curves is asymptotic to K( @):l/4
regardless of the value of ra, confirming that equation (5) derived from
the grand partition function, is independent of ra.

For the case of /[e:Iy'n, z,:0, and w^A:wBB [see p. 649] we can also
compute the average run length as well as the average number of runs
in a given sequence, using equation (14). Let Fe be the double-average
(equilibrium) number of runs in A for a chain of specified finite length,
and let Za be the double-average length of the runs in A; then

and

Sett ing now

FrL r :  Na

FnZs : 1trn

F e * F n : l / e s * 1

Urrz(N) : NMf t{le

l { - 2
- 

zIV

(ffea : //ns)



we get

and
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F e : F n : ( I I + 2 ) / 4

L^ :  Ls  :  N1t /F1- :  2 : { / ( l {  +  2 )

647

(1e)

(20)

(2a)

(2b)

which correctly reduces to the value ol 2 as ly'-> oo.

The formulation of the partition function for nonideal systems having
finite chain lengths is difficult. A matrix method (see Hill, 1956, p. 318-
327), involving interconvertible entities, has been successfully applied
to the helix-coil transition of polypeptides.r Krivoglaz and Smirnov
(1964, p. 145 fi) discussed a matrix method for binary alloys in I, 2, and
3-dimensional crystals that uses the grand partition function and is ap-
plicable to any value of ra.

For our purposes, however, a much simpler approach can be used; this
involves the direct enumeration of /y'-t-a, Iy'en, and /[ee, which

can be readily accomplished for small values of 1/ with the aid of a com-
puter. Multiplying both sides of equation (2) bV 2/kT and taking the
exponents, we get,

g2w I kT : g2uss I kT g-usslhT g-wse I hT

which will be abbreviated as

62ulhT - 
V2o,

As we are interested only in the relative energy values, let us assign the

value of unity to 7; the values of 4 and d are adjusted accordingly. For a
given set of values of ra, Iy'a and /y's, we could enumerate all the config-
urations of A and B along the chain, and, assuming that each configura-
tion is a priori equally probable, calculate the contribution to the parti-

tion function from each configuration by assigning to each AA neighbor
pair the multiplicative factor a, and to each AB neighbor pair, the factor

4. Each configuration will then contribute a term in the form ol4"a*,where
m and n are the numbers, respectively of the AA and AB neighbor pairs

present in that particular configuration; the partition function is in the
form of polynomials in 4 and a. As an example, consider a system in which

1 In the polytypism of e.g. biotite, where the stacking problem for the layers refers to

difierent orientations of the self-same layers in the ab plane (Ross, Takeda, and Wones,

1966), the different "layers", being just different orientations, are interconvertible With

suitable modifications to account for the symmetry of the layers, the matrix method should

be applicable to these problems of polytypism. For this reason, several references to the

treatment of the helix-coil transition are included in the referenCe section: Peller (19594,

b);Zimm and Bragg (1959); Zimm, Doty, and Iso (1959);Lifson and Roig (1961);Apple-

quist (1963); Poland and Scheraga (1965).
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Fro. 3. The asymptotic behavior of K(If). Individual computed values are shown in
circles; the straight line segments connecting the circles are meant to aid the eye and have
no meaning. Notice that for sufficiently large ff, all the curves approach the value of
K(o;:1. The inset shows the asymptotic behavior more clearly by using a logarithmic
scale so that 1[ is as large as 104. The excess interaction energy is taken to be zero in all cases.

*r : l /2 ,  and nfA: / t rs :2.  There are 4 l /2!2! :6 d is t inct  conf igurat ions,
namely AABB, ABBA, ABAB, BABA, BAAB, BBAA. Their corre-
sponding contributions to the partition function are an, \2, \3, 13, d1z, aI.
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'fanlr 2. CoupemsoN or Vlruns or K(N) UsrNc DrlrnnoNr EqulrroNs, lon

lfA:/i/B:2' fu Is Assuuro TI{AT "y:l ANo a:0.5

n2
1l

o/n2

2W/RT:\rc/a'

K(N)
K(o)  (eq .  5 )
K ' (o ) :711* ;  (N-2 /N) '
(eq. 14)

100[r '(o)-K(N)]
AK:

K ' ( * )

0.09
0 . 3
J . O

+ r . 7 2

o.252
1 . 4
0 .35

2e%

U . J

0 . 7 r
1
0

0.0617
0.250
0.0625

I '47o

3 . 0
r . 7 3
r/6

-  1 . 8

0.00870
o.0417
0.0104

r6%

Therefore, the partition function is

Q  :  2on  *  q ' l  a4 '1  2q3

We can calculate AI,7 because (see Davidsofi, 1962, p. 380)

Iy',s.e : (d ln Q/d ln a)q

f f en :  (a lnQ/0 lnq )a

We find that

1 y ' e e : a n Q l d / Q

ltt"" : 2q(a I aq * n -l 3n')/Q

(2r)

(22a)

(22b)

(2sa)

(23b)

(23c)

(2+)

so that

and

1'r"" : 3- lirAB - 1't^" : q(2a + d/Q

K(4) :Iy'ee /y'ss/^Ares

r f  a (21n )Qa |d  I: 
it@ + ,t + "n + s,t'Y)

As illustrations, in Table 2 we present the values of K calculated by three

methods for the symmetrical  -layer case, for several arbitrarily chosen

values of q, a and "y. We see that the use of equation (14) eliminated the

bulk of the discrepancy caused by the infinite-chain assumption. How-

ever, the nonideal term contributes further to errors which are not cor-

rected by the use of equation (14). Moreover, the small difference be-

tween the values of 1f(1/) from equation (24) and from equation (14) is

real and is caused by the nonequality of a and 7; this apparently stems
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from the fact that the quasi-chemical equation (6) is no longer valid and
the end-of-chain effect comes into plav even where zl ':0.

O""rr"otro*,

Problem of def.ning a "neighbor pair" i.n a mired.-layer crystal. Our discus-
sions so far have been strictly qualitative, so that it did not matter what
individual "neighbor pairs" signify physically. When, however, we at-
tempt to attach numerical values to the quantity w andf or p, it becomes
imperative that the concept of a "neighbor pair" be more clearly stated.
Unfortunately, it is not at all obvious, a priori, what physical entity a
"neighbor" should correspond to. Clearly it is not the layer itself; for
otherwise we should be able to double the number of neighbor pairs
(and thus the total excess energy of the system) simply by slicing the
crystal in two in a plane normal to the layers, obviously an absurd sit-
uation. On the other hand, a "neighbor pair" might correspond to an in-
dividual atom or group of atoms that forms the.physical connection be-
tween adjacent layers. Ignoring edge effect, an acceptable choice of a
"neighbor pair" must be independent of the actual dimensions of the
layers. If the proper choice of neighbor pair is made, the calculated value
of trZ should lead to a measure of the interface enerqv between the two
types of layers.

Ded.ucing W from X-ray d,ifraction d.ata; Eramples. Equation (5) pre-
dicts that segregation of the layers into discrete crystals of different types
can happen only when W--l oo. In practice, however, the restriction
may be much less stringent, as the hypothetical example below indicates.

Consider a sample in which two layer t1,pes, A and B, both 10 A ttrick
and potentially capable of layer mixing, are found as grains of pure A
and pure B, in mutual chemical equil ibrium. The crystals average 1
mm on the side and the two types of grains occur in equal abundance.
There is l i tt le doubt that these crystals wil l be accepted as discrete
thermodynamic phases. Now a crystal 1 mm thick contains 106 layers,
so that if we identify the average grain thicknesses with the quantity
T, thenfromequat ion(8)  or f igure2we obta in l0r2 -  exp (2W/RT),and
W/T-27.6 cal/mole deg. If the equil ibrium temperature was 600"K,W
becomes 16.6 kcal per mole of ffes. However, inasmuch as only one out
of 106 layers encounters an AB neighbor pair, the excess energy is no more
than 0.016 cal per gram atomic formula of the phase. It therefore appears
that megascopically discrete crystals, presumably to be identified as
phases, can obtain with values of I,tr/ so small as to be calorimetrically
unmeasurable.

Quantitative eualuatiom of W. MacEwan (1956o) presented a method of
direct Fourier transform whereby it is possible to detect from the X-ray
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diffraction pattern the presence of such packets of layers as AB, AAB,
AAAB, . . . The relative abundances of these packets are derived from

the heights and positions of their X-ray diffraction maxima, and lead to
numerical estimates of the probabil ity factors P,ti ( i, j : A, B I see T'able 1).

Because the factors Pt in a binary system are directly proportional to
1V"r', the results of the MacEwan transform lead to estimates ol W/T
insofar as the plr's thus calculated are good approximations of the true
values oI the p,;is. An additional, tacit assumption is that the clay min-
erals studied can be statistically regarded as infinitely thick crystals.

As an example, a Li-saturated montmorillonite from a Wyoming ben-
tonite (Brown and Greene-Kelly, 1954) contains two types of layers.
MacEwan (1956a, p. 103) calculated that p*:pen:0.33, pm:0.67
(rr=0.5). Thus, inasmuch as the AB and BA neighbor pairs are not
distinguished in the Ising model, 1[oi:Fee:0..1.t7, and 1ies- 1.34J,
where/ is a proportionality constant. Substituting into equation (8), we
get 2W/RT:-1.4. If the homogeneous equil ibrium was attained at
300oK, trtrl becomes -420 cal per mole of AB neighbor pairs. The negative
sign signifies that the layers tend to alternate and the AB neighbor pairs

are preferred.
A second example is a clay mineral that consists of two types of layers:

vermiculite-like and/or chlorite-like (A) and montmorillonite-like (B),

examined by Bradley (1953). MacEwan (1956a, p. 10a) showed that
pr t :0 .65,  pw:0.7 5,  pee:0.35,  and pne:0.25 (x t :0.43) .  Therefore,
proportionally l '"o : 0.05,,! '"" : 0.75, and ff i : 0.60. Substitution into
equation (8) yields TW/RT: *1.7. Assuming an equil ibrium tem-
perature of 300oK, W: +510 cal per mole of AB neighbor pairs. Note

that the mixed Iayering is between a dioctahedral and a trioctahedral
unit; the positive value of trZ is reasonable because there is considerable
difference in the dimensions and atomic arrangements between these
two types of layers and work must be performed onto the layers to cause
them to fit.

Sato (1965) presented data on the values ol p"i ior another illite-
montmorillonite sample; unfortunately his data are graphically presented
and can only be imprecisely interpolated. Nonetheless, approximately

P la :0 .63 ,  f sn : } ' l l ,  Pe ; - * . f r .A , : 1 .26 , ra :Q . l 1 ,  so  t ha t  2W/RT :  - I . 2 .

Table 3 gives, for the samples of Sato and MacEwan, the values of
2W / RT, Tn, 7", p't / RT, and p,'ef RT as computed from equations (10)

and (11) .

Possible eramples of W <-0. If. W <0, unlike layers tend to alternate.
All 1:1 regular mixed Iayer crystals belong to this category. A good ex-
ample is dolomite, which consists of 1: 1 regular mixed layer of CaCOa
and MgCO3, confirmed by recent X-ray structure analysis (Steinfink
and Sans, 1959, p. 680)
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The MgCO3 and CaCOg layers in the metastable protodolomite are
apparently irregularly distributed along the c direction (Graf, Blyth and
Stemmler, 1957). The large negative value of tr/ deduced for dolomite
suggests that the two types of layers may tend to alternate, and so the
the value of L may lie between 2 (random mixture) and 1 (perfectly
ordered alternation). Likewise, it seems reasonable to surmise that layers
having compositions approaching CaCO3 and N{gCO3 exist in the crystals
of high-magnesium calcitesl these layers presumably tend to alternate so
that the MgCOa-MgCO3 neighbor pairs are avoided.

Kohn and Eckart synthesized the hexagonal ferrites, related to mag-
netoplumbite. These crystals consist of different stackings of two anionic

TAsr,r 3. Cer,cur.nrBn 2W/RT, L,r, Ls, p',r./RT, p's/RT eNo ReNoou-Mrxrxc
Le, Ln (ron CoupanrsoN) ron Trrnnn MrxBl-Levrn Cr,lv MrNrnl.rs

Run lengtb

ZW/RT p't/RT p'slrR? ComputedW w:0
PAB

Sample r^r rB pAA. lnn +
PBA

1
2
3

o . 7 1  0 . 2 9  0  6 3
-0  50  -0 .50  0 .33

0 . 4 3  0  5 7  0 . 6 5

o 1 1  1 2 6  - 1 . 7  - O . r 3  - r . 2  2 7  1 . 1  3 5  1 . 4
0 .33  1 .34  -1 .4  -O .41  -O  41  1  5  1 .5  2  0  2 .0
0 .  75  0  60  +1  7  +O .42  +0 .26  2 .9  3  9  1  . 8  2 .3

1. Sato, 1965, Sample B.
2. MacEwan, 1956a, p. 103, Wyoming bentonite
3 MacEwan, l956b,p 104.
r 11 and rg may be calculated where not specified Useful relations:

$AP/'L+ xB pB L : r Ai eBb BB + x A bAB :rs ; ra -f-rs : 1 ; f AA+ iAB : 1 ; pwt*'nS = I

structural Iayer types, one having the oxygen framework in the spinel
configuration (0), and one having l/4 oI the oxygen of the spinel frame-
work replaced by Ba or Pb atoms (Ob). These layers form ordered super-
layers in  three conf igurat ions:  S:O-O, R:O-Ob-O, and T:O-Ob
-Ob-O (Kohn and Eckart, t964a, p. a56). The R, S, and T superlayers
in turn form three types of layers: M:RS, Y:TS, and RSS.

The M and Y lavers, and the M and RSS layers, form two series of
ferrites, within each series various permutations of the M and Y (or M
and RSS) sequence for given M:Y (or M:RSS) ratios are possible.
Kohn and Eckart (1965b, p. 1374) showed that in the magnetoplumbite
series, M,Y-, where M:(Pb,Ba)Fe12O1e and Y:Ba2Zn2Fep022, the ob-
served stacking sequences are such that the M-M neighbor pairs are
avoided. The single exception is M2Y; in this case the stoichiometry re-
quires the existence of M-M neighbor pairs, but 1y'r,6,r is minimized never-
theless by the absence of /y'vy and the presence, therefore, of maximum
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number of /[uv. One may conclude that the excess energy W is Iarge
and negative between M and Y layers.

In the series composed of RSS and M, the M-M neighbor pairs are
present in the polymorph designated 66R (:RSS.M3 or Ma $) (Kohn
and Eckart, 1964b). The neighbor pair RSS.RSS has not yet been re-
corded in this seriesl the situation is analogous to that for the MY series.

In magnetoplumbite in the system Ba-Mn-Zn-Fe3+-O, in which Mn
replaces Zn in part, the M-M neighbor pair has been recorded in crystals
having the stacking sequence MzYrr, such that this neighbor pair is not
demanded by the stoichiometry (Kohn and Eckart, 1965a). It appears,
therefore, that this cationic substitution increases the algebraic value of
tr4l appreciably to permit both M-M and Y-Y type of neighbor pairs;
some irregularity in the stacking of M and Y layers may thus be pos-
sible. It may be that the nature and possibly the positions of the small
ions that do not directly replace oxygen in the framework affect the stack-
sequences.

Another example pertains to the "minerals" bastnaesite, parisite,
roentgenite, and synchisite (Donnay and Donnay, 1953), having the
compositions respectively of CeFCOa, 2CeFCOa'CaCOa, 3CeFCOa'
2CaCO3, and CeFCOa'CaCO3. In detail, Iayers exist that have the com-
position CeFCOa (: 1) or CaCOa(: 2), such that the stacking sequences
a re  respec t i ve l y  111  .  .  .  ;  l I 2 l I 2  .  .  .  ;  2 I2 l l 2 I2 I l  .  . . ,  and  t2 l2  .  .  .
(Donnay and Donnay, 1953, p.944).In all the c&ses, 1y'22:0, and -ly'p
is maximized. The value of W, therefore, must be large and negative.

Other possible examples of mixed-layer crystals are phases in the
system AIN-AI4CB (Jeffrey and Wu, 1963), the humite group of min-
erals (Bragg and Claringbull, 1965, p. 175-178), and staurolite (N6ray-
Szab6 and Sasv6ri, 1958); the reader is referred to these references.

The bulk of data on mixed-layer crystals showing tendency to maxi-
mize unlike neighbor pairs, however, comes from the clay minerals.
MacEwan, et al, (1961) presented an excellent review of the subject up
to that time; only a ferv examples need to be discussed here.

Regular 1: 1 mixed-layer clay minerals are known. Allevardite (Mac-
Ewan, et al,, 1961, p. a25) is a 1:1 mixture of muscovite-like and mont-
morillonite-like layers; corrensite (see Vivaldi and MacEwan, 1960) is
a 1: 1 mixture of chlorite-like and vermiculite-like layers; rectorite
(MacEwan, et al, 1961, p. a2Q is a 1:1 mixture of pyrophyll ite-l ike and
vermiculite-like layers. Hydrobiotite consisting of regular 1: 1 alterna-
tion of biotite-like and vermiculite-like layers is known (a.9., Bassett,
1959, p. 296). fi these clay minerals are in internal homogeneous equili-
brium, then in all cases ly'ee:I[nr:0,Iy'o":maximal, and the value of
trZ must be large and negative.
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MacEwan (1956b, p. 166-169) described an i l i i te (A)-montmorii lonite
(B) clay from Woodbury, Worcestershire, England, showing 72 percent

il l i te-l ike layers. The X-ray diffraction pattern is matched by a Fourier

transform in which is assumed ly'sn:0, so that lfre is maximum; the

distribution of run lengths in A, however, may be random (MacEwan,

1956b,  p.  168) .
According to MacEwan (1956b, p. 167), several mixed-layer i l l i te

(A)-montmoril lonite (B) clays (xe:.68) from Kinnekulle, Sweden, de-
scribed by Bystri im (1954), have X-ray diffraction patterns similar to that
of the Woodbury clay (see, however, discussion by Bystrcim, 1956, p.

29), and the observed patterns are l ikewise well matched with Fourier

Tael-r 4. Car-cut.trEn Ir AND ,B or SAMPLES lon Wnrcn W+- q

SampIe rtl P t t

W : -  q  W : 0

Pss P$I Pst
Lr Ls Lt Lrt

if,B

I

J

^

6

0
0
0
0
0
0

1
L
1
1
1

0 . 7 r  o . 2 9
0.60  .40
0.60  .40
0 . 7 2  . 2 8
0 . 6 8  . 3 2
0 . 7 2  . 2 8

3 . s  1 . 4
2 . 5  1 . 7
2 . 5  t . 7
3 . 6  t . 4
3 . t  1 . 5
3 . 6  1 . 4

0 . 6 0
.33
. J J

. 6 1

. 5 6

. 6 1

1 . 4 0
r . o , /
1 . 6 7
1  . 3 9
t . M
1 . 3 9

n n

1 . 5
t - J

z . o
2 . 1
2 . 6

1-3. Sato, 1965, samples A, C, D, respectively, layers are illite-like and montmorillon-

ite-Iike.
4, 5. MacEwan,1956b (#3, Woodbury; 14, Kinnekulle).
6. Salo el al,, 19 65. IlIite : 0.7 2, montmorillonite : 0. 28.
I See footnote, Table 3.

transforms by assuming l/ee:0 and ly'ee maximum, suggesting that W
is large and negative, in agreement with the implications of the regular
1: 1 allevardite which is composed of the same types of layers.

D'yakonov (1964) described hydrobiotites in which the biotite-l ike
(A) and vermiculite-l ike (B) Iayers differ in proportions. He found that
there is a predominance of the AB type of neighbor pairs, and apparently
a low value of /y'se. The data are in accord with the existence of 1: 1
regular mixed-layer hydrobiotite.

Sato (1965) and Sato et al (1965) presented data on additional mixed-
layer clay samples in which P ii: 0, corresponding to values ol W ---> - q .
These data, as well as those of MacEwan, are collected in 'Iable 4, in
which the calculated values of Ze and Ls are compared with the value
Io r  W:0 .
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The fact that all the illite-montmorillonite mixed-layer clay minerals

of this table have Psn (B: montmoril lonite) :0 is interesting. This

feature may mean that a montmorillonite-like layer requires an illite-

like Iayer on each side to achieve local charge balancel the large negative

value of trZ thus could simply mean that the electric forces overwhelm

the relatively weak Van der Waals forces between neutral layers.

Poss'ible eramples of W)0. When trZ)0, the l ike layers tend to cluster

together and unlike layers tend to avoid each other; according to the

Ising model, megascopically discrete crystals can be formed if the value

oI W is numerically suffi.ciently large.
Such micaceous mineral pairs as biotite and muscovite, biotite and

paragonite, muscovite and paragonite, and probably even biotite and

chlorite, characteristically occur in nature as discrete crystals. These

relations are explicable in terms of the Ising model and large, positive

values of trV.
Maiklem and Campbell (1965) applied the MacEwan method of

Fourier transform to several clay minerals from a Cretaceous bentonite

of Alberta, Canada. Their results are ambiguous because of the poor

agreement between calculated Fourier intensities, both for random stack-

ing and for maximum alternation, and the observed values. The situation

is further complicated by the presence of three types of layers: illite-like

(A), vermiculite-l ike (B), and montmoril lonite-l ike (C) (Maiklem and

Campbel l ,  1965,  p.363) .  However,  i tappears thatAA, BB, and CC type

of neighbor pairs all exist in significant proportions, and in at Ieast one

sample (no. 4132; p. 365-366) agreement between calculated and ob-

served intensities is best achieved by assuming the presence of most of

the montmorillonite-like layers as a mechanical admixture of montmoril-

lonite crystals. The data of Maiklem and Campbell suggest that the value

of trZ between the montmorillonite-like layers and the other types may be

positive.

Srarus ol rHE MrxBo-L.q.von Cnvsr,qr-s AS THERMoDYNAMTc Pn.lsns

The question of the thermodynamic status of the mixed-layer crystals

as phases in the sense of the phase rule has been discussed by mineralo-

gists and has been recentlysummarized byZen (1963, p' 938). The prob-

lem is pertinent to petrology, because, for example, in studying the equi-

Iibrium relations of a mineral assemblage, one must count the number of

phases correctlyl if the assemblage includes a mixed layer mineral, one

must know whether it is one or more phases.

For the one-dimensional Ising model, the critical temperature, T",
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for phase separation at the top of the solvus (necessarily at t^:I/2
because the Ising model is symmetrical with respect to composition) is
given by (Fowler and Guggenheim, 1952, p. 360-361)

2 w Z
zh_

hT"  z -2

where Z is the number of nearest neighbors. For Z:2, ?":6.rtrl.r.
w-++@ (the criterion of phase separation used is the thermodynamic
one, namely }pt/0*t:0, and 02p.6f 0r.A2:0), so that, in general, there
can be no phase separation for one-dimensional crystals (Landau and
Lifshitz, 1958, p. 482).

In the helix-coil transition of polypeptides, however, the abruptness
of the transition has been associated with a first order phase transition.
Zimm and Bragg (1959,  p.526,535) noted the novel ty  of  th is  feature,
but showed that the excess interaction energy between the coiled and
helical forms is effectively very large. Previously, we have already as-
sociated the existence of separate "end member" crystals with values of
W-->l oo; the added feature of equation (26) above is that even the co-
existence of two phases along two limbs of a solvus is prohibited for a
one-dimensional Ising crystal.

Discrepancies between this prediction and the observed coexistence of,
for example, montmorillonite and illite as separate crystals could be
caused by one of three factors:

(a) The discrete crystals are not in mutual equilibrium; given suffi-
cient activation energy, they wil l react to form a homogeneous phase;

(b) The Ising model does not apply either because it disregards long-
range forces, or because ar is not a constant; or

(c) The Ising model does not apply because the real mixed layer
crystals are finite in the other two dimensions, which cannot be ignored.

Errors introduced by the approximation (c) should be minimal if the
Iayers act as chemically closed units. Interlayer exchange of different
types of atoms that physically l ink the layers (e.g., Na and K atoms be-
tween muscovite-l ike layers), however, is entirely conceivable; such an
interchange would disturb the interatomic forces within each layer.
These correlation effects within layers are not handled by the Ising model
as presented here; yet these effects do not make the crystal a two-di-
mensional fsing crystal either. fn addition, in the above example, the
distortion of the silicate framework due to differing sizes of the potassium
and sodium ions (Burnham and Radosiovich, 1964, p. 235) may also
serve to propagate long range forces across the layers. To these extents,
then, the one-dimensional Ising model may be a poor approximation of
real mixed-layer crystals. In the absence of further information on this

(26)
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subject, however, it seems best at the present to regard the mixed-layer

crystals, for example the mixed-layer clays, as single-phase material'

Mrxnl-LnvBn Crevs rN N'ttunn: Isocnan hqnrcarons?

Among the mixed-layer minerals that occur in nature, the mixed layer

clays have received most attention because of their compositional as

well as stacking variability, and because of their geologic importance.

These clay minerals occur almost exclusively in unconsolidated sedi-

ments and in relatively young sedimentary rocks.
The entropy of mixing of the layers, AS*, is a small but positive

quantity for the layers as suchll its contribution to the free energy of

mixing increases with rising temperature' The heat or energy of mixing

may be either positive or negative, but is probably less sensitive to tem-

perature (for the Ising model, this quantity is independenL of temper-

ature). Thus one ought to expect the effect of mixed layer formation to

become more noticeable with rising temperature' contrary to the ob-

served relations.
The answer lies, of course, in that in virtually all cases the formation

of mixed-layer clay minerals involves layers having sheets of HzO be-

tween the layers (montmorillonite, vermiculite)' These sheets of quasi-

crystalline HzO molecules doubtless form "cushions" that smooth out the

structural misfits between layers, and spread out the electric charges

that originate in the interlayer cations. In entering the structure of the

crystal, the HrO molecules contribute to the free energy balance of the

system, and a net decrease in the entropy of the enlarged system is ex-

pected because AS for H2O, from the liquid to a quasi-crystalline state,

should be large and negative, overshadowing other entropy effects. The

total AS* must be Iarge and negative, so that mixed-layer formation

should be favored by low temperature. Moreover, isothermally and

isobarically the reaction should be sensitive to the value of the activity

of HzO in the surroundings of the crystal (for the description and inter-

pretation of an analogous system involving the polypeptides in mixed

organic solvents, see Davidson, 1962, p. 385-393), provided that HzO

behaves as a boundary value component (Zen, 1963, p. 930), as seems

reasonable, especially if there is a circulating groundwater phase bathing

the crystal. The disappearance of a mixed-layer clay mineral upon dia-

genesis of sediments and sedimentary rocks, thus, may be one of the

earlier and more sensitive indicators of their "metamorphic" grade.

1 One mole of Iayers of A and B in equal proportions will yield an ideal value of A'5-

: Rlnz-+1.4 cal/"K; houever, a mole of layers represents an enormous quantity of mat-

ter. The dimensions of the crystal normal to the chain length do not enter consideration as

long as the composition and atomic positions within each layer are held invariant when the

stacking sequence is shuffied.
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